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We present the theory describing Bose-Einstein condensation (BEC) and superfluidity in a liquid 4He based on
the concept that for some temperature interval, there exist metastable diatomic clusters or diatomic quasiparticles
which are the bound states of two atoms of 4He. It is shown that in liquid 4He for the temperature region
1 K � T � Tλ diatomic quasiparticles macroscopically populate the ground state which leads to BEC in liquid
4He. The approach yields the lambda temperature as Tλ = 2.16 K, which is in excellent agreement with the
experimental lambda transition temperature Tλ = 2.17 K. The concept of diatomic quasiparticles also leads to
superfluid and BEC fractions which are in good agreement with experimental data and Monte Carlo simulations
for liquid 4He. It is also shown that the condensate fraction for low temperature (T � 0.5 K) at saturated vapor
pressure is ρ0/ρ = 7.22%, which is very close to the value 7.25 ± 0.75% obtained in recent measurements.
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I. INTRODUCTION

The similarity between liquid 4He and an ideal Bose-
Einstein gas was recognized by London. He assumed that
the lambda transition in liquid 4He is the analog for a phase
transition in an ideal Bose gas at low temperature [1,2]. This
idea is supported by estimation based on an equation for the
critical temperature in an ideal Bose gas. Thereafter, Tisza
suggested that the presence of the condensed particles can be
described by a two-fluid hydrodynamics [3]. In this model, the
“condensate” completely has no friction, while the rest behave
like an ordinary liquid. However, Tisza’s model did not appear
to be completely self-consistent and quantitative.

Two-fluid quantitative hydrodynamics was subsequently
developed by Landau [4]. However, in this paper, the idea
of Bose-Einstein condensation (BEC) is not assumed. Landau
has predicted the excitation spectrum of liquid He II which
changes from the phonon behavior ε(p) = cp at small mo-
menta to a “rotonlike” form at larger values of the momenta as
ε(p) = � + (p − p0)2/2μR. This phenomenological model
was based mostly on experimental data and deep physical
intuition. The modern understanding of superfluidity is based
on the Onsager-Feynman quantization condition, which is
also important for the two-fluid theory in liquid 4He [5]. The
excitation spectrum in liquid 4He was measured in neutron
scattering experiments with great accuracy by several groups,
in particular by Henshaw and Woods [6]. This spectrum qual-
itatively agrees with Landau’s phenomenological excitation
spectrum.

The Bogoliubov analytical results [7] for elementary exci-
tations in the Bose gas are very important for understanding
the excitation spectrum in a phonon region. Nevertheless,
the Bogoliubov theory can be applied only to dilute Bose
systems. Feynman has found a relation between the energy
spectrum of the elementary excitations and the structure fac-
tor [8,9] that verifies Landau’s phenomenological dispersion
relation. We note that Feynman’s relation is correct only for

small enough momenta when the excitations are phonons.
In a rotonlike region, it is only an approximation of a real
situation. Feynman has also proposed a model of the roton
excitation as a localized vortex ring [5] with a characteristic
size of the order of a mean atomic distance in liquid 4He.
A number of methods have also been suggested for appli-
cations to quantum Bose liquids. For a review of quantum
fluid theories, also see Refs. [10–21]. In the past few years,
ultracold atomic systems have opened up the possibility to
explore the concept of universality [22]. It manifests itself
in that different physical systems can exhibit the same be-
havior, even if the relevant energy and length scale differ
by many order of magnitude. These works have stimulated
new experiments in ultracold Bose gases near a Feshbach
resonance [23].

The use of neutrons to observe the condensate fraction
in liquid 4He was proposed in Refs. [24,25] and the first
measurement of BEC fraction in liquid 4He was reported
by Cowley and Woods [26]. The history of measurement
to higher incidence energy neutrons and improved spec-
trometer performance is reviewed by Glyde [27], Sokol
[28], and others. The recent measurements of BEC and the
atomic momentum distribution in liquid and solid 4He are
reported by Diallo, Glyde, and others [29–32]. The momen-
tum distribution of liquid 4He and 3He has been calculated,
at zero temperature, by using the Green-function Monte
Carlo method [33] and the diffusion Monte Carlo method
[34,35]. At finite temperature, the simulations have been
done by the path-integral Monte Carlo method [36,37]. For
bosons, they provide energy estimates that are virtually ex-
act, within statistical accuracy. The optimization procedure
based on Monte Carlo calculations has been proposed in
Ref. [38].

Initiated by Wilson, the field-theoretical approach to criti-
cal phenomena has been extremely successful in the domain
of a phase transition [39]. In particular, this theory describes
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the lambda transition in liquid 4He. It has been possible to
calculate the critical exponents through the Wilson-Fisher
ε = 4 − d expansion [40]. The critical exponents can also
be calculated in three dimensions from field theory [41].
The above-mentioned results provide the conceptual basis for
the understanding of a lambda transition, superfluidity, and
BEC in liquid 4He. However, there are fundamental ques-
tions that are still open in this area. For example, there is
no analytic quantitative theory describing the BEC and su-
perfluid fractions in liquid 4He below the lambda transition
temperature Tλ.

In this paper, we develop the theory for superfluid 4He
based on the concept that for some temperature interval, there
exist metastable diatomic clusters or diatomic quasiparticles
(DQs) which are the bound states of two atoms of 4He. We
emphasize that metastable diatomic clusters or DQs can arise
only in strong interacting Bose systems at high density and
low temperatures. The DQs coupling in liquid 4He for the
temperatures below the lambda transition can be explained
by the Lennard-Jones intermolecular potential. The ground-
state energy E0 of diatomic clusters or DQ for mass density
ρ = 0.145 g cm−3 is given by Eq. (19). This equation yields
negative ground-state energy E0/kB = −8.65 K, which ex-
plains the existence of metastable clusters or DQ in liquid
4He for low pressure and temperatures below the lambda
transition temperature Tλ. Moreover, it is shown in Secs. IV
and V that in liquid 4He for temperature region 1 K � T � Tλ,
diatomic quasiparticles macroscopically populate the ground
state which leads to BEC in liquid 4He.

There is no spin interaction in this case because 4He atoms
are bosons with zero spin. We note that the pairs of coupled
quasiparticles are observed in superfluid 3He with spin S = 1
and orbital momentum L = 1. In this case, the spin interaction
yields the coupling in superfluid 3He, which is also known
as spin triplet or odd parity pairing [42–45]. The approach,
based on the diatomic quasiparticles concept, yields the criti-
cal BEC temperature in liquid 4He as Tλ = 2.16 K, which is
very close to the experimental lambda transition temperature
Tλ = 2.17 K. This theory also leads to superfluid and BEC
fractions for liquid 4He which are in good agreement with re-
cent condensation measurements [29–32,46] and Monte Carlo
simulations for a wide range of temperatures. Moreover, it
is shown in this paper that the condensate fraction for low
temperature (T � 0.5 K) at saturated vapor pressure (SVP) is
ρ0/ρ = 7.22%, which is very close to the value 7.25 ± 0.75%
obtained in recent measurements.

In Sec. II, we develop the theory for coupled quasiparticles
in liquid 4He for the temperatures below the lambda transition.
This many-body approach yields the discrete energy spectrum
and effective mass Mq for DQs, which are metastable states of
two helium atoms interacting with the atoms of the bulk. We
also present in this section the ground-state energy of the DQs.
This energy is connected to the roton gap � as E0 = −�.
In Sec. III, we derive the thermodynamical functions and
equation for the critical temperature of BEC in liquid 4He.
This equation yields Tc = 2.16 K, which is very close to the
experimental value of the lambda transition temperature. In
Sec. IV, we present the theory of BEC in liquid 4He based

on the DQ concept. It is shown that the DQs condense with
negative ground-state energy E0. We also calculate in this
section the excited and condensed densities of diatomic quasi-
particles and the energy and entropy of DQs for temperature
region Tp � T � Tλ with Tp � 1 K. In Secs. V and VI, the
superfluid and BEC fractions are calculated for the temper-
ature regions Tp � T � Tλ and T � 0.5 K, respectively. We
show in these sections that theoretical superfluid and BEC
fractions are in good agreement with experimental data and
Monte Carlo simulations [33–37,47].

II. DIATOMIC QUASIPARTICLES

We describe in this section the spectrum of diatomic quasi-
particles in liquid 4He for the temperatures Tp � T � Tλ

with Tp � 1 K. The diatomic quasiparticles are defined as the
bound states of two helium atoms interacting with particles
of the bulk. The DQ concept assumes that the number of
diatomic quasiparticles is much less than the number of real
particles.

The Hamiltonian for a many-body Bose system with two-
particle potential U (|ri − r j |) is of the form

HN =
N∑

i=1

p2
i

2m
+

N∑
i< j

U (|ri j |), (1)

where ri j = ri − r j . We assume the commutator relation
[rsα, pnβ ] = ih̄δsnδαβ , and all other commutators are zero.
Here, s, n and α, β are the the particle numbers and projector
indexes, respectively. The Hamiltonian in Eq. (1) can also be
written as

HN = Hq + HN−2, (2)

where Hq is the Hamiltonian for two bound particles with the
numbers 1 and 2 interacting with all particles of the bulk,
and HN−2 is the Hamiltonian for the rest of the particles of
a many-body Bose system. It follows from Eq. (1) that the
Hamiltonians Hq and HN−2 are

Hq = p2
1

2m
+ p2

2

2m
+ U (|r12|) +

N∑
j=3

U (|r1 j |) +
N∑

j=3

U (|r2 j |),

(3)

HN−2 =
N∑

i=3

p2
i

2m
+

N∑
3�i< j

U (|ri j |). (4)

We define the canonical transformation for the operators rs

and ps (s = 1, 2) as

R = 1
2 (r1 + r2), r = r1 − r2, (5)

P = p1 + p2, p = 1
2 (p1 − p2). (6)

The commutation relations for these operators are [rα, pβ ] =
ih̄δαβ and [Rα, Pβ ] = ih̄δαβ , and all other commutators are
zero. The Hamiltonian given by Eq. (3) can be written as

Hq = 1

2mc
p2 + 1

2M
P2 + U (R, r, XN−2), (7)
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where mc = m/2 and M = 2m. The potential U (R, r, XN−2)
in this equation is of the form

U (R, r, XN−2) = U (|r|) +
N∑

j=3

U
(∣∣R + 1

2 r − r j

∣∣)

+
N∑

j=3

U
(∣∣R − 1

2 r − r j

∣∣), (8)

with XN−2 = (r3, r4, . . . , rN ).
The intermolecular interaction for the Bose fluid is given

by the Lennard-Jones potential,

U (r) = 4ε

[( r0

r

)12
−

( r0

r

)6
]
, (9)

where the minimum of the potential occurs at rm = 21/6r0.
In the case of a gas or liquid 4He to good accuracy, the
parameters of the Lennard-Jones potential are calculated by
the self-consistent-field Hartree-Fock method. It is shown
that the parameters are given by ε/kB = 10.6 K and rm =
2.98 × 10−8 cm [48]. The quantum-chemical methods pro-
duce very accurate potential energy curves for van der
Waals molecules, which is demonstrated through the cal-
culation of helium dimer interaction energy for a variety
of internuclear distances [49]. These results are in close
agreement with Ref. [48] and the empirical potential of
Aziz et al. [50].

In this section, we use the Schrödinger representation for
operators. The potential in Eq. (8) can be written as

U (R, r, XN−2) = Ū (R, r) + V (R, r, XN−2), (10)

where Ū (R, r) = 〈U (R, r, XN−2)〉N−2 is the potential av-
eraged by the density matrix over the position of N −
2 particles with the numbers 3, 4, . . . , N . The function
V (R r, XN−2) describes the fluctuations of the potential in
Eq. (10) with 〈V (R, r, XN−2)〉N−2 = 0. The decomposition
of average potential Ū (R, r) of the quasiparticle in a series
around an equilibrium position with R = R0 and r = r0 has
the form

Ū (R, r) = Ū0 + 1

2
mcω

2
0(r − r0)2

+
3∑

s=1

1

2
Mqω

2
s (Rs − R0s)2 + · · · , (11)

where Ū0 = Ū (R0, nr0) and n = r/r is the unit vector.
The frequencies are given by ω2

0 = m−1
c ∂2

r Ū (R0, nr)|r=r0 and
ω2

s = M−1
q ∂2

Rs
Ū (R, nr0)|R=R0 for s = 1, 2, 3, respectively. We

use, in this decomposition, the renormalized mass Mq =
σM for diatomic quasiparticles. The factor is σ = 22/3 (see
Appendix A) and hence the renormalized mass is given by
Mq = σM = 25/3m. We also note that the frequency ωs de-
pends on the temperature and density of the Bose liquid.

The DQ Hamiltonian can be written by Eqs. (7), (10), and
(11) in the form

Hq = Ū0 + H (1)
q + H (2)

q + V (R, r, XN−2), (12)

where the Hamiltonians H (1)
q and H (2)

q are

H (1)
q = − h̄2

2mc

1

r2

∂

∂r

(
r2 ∂

∂r

)
+ 1

2
mcω

2
0(r − r0)2

+ h̄2

2mcr2
0

J (J + 1), (13)

H (2)
q = − h̄2

2Mq

3∑
s=1

∂2

∂R2
s

+
3∑

s=1

1

2
Mqω

2
s

(
Rs − R0s

)2
. (14)

The Hamiltonian in Eq. (13) describing the internal degrees
of freedom of the DQ is written in a spherical coordinate
system. We note that the term V (R, r, XN−2) is connected
with the fluctuation of interactions in Eq. (12), and it can
be neglected for the eigenenergy problem to a good accu-
racy. The effective Hamiltonian H (1)

q describes the internal
1D vibrations and rotations of DQ and the Hamiltonian H (2)

q
describes three-dimensional (3D) harmonic vibrations for the
center of mass of DQ with effective mass Mq. The discrete en-
ergy spectrums follow from the Hamiltonians H (1)

q and H (2)
q as

E (1)
n0J = (h̄2/2mcr2

0 )J (J + 1) + h̄ω0(n0 + 1/2) and E (2)
n1n2n3

=∑3
s=1 h̄ωs(ns + 1/2), respectively, where J = 0, 1, 2, . . . and

ns = 0, 1, 2, . . . with s = 0, 1, 2, 3. However, the rotations of
the DQ are “frozen” in the liquid at low temperatures. Hence,
the angular momentum quantum number is J = 0. Moreover,
one can choose the third Cartesian axis as e3 = n; then the
average potential Ū (R, nr) yields the relation ω1 = ω2 for the
frequencies. The discrete eigenenergies for the Hamiltonian
Hq are

En0n1n2n3 = Ū0 + E (1)
n00 + E (2)

n1n2n3
= E0 +

3∑
s=0

h̄ωsns, (15)

where E0 = Ū0 + ∑3
s=0

1
2 h̄ωs is the energy of the ground state

of the DQ. We note that the DQ states with the energies
En0n1n2n3 are metastable because the fluctuation of the inter-
action given by the term V (R, r, XN−2) leads to collisions
of a pair of bound atoms with the surrounding atoms. There
is also another scattering channel which corresponds to the
dissociation of DQs. The energy spectrum of Hamiltonian Hq

also has the continuous component given by

εq(p) = εq + p2

2Mq
, (16)

where p is the momentum of the DQ. Equation (8) yields
the average potential energy in the form Ū (R, r) = U (r) +
W (R, r), where the function W (R, r) is given by

W (R, r) = 〈[
U

(∣∣R + 1
2 r − r′∣∣)+ U

(∣∣R − 1
2 r − r′∣∣)]〉

r′ .

(17)

Here, 〈·〉r′ is the averaging to variable r′ with a conditional
distribution. The position of the atoms in the DQ is given
by r1 = R + 1

2 r and r2 = R − 1
2 r. It follows from Eq. (17)

that function W (R, r) is invariant to the change r1 → r2 and
r2 → r1.

The inequality h̄ωs � |E0| (see Appendix B) yields the
relation W (R, nrm) � W (R, nra), where rm = 21/6r0, and
ra = 2a0 at low pressures [19]. Here, a0 is the s-scattering
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length of helium atoms. Thus, the ground-state energy of the
DQ is

E0 = Ū (R, nrm) − Ū (R, nra) � U (rm) − U (ra)

= −4ε

[
1

4
−

(
r0

ra

)6

+
(

r0

ra

)12
]
. (18)

The relation ra = 2a0 is connected to the s-scattering cross
section σs = 4πa2

0 for helium atoms. We note that the s-
scattering length for 4He atoms is a0 = 2.2 × 10−8 cm [19].
Moreover, the distance ra is close to the average distance
r̄ = 2(3m/4πρ)1/3 between the atoms in a Bose liquid at low
pressure. Hence, for enough low pressures, we have the rela-
tion ra = ar̄. This equation leads to ground-state energy E0 of
the DQs, which is a function of mass density ρ. The constant
parameter a can be defined as a = 2a0/r̄, where the average
distance r̄ is given for the mass density ρ = 0.145 g cm−3. In
this case, the average distance is r̄ = 4.44 × 10−8 cm and the
constant parameter a = 2a0/r̄ is given as a = 0.991.

Equation (18) leads to the ground-state energy of the DQs,
which is a function of mass density,

E0(ρ) = −ε

[
1 − 4

(
ρ

ρa

)2

+ 4

(
ρ

ρa

)4
]
, ρa = 6ma3

πr3
0

.

(19)
We note that for low pressure, the mass density is ρ =
0.145 g cm−3, and hence Eq. (19) yields E0/kB = −8.65 K
for the parameters presented in Ref. [48]. The empirical po-
tential given in Ref. [50] leads to a very close normalized
ground-state energy of the DQs as E0/kB = −8.594 K. More-
over, it is shown in Ref. [19] that the roton gap � in liquid 4He
is connected to the ground-state energy of the DQs by relation
� = −E0.

III. LAMBDA TRANSITION TEMPERATURE
IN LIQUID 4He

In this section, we derive the equations for the average
energy, free energy, and entropy for the trapped DQ in liquid
4He. We also derive the equation for the lambda transition
temperature which agrees, to a high accuracy, with experimen-
tal temperature Tλ for liquid 4He. This temperature is found to
be a necessary condition for the lambda transition in liquid
4He. It is shown in the following section that this condition
is sufficient as well. We also show in Sec. V that the mass
density of the DQs is much smaller than the mass density ρ in
liquid 4He. In this case, the probability that a trapped DQ has
the vibrational energy En0n1n2n3 is given by

Pn0n1n2n3 (β ) = 1

Z (β )
exp(−βEn0n1n2n3 ), (20)

where β = 1/kBT and the partition function Z (β ) is

Z (β ) =
∞∑

n0=0

∞∑
n1=0

∞∑
n2=0

∞∑
n3=0

exp(−βEn0n1n2n3 ). (21)

We note that the discrete energy spectrum in Eq. (15) is ac-
curate only for enough small quantum numbers ns. However,
the partition function in Eq. (21) is given to good accuracy
because the terms with large numbers ns are small when

T � Tλ. The calculation of the sums in Eq. (21) leads to the
equation for partition function Z (β ) as

lnZ (β ) = −βE0 −
3∑

s=0

ln[1 − exp(−βεs)], (22)

with εs = h̄ωs. Thus, the average energy of the DQ and dis-
persion of energy are

Ēq(β ) = − ∂

∂β
lnZ (β ) = E0 +

3∑
s=0

εs

exp(βεs) − 1
, (23)

Dq(β ) = ∂2

∂β2
lnZ (β ) =

3∑
s=0

ε2
s exp(βεs)

[exp(βεs) − 1]2
. (24)

The free energy and entropy of the DQ are given by

Fq(β ) = − 1

β
lnZ (β ) = E0 + 1

β

3∑
s=0

ln[1 − exp(−βεs)],

(25)

Sq(β ) = − ∂

∂T
Fq(β ) = T −1[Ēq(β ) − Fq(β )]. (26)

These equations can be simplified for the temperatures T �
Tλ. We show in Appendix B that the following inequality is
satisfied for liquid 4He:

βλεs = h̄ωs

kBTλ

� 1, s = 0, 1, 2, 3. (27)

Thus, for temperatures T � Tλ, Eqs. (23) and (24) can be
written as

Ēq(β ) = E0 + 4kBT, (28)

�q(β ) = √
Dq(β ) = 2kBT, (29)

where �q(β ) is the energy variation. In the case T � Tλ, free
energy and entropy of the DQ are given by

Fq(β ) = E0 + kBT
3∑

s=0

ln
εs

kBT
, (30)

Sq(β ) = 4kB − kB

3∑
s=0

ln
εs

kBT
. (31)

These equations lead to the entropy differential as

dSq(β ) = 4kBdT

T
= dĒq(β )

T
. (32)

The necessary condition for the existence of a finite frac-
tion of trapped DQs in liquid 4He is Ēq(β ) < 0, which can
be written by Eq. (28) as E0 + 4kBT < 0. Thus, the trapped
DQs have finite fraction in liquid 4He when the condition T <

|E0|/4kB is satisfied. We show in the following section that
this condition is also a sufficient condition for the lambda
transition in liquid 4He. Hence, the critical temperature for
BEC in liquid 4He is given by

Tc = |E0(ρ)|
4kB

, (33)
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where the energy |E0| is defined by Eq. (19) as

|E0(ρ)| = ε

[
1 − 4

(
ρ

ρa

)2

+ 4

(
ρ

ρa

)4
]
. (34)

It is accepted that the critical temperature for BEC in liq-
uid 4He is equal to the lambda transition temperature [12].
Equation (34) yields |E0|/kB = 8.65 K for low pressure or the
helium mass density ρ = 0.145 g cm−3. Hence, in this case,
Eq. (33) leads to the critical BEC temperature as Tc = Tλ =
2.16 K, which is in excellent agreement with the experimen-
tal lambda transition temperature given by Tλ = 2.17 K. The
lambda transition temperature and critical BEC temperature
in Eqs. (33) and (34) are the functions of mass density as

Tλ(ρ) = Tc(ρ) = ε

kB

[
1

4
−

(
ρ

ρa

)2

+
(

ρ

ρa

)4
]
, (35)

where ρa = 6ma3/πr3
0 . The developed theory does not ap-

ply to dilute Bose gas because the DQs exist only in liquid
4He at low temperatures. We emphasize that the parameters
ε/kB = 10.63 K and rm = 2.96 × 10−8 cm presented in the
paper [49] lead to normalized ground-state energy of DQs
and the lambda transition temperature as E0/kB = −8.7 K
and Tλ = 2.175 K. Thus, the normalized ground-state energy
of DQs and the lambda transition temperature obtained by
parameters presented in Refs. [48,50] (see the end of Sec. II)
are in good agreement with the above result. This shows that
two interacting atoms in a liquid 4He have negative energy and
hence they can form a bound state at low pressure and enough
low temperature.

IV. BEC CONDENSATION IN BOSE FLUIDS

In this section, we develop the theory of BEC in liquid
4He for temperature region Tp � T � Tλ where the bound
temperature is Tp � 1 K. The DQs in this temperature region
can be described as a Bose system consisting of two fractions.
The first fraction is a Bose gas of DQs with the continuous
energy spectrum given by Eq. (16) and the second fraction
consists of trapped DQs with a discrete energy spectrum given
in Eq. (15).

The full Hamiltonian for the liquid Bose fluid can be writ-
ten in the form

Ĥ = Ĥq + Ĥa + Ĥint, (36)

where Ĥq is the Hamiltonian describing DQs in liquid 4He,
and Ĥa is the Hamiltonian for the rest of the free quasiparti-
cles, including the rotons and phonons. The Hamiltonian Ĥint

describes the interaction of all sorts of quasiparticles in the
Bose fluid.

The concept of the quasiparticles assumes that the number
of quasiparticle excitations is much less than the number of
real particles. Thus the DQ’s subsystem can be described as
two fractions: an ideal Bose gas of DQs with the continuous
energy spectrum and the fraction of DQs with a discrete en-
ergy spectrum. We emphasize that in this representation of
quasiparticles, the interaction energy of the DQs is much less
than their full energy. Thus, the DQs are weakly interacting

excitations in a liquid Bose fluid. We show in Sec. V that this
picture leads to good agreement with the experimental data.

Using the results of Sec. II, we can write the Hamiltonian
for two components of DQs as

Ĥq =
∑

p

εq(p)d̂†(p)d̂ (p) +
∑

n0

∑
n1

∑
n2

∑
n3

δ{n}E{n}d̂†
{n}d̂{n},

(37)

where E{n} = En0n1n2n3 is the discrete energy spectrum given
by Eq. (15) and εq(p) = εq + p2/2Mq is the continuous
energy spectrum of DQs with |εq| � |E0|. The operators
d̂†

{n}, d̂{n}, d̂†(p), d̂ (p) are creation and annihilation Bose op-
erators for discrete and continuous energy spectrums of DQs,
respectively. The function δ{n} is defined as δ{n} = 1 when
E{n} < 0, and δ{n} = 0 otherwise. The number operators of
DQs for discrete and continuous energy spectrums have the
form

N̂0 =
∑

n0

∑
n1

∑
n2

∑
n3

δ{n}d̂†
{n}d̂{n}, (38)

N̂1 =
∑

p

d̂†(p)d̂ (p) =
∑

p

N̂1(p), (39)

where N̂1(p) = d̂†(p)d̂ (p) and N̂q = N̂0 + N̂1 is the full num-
ber operator for the DQs.

The grand canonical density operator for the DQs’ subsys-
tem is

ρ̂q = �−1
q exp[−β(Ĥq − μ0N̂0 − μ1N̂1)], (40)

where the grand canonical partition function is

�q = Tr exp[−β(Ĥq − μ0N̂0 − μ1N̂1)]. (41)

The chemical potentials μ0 and μ1 are equal, μ0 = μ1 = μ̃.
Hence, the average number Ñ1(p) = 〈N̂1(p)〉 of DQs with the
momenta p is given by

Ñ1(p) = 1

exp{β[εq(p) − μ̃]} − 1
. (42)

The average number Ñ0 = 〈N̂0〉 of DQs for the discrete energy
spectrum is

Ñ0 =
∑

n0

∑
n1

∑
n2

∑
n3

δ{n}
exp[β(E{n} − μ̃)] − 1

. (43)

Thus, the full average number Ñq of DQs is given by

Ñq = Ñ0 + Ñ1, Ñ1 =
∑

p

Ñ1(p). (44)

The average number Ñc of DQs in the ground state with energy
E0 is

Ñc = 1

exp[β(E0 − μ̃)] − 1
. (45)

The density of the DQs in the ground state is ñc =
Lim(Ñc/V ), where Lim denotes the thermodynamical limit
(N,V → ∞ for N/V = n = const). Here, N is the full num-
ber of atoms in volume V . It follow from Eqs. (42) and (43)
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(see, also, Appendix C) that the full density of the DQs is

Ñq

V
=

(
Mq

2π h̄2β

)3/2

ζ3/2[exp(βμ̃)]

+ 1

V

∑
{n}

δ{n}
exp[β(E{n} − μ̃)] − 1

, (46)

where the first and second terms are Ñ1/V and Ñ0/V , re-
spectively. The function ζs(z) is a polylogarithm; this is a
generalization of the Riemann zeta function given by

ζs(z) ≡ Lis(z) =
∞∑

n=1

zn

ns
.

The chemical potential μ̃ is a volume-dependent function.
We also define the chemical potential μ = Lim μ̃, which is a
limiting case of chemical potential μ̃. It follows from Eq. (46)
that μ = E0 for low temperatures when T < Tc. The critical
temperature Tc for fixed density ñq follows from

ñq =
(

MqkBTc

2π h̄2

)3/2

ζ3/2(zc), zc = exp

(
E0

kBTc

)
. (47)

Equation (46) also yields ñq = ñ0 + ñ1, where ñ0 =
Lim(Ñ0/V ) and ñ1 = Lim(Ñ1/V ), and the density ñ1 for T <

Tc is given by

ñ1 =
(

Mq

2π h̄2β

)3/2

ζ3/2[exp(βE0)]. (48)

Below, we present the theorem which defines the volume-
dependent chemical potential μ̃ in the range of temperatures
T � Tc. It is important that this equation for the volume-
dependent chemical potential μ̃ leads to the correct thermo-
dynamical limit for the condensed fraction.

Theorem: The chemical potential μ̃ for the arbitrary fixed
density ñq in the range of temperatures T < Tc is

μ̃(ñq, T,V ) = μ − kBT

(
Ñ−1

c − 1

2
Ñ−2

c + 1

3
Ñ−3

c − · · ·
)

,

(49)
where μ = E0, Ñc = (ñq − ñ1)V , and the volume V is suf-
ficient large that (ñq − ñ1)V 
 1. The densities ñq and ñ1

are given by Eqs. (47) and (48), where ñq = ñ0 + ñ1, and
ñ0 = ñc > 0 for T < Tc. The chemical potential μ̃ for the
critical temperature Tc has the form μ̃ = E0 − ε, where ε > 0.

It is accepted here that the limit ε → 0 always follows
after the thermodynamical limit. First we show that Eq. (49)
yields the correct density ñ0 in the thermodynamical limit.
Equations (43) and (49) lead to the following equations:

Ñ0

V
=

∑
{n}

δ{n}V −1

exp[β(E{n} − μ̃)] − 1
� V −1

exp[β(E0 − μ̃)] − 1

� V −1

exp[1/(ñq − ñ1)V ] − 1
� ñq − ñ1, (50)

where we can use decomposition exp(1/X ) = 1 + X −1 +
(1/2)X −2 + · · · for X = (ñq − ñ1)V 
 1. Thus, for the range
of temperatures T < Tc, Eqs. (48) and (50) yield, for the

thermodynamical limit, the following equation:

ñq = ñ0 +
(

Mq

2π h̄2β

)3/2

ζ3/2[exp(βE0)]. (51)

Equation (45) yields the necessary condition for volume-
dependent chemical potential μ̃. It leads to the following
decomposition:

μ̃ = E0 − kBT ln(1 + Ñ−1
c )

= E0 − kBT

(
Ñ−1

c − 1

2
Ñ−2

c + 1

3
Ñ−3

c − · · ·
)

, (52)

where E0 = μ and Ñc 
 1. Moreover, Eqs. (43) and (45) yield
relation ñ0 = ñc. Thus, Eq. (49) is valid when the condition
Ñc = (ñq − ñ1)V 
 1 is satisfied.

It follows from Eq. (51) that the full density of the DQs
is ñq = ñ0 + ñ1, where ñ0 = ñc > 0 for the range of tempera-
tures T < Tc, and ñ0 = ñc = 0 when T � Tc. Hence, the DQs
condense in the ground state with energy E0 for the range of
temperatures T < Tc.

Equation (42) yields the excitation density ñ1 as

ñ1 = 1

(2π h̄)3

∫
1

exp{β[εq(p) − E0]} − 1
dp. (53)

We note that for the temperature region Tp < T < Tλ with
Tp � 1, an inequality e−βμ = eβ|E0| 
 1 is satisfied because
the ground-state energy of the DQs is E0/kB = −8.65 K (see
Sec. II).

Equation (53) for condition eβ|E0| 
 1 has the form ñ1 =∫
fq(p)dp, where the momentum distribution of the diatomic

quasiparticles is

fq(p) = 1

(2π h̄)3
exp{−β[εq(p) − E0]}. (54)

Integration in Eq. (53) for conditions |εq| � |E0| and eβ|E0| 

1 leads to the excitation density of the DQs as

ñ1(T, ρ) = 1

λ3
q(T )

exp

(
−|E0(ρ)|

kBT

)
, (55)

where the thermal wavelength λq(T ) is

λq(T ) =
(

2π h̄2

MqkBT

)1/2

. (56)

We note that Eq. (55) also follows from Eq. (48) when the
condition eβ|E0| 
 1 is satisfied. Relation ñ0 = ñc and Eq. (51)
yield the condensate density as

ñ0(T, ρ) = ñc(T, ρ) = ñq(ρ) − ñ1(T, ρ). (57)

Hence, equation ñ1 = ñq is satisfied for critical
temperature Tc.

Equation (55) for temperature Tc and Eq. (33) yield the full
density of the diatomic quasiparticles as

ñq(ρ) = e−4

(
MqkBTc(ρ)

2π h̄2

)3/2

= e−4

(
Mq|E0(ρ)|

8π h̄2

)3/2

, (58)

where the functions Tc(ρ) and |E0(ρ)| are presented by
Eqs. (35) and (34), respectively. We emphasize that Eq. (58)
yields an inequality ñq/n � 1, where n = Lim N/V is
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the density of atoms in liquid 4He. Thus, the necessary
condition for the theory based on the DQs concept is
satisfied.

Equation (58) leads to the critical temperature for a BEC
in liquid 4He as

Tc(ρ) = 2πe8/3h̄2ñq(ρ)2/3

kBMq
= |E0(ρ)|

4kB
. (59)

We note that the energy density Uq = Lim(Uq/V ) (for details,
see Appendix C) of the diatomic quasiparticles can be written
by Eq. (C8) in the form

Uq(T, ρ) = 3
2 kBT ñ1(T, ρ) + E0(ρ)[ñq(ρ) − ñ1(T, ρ)]. (60)

The entropy density of the diatomic quasiparticles follows
from Eq. (C9) as

Sq(T, ρ) = Lim
Sq

V
=

(
5

2
kB + |E0(ρ)|

T

)
ñ1(T, ρ). (61)

Equations (60) and (61) lead to free energy density Fq = Uq −
TSq of the diatomic quasiparticles,

Fq(T, ρ) = E0(ρ)ñq(ρ) − kBT ñ1(T, ρ). (62)

We emphasize that equations � = −E0 and μrot = −�,
where � and μrot are the roton gap and roton chemical
potential, are found in Ref. [19]. Furthermore, the theorem
proven in this section yields Lim μ̃ = μ = E0, where the
ground-state energy of the DQs is given by Eq. (19). These
equations lead to general relation μ = μrot = E0 for the tem-
perature region Tp � T � Tλ.

V. SUPERFLUID AND BEC FRACTIONS IN LIQUID 4He
FOR TEMPERATURES Tp � T � Tλ

In this section, we derive the fractions of BEC and su-
perfluid fractions in liquid 4He for temperatures Tp � T �
Tλ with Tp � 1 K. We also show that these superfluid and
BEC fractions are in good agreement with experimental data
and Monte Carlo simulations [36,47]. We note that in the
temperature interval Tp � T � Tλ, there exist three types of
quasiparticles: diatomic quasiparticles, rotons, and phonons.
Moreover, we show that the superfluid and BEC fractions
in liquid 4He are completely defined by thermodynamical
functions for the diatomic quasiparticles in the temperature
region Tp � T � Tλ.

The full mass density of the DQs and mass densities for
condensed and excited quasiparticles are given as ρq = Mqñq,
ρ0 = Mqñ0, and ρ1 = Mqñ1, respectively. The condensate
fraction in a liquid Bose fluid for the temperature region Tp �
T � Tλ is given as ρ0/ρ = (ñq − ñ1)Mq/ρ. Equations (55),
(58), and (59) and relation Tc = Tλ yield

ρ0

ρ
= f (ρ)[1 − �(T, ρ)], (63)

ρ1

ρ
= f (ρ)�(T, ρ). (64)

The functions f (ρ) and �(T, ρ) are given by

f (ρ) = Mq

e4ρ

(
MqkBTλ(ρ)

2π h̄2

)3/2

, (65)

�(T, ρ) =
(

T

Tλ(ρ)

)3/2

exp

[
4

(
1 − Tλ(ρ)

T

)]
, (66)

where lambda transition temperature Tλ(ρ) is a function of the
density given in Eq. (35). We emphasize that the excitation
mass density ρ1 = ρq − ρ0 is connected to the full density ρq

of the diatomic quasiparticles. We can also introduce the full
excitation mass density by relation ρex = ρ − ρ0; then the full
excitation fraction is

ρex

ρ
= 1 − f (ρ)[1 − �(T, ρ)]. (67)

Equations (63) and (67) lead to the relation ρex/ρ + ρ0/ρ

= 1.
The energy density of the diatomic quasiparticles can be

written in normalized form Ũq = Uq(T )/Uq(Tλ), where the
energy density Uq(T ) is given by Eq. (60) and Uq(Tλ) =
(3/2)kBTλñq. This definition leads to the normalized energy
density as

Ũq(T, ρ) =
(

8

3
+ T

Tλ(ρ)

)
�(T, ρ) − 8

3
. (68)

The normalized entropy density of the diatomic quasi-
particles is S̃q = Sq(T )/Sq(Tλ), where the entropy density
Sq(T ) is given by Eq. (61) and Sq(Tλ) = (13/2)kBñq.
Hence, the normalized entropy density of the diatomic
quasiparticles is

S̃q(T, ρ) =
[

5

13
+ 8

13

(
Tλ(ρ)

T

)]
�(T, ρ). (69)

We have two different equations for densities in the tem-
perature interval Tp � T � Tλ as

ρq = ρ0 + ρ1, ρ = ρs + ρn, (70)

where the second equation is written for the superfluid ρs and
normal ρn mass densities. We can also write, for this tem-
perature region, the following equation: ρ1 = α(ρ)ρn, where
α(ρ) is some function of density ρ. Hence, relations ρ1 =
ρq and ρn = ρ for temperature T = Tλ yield equation ρq =
α(ρ)ρ. Moreover, Eq. (70) and relations ρ1 = α(ρ)ρn and
ρq = α(ρ)ρ lead to equation ρ0 = α(ρ)ρs. Thus, for the
temperature region Tp � T � Tλ, we have the following
equations:

ρ1

ρ
= α(ρ)

ρn

ρ
,

ρ0

ρ
= α(ρ)

ρs

ρ
, (71)

where α(ρ) = ρq(ρ)/ρ. Equation (71) and relation ρex/ρ =
1 − ρ0/ρ lead to another important equation,

ρex

ρ
= 1 − α(ρ) + α(ρ)

ρn

ρ
. (72)

Equation (64) for temperature T = Tλ yields relation
ρq(ρ)/ρ = f (ρ) and, hence, we have the following equation:
α(ρ) ≡ f (ρ). Thus, Eqs. (35) and (65) and relation α(ρ) ≡
f (ρ) yield the function α(ρ) as

α(ρ) =
(

Mqε

2π h̄2

)3/2 Mq

e4ρ

[
1

4
−

(
ρ

ρa

)2

+
(

ρ

ρa

)4
]3/2

, (73)
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FIG. 1. Normal and superfluid fractions given by Eq. (74) (the-
ory: solid line) and fit by Eq. (75) (experimental data: dashed line)
for temperature region Tp � T � Tλ and density ρ = 0.145 g cm−3.

where ρa = 6ma3/πr3
0 . Equations (63), (64), and (71) and

relation α(ρ) ≡ f (ρ) lead to the normal and superfluid frac-
tions,

ρn

ρ
= �(T, ρ),

ρs

ρ
= [1 − �(T, ρ)], (74)

where the function �(T, ρ) is defined in Eq. (66).
The experimental data for the normal and superfluid frac-

tions in liquid 4He are well approximated for the range of
temperatures Tp � T � Tλ at saturated vapor pressure,

ρn

ρ
=

(
T

Tλ

)5.6

,
ρs

ρ
= 1 −

(
T

Tλ

)5.6

. (75)

Theoretical normal and superfluid fractions given by Eq. (74)
and experimental data approximated by Eq. (75) are shown
in Fig. 1. In Fig. 2, we present the normalized energy and
entropy of the diatomic quasiparticles given by Eqs. (68) and
(69), respectively. In Fig. 3, we present the condensate fraction
given by Eq. (63) (theory) and the fit of observed data for the
condensate fraction by Glyde [46] which at SVP is ρ0/ρ =
0.0725[1 − (T/Tλ)5.5]. Thus, Figs. 1 and 3 demonstrate the
good agreement of the theoretical results with experimental
data for superfluid and BEC fractions at SVP in the range of
temperatures Tp � T � Tλ.

VI. SUPERFLUID AND BEC FRACTIONS IN LIQUID 4He
FOR LOW TEMPERATURES

In the temperature interval T � 0.5 K, the most important
excitations are the phonons. The phonon’s energy is a linear
function of the wave number k: Ek = u1h̄k. This relation
yields an equation for the free energy per unit volume as

F (T, ρ) = F0(ρ) − π2k4
BT 4

90h̄3u3
1

, (76)

where u1 is the first sound, F0(ρ) = E0(ρ)ρ/m, and E0(ρ) is
the ground-state energy per one particle at zero temperature.
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FIG. 2. Normalized energy (solid line) and entropy (dashed line)
of diatomic quasiparticles given by Eqs. (68) and (69) for density
ρ = 0.145 g cm−3.

The second sound in two-fluid hydrodynamics is given by

u2 =
√

ρss2

ρn(∂s/∂T )ρ
, (77)

where s = S/ρ, and S = −∂F/∂T is the entropy per unit
volume. The entropy follows from Eq. (76) as

s = �T 3, � = 2π2k4
B

45h̄3u3
1ρ

, (78)

where the first sound u1 does not depend on the temperature
for the region, T < 0.5 K.
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FIG. 3. Condensate fraction given by Eq. (63) (theory: solid line)
and fit by Glyde [46] (experimental data: dashed line) for temperature
region Tp � T � Tλ (ρ = 0.145 g cm−3).
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We seek the normal and superfluid fractions for liquid 4He
at low temperatures T � 0.5 K in the form

ρn

ρ
= γ (ρ)T ν,

ρs

ρ
= 1 − γ (ρ)T ν . (79)

Equations (76)–(79) yield the second sound as

u2 =
√

�

3γ
(T 4−ν − γ T 4). (80)

There are only three different cases for parameter ν:
(1) ν < 4, with u2 → 0 for T → 0,
(2) ν > 4, with u2 → ∞ for T → 0,
(3) ν = 4, with u2 → √

�/3γ for T → 0.
We choose the case (3) with ν = 4 because u2 �= 0 and

u2 �= ∞ at zero temperature. Moreover, the limiting value for
the second sound at T → 0 is u2 = u1/

√
3 because the energy

of the phonon excitations is a linear function of the wave
number. It follows from Eq. (80) that the second sound for
T � 0.5 K is

u2 = u1√
3

[1 − γ (ρ)T 4]1/2, γ (ρ) = �

u2
1

. (81)

The function γ (ρ) is given by Eqs. (78) and (81) as

γ (ρ) = 2π2k4
B

45h̄3u5
1ρ

. (82)

Equations (79) and (82) lead to normal and superfluid frac-
tions of liquid 4He for T � 0.5 K as

ρn

ρ
=

(
2π2k4

B

45h̄3u5
1ρ

)
T 4,

ρs

ρ
= 1 −

(
2π2k4

B

45h̄3u5
1ρ

)
T 4. (83)

We can write the relation ρ0 = α∗(ρ)ρs for temperature in-
terval T � 0.5 K. In this case, ρ = ρ0 + ρex and ρ = ρs + ρn

yield

ρ0

ρ
= α∗(ρ)

ρs

ρ
,

ρex

ρ
= 1 − α∗(ρ) + α∗(ρ)

ρn

ρ
. (84)

These equations are similar to Eqs. (71) and (72). How-
ever, the functions α(ρ) and α∗(ρ) are given for different
temperature regions. Equations (83) and (84) yield, for zero
temperature, the condensate fraction as ρ0/ρ = α∗(ρ). The
function α∗(ρ) can be found by Monte Carlo simulations of
the condensate fraction in liquid 4He at zero temperature. We
choose the function α∗(ρ) in the form

α∗(ρ) = C exp(−κ0ρ), (85)

which is relevant to the Feynman approximation [51,52] for
the ground-state wave function. However, such treatment
leads to a rough estimate for the constants in Eq. (85). The
data from Moroni et al. [35] lead to the constants in Eq. (85):
C = 6.05 and κ0 = 30.6 cm3 g−1.

The functions α(ρ) and α∗(ρ) given by Eqs. (73) and
(85) are shown in Fig. 4. This figure demonstrates the dif-
ference between these functions. However, at low pressure,
when the density is ρ = 0.145 g cm−3, we have the relation
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FIG. 4. Function α(ρ ) given by Eq. (73) (solid line) for the
region Tp � T � Tλ, and function α∗(ρ ) given by Eq. (85) (dashed
line) for temperature region T � 0.5 K. Condensate fraction in liq-
uid 4He for zero temperature from Ref. [35] (circles).

α(ρ) = α∗(ρ). Equations (83) and (84) yield the condensate
and excitation fractions as

ρ0

ρ
= α∗(ρ) −

(
2π2k4

Bα∗(ρ)

45h̄3u5
1ρ

)
T 4, (86)

ρex

ρ
= 1 − α∗(ρ) +

(
2π2k4

Bα∗(ρ)

45h̄3u5
1ρ

)
T 4. (87)

Equation (86) for low temperature (T � 0.5 K) leads to the
condensate fraction of liquid 4He as ρ0/ρ = α∗(ρ). It is also
shown above that α(ρ) = α∗(ρ) at SVP (see Fig. 4). Thus,
the condensate fraction at low temperature and low pressure
is ρ0/ρ = α(ρ). We note that the function α(ρ) is found in
Eq. (73) for the temperature region Tp � T � Tλ. However,
the condensate fraction for the temperature region 0 � T �
Tp (Tp � 1 K) is a constant with a good accuracy. The fit of the
observed data for the condensate fraction given by Glyde [46]
at SVP (ρ0/ρ = 0.0725[1 − (T/Tλ)5.5]) shows that ρ0/ρ �
const = 0.0725 for T � Tp. Hence, relation ρ0/ρ = α(ρ) and
Eq. (73) yield the condensate fraction for low temperature
(T � 0.5 K) at SVP as ρ0/ρ = α(ρ) = 7.22%.

Recent measurements show that for low temperatures at
SVP, the condensate fraction is 7.25 ± 0.75% (see Ref. [46]),
which is very close to our result (7.22%). The diffusion Monte
Carlo simulations [35] for zero temperature give the conden-
sate fraction as 7.17%. These results also agree for both Glyde
et al. [30] and Snow et al. [53].

The developed theory also describes the bound temperature
Tp as a function of density. Equations (74) and (83) with T =
Tp yield the equation for the bound temperature,

�(Tp, ρ) = γ (ρ)T 4
p . (88)

A simpler equation for the temperature Tp follows from
Eqs. (75) and (83). We note that one can also use, in Eq. (75),
the power ν = 11/2, which does not violate the accuracy for
the bound temperature Tp. In this case, we have following
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equation: (
Tp

Tλ

)11/2

=
(

2π2k4
B

45h̄3u5
1ρ

)
T 4

p , (89)

which yields

Tp =
(

2π2k4
BT 11/2

λ

45h̄3u5
1ρ

)2/3

. (90)

Hence, the bound temperature at SVP is Tp � 1 K. This
value also agrees with the experimental data presented in
Refs. [45,54,55].

VII. CONCLUSIONS

In the present theory, the lambda transition temperature
and Bose-Einstein condensation in liquid 4He are described
using the concept that for some temperature interval, there
exist metastable diatomic clusters or diatomic quasiparticles
which are the bound states of two atoms of 4He. We em-
phasize that stable diatomic clusters or DQs can arise only
in strong interacting Bose systems at high density and low
temperatures. The DQs coupling in liquid 4He for the tem-
peratures below the lambda transition can be explained by
the Lennard-Jones intermolecular potential. The ground-state
energy E0 of diatomic clusters or DQs for mass density ρ =
0.145 g cm−3 is given by Eq. (19). This equation yields neg-
ative ground-state energy E0/kB = −8.65 K, which explains
the existence of metastable clusters or DQs in liquid 4He for
low pressure and temperatures below the lambda transition
temperature. The theory demonstrates that in liquid 4He for
the temperature region 1 � T � Tλ K, the diatomic quasi-
particles macroscopically populate the ground state which
leads to BEC in liquid 4He. This approach yields the lambda
transition temperature Tλ = 2.16 K, which is very close to
the experimental λ temperature Tλ = 2.17 K. Figures 1 and
3 demonstrate the good agreement of theoretical superfluid
and BEC fractions with experimental observations. It is shown
(see Sec. VI) that the condensate fraction for low temper-
ature (T � 0.5 K) at SVP is ρ0/ρ = α(ρ) = 7.22%, which
is very close to the value 7.25 ± 0.75% obtained in recent
measurements (see Ref. [46]). The theory also demonstrates
the connection between BEC and superfluidity phenomena
in the temperature intervals 1 � T � Tλ K and T � 0.5 K
by scaling laws given in Eqs. (71), (72), and (84). Thus, the
diatomic quasiparticle concept leads to results which are in
good agreement with experimental data at low pressure and
the temperatures below the lambda transition temperature.
The theory also demonstrates that BEC in dilute Bose gas and
Bose fluid have a different nature. Indeed, the BEC in Bose
fluid is connected with diatomic quasiparticles. However, DQs
can arise only in strongly interacting Bose systems at high
density and low temperatures.
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APPENDIX A: EFFECTIVE MASS OF DIATOMIC
QUASIPARTICLES

In this Appendix, we present the renormalization proce-
dure for the mass of diatomic quasiparticles in liquid 4He
for the temperature region Tp � T � Tλ. The energy of ex-
cited diatomic quasiparticles per unit volume follows from
Eq. (60) as

U1 = 3

2
kBT ñ1 = 3kBT

2λ3
q(T )

exp

(
−|E0|

kBT

)
. (A1)

The kinetic energy density of diatomic quasiparticles with the
mass M = 2m is given by

K = Lim
1

V

∑
p

ε(p)

exp{β[ε(p) − μ]} − 1
, (A2)

where ε(p) = p2/2M. The integration in this equation yields

K = 1

(2π h̄)3

∫
ε(p) exp{−β[ε(p) − E0]}dp

= 3kBT

2λ3(T )
exp

(
−|E0|

kBT

)
, (A3)

where λ(T ) is the thermal wavelength,

λ(T ) =
(

2π h̄2

MkBT

)1/2

. (A4)

The energy density in Eq. (A1) can be written as U1 = K + V ,
where the potential energy density of the excited quasiparti-
cles in harmonic approximation is given by V = K. Thus, we
have, for the harmonic approximation, the relation

U1 = 2K. (A5)

The substitution of Eqs. (A1) and (A3) into Eq. (A5) yields

1

λ3
q(T )

= 2

λ3(T )
, (A6)

where the thermal wavelength λq(T ) is given in Eq. (56).
Thus, Eq. (A6) leads to the effective (renormalized) mass,

Mq = σM, σ = 22/3 � 1.587. (A7)

Hence, the renormalized mass of the diatomic quasiparticles
is given by Mq = 25/3m.

APPENDIX B: VIBRATIONAL MODES IN LIQUID 4He

In this Appendix, we consider the energy of the vibrational
modes of diatomic quasiparticles. The Hamiltonian for har-
monic approximation is given by

Ĥs = p̂2
s

2Mq
+ 1

2
Mqω

2
s x̂2

s , (B1)

where s = 1, 2, 3. This Hamiltonian yields the following
equation:

1

2
Mqω

2
s

〈
x̂2

s

〉 =
〈

p̂2
s

2Mq

〉
, (B2)
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where the average kinetic energy is〈
p̂2

s

2Mq

〉
= 1

2
kBT . (B3)

Equations (B2) and (B3) lead to relation

h̄ωs

kBT
= h̄√

MqkBT
〈
x̂2

s

〉 , (B4)

where the effective mass is given by Mq = 25/3m (see Ap-
pendix A). We accept that for mass density ρ = 0.145 g cm−3,
the relation

√〈x̂2
s 〉 � 2d is approximately satisfied where

d � 4.4 × 10−8 cm is the average distance between helium
atoms. In this case, Eq. (B4) for critical temperature Tc

yields h̄ωs/kBTc � 1/7. Thus, we have found the inequality
h̄ωs � kBTc. This inequality also yields h̄ωk � |E0| because
the condition |E0| > kBTc is satisfied. The vibrational mode
with s = 0 can be treated similarly.

APPENDIX C: THERMODYNAMICS OF DIATOMIC
QUASIPARTICLES IN HELIUM FLUID

The partition function in Eq. (41) for the grand canonical
density operator is given by

ln �q = −
∑

p

ln(1 − z1e−βεq (p) )

−
∑

n0

∑
n1

∑
n2

∑
n3

δ{n}ln(1 − z0e−βE{n} ), (C1)

where zk = exp(βμk ) (k = 0, 1). The change V −1 ∑
p →

(2π h̄)−3
∫

dp (for the case V → ∞) in Eq. (C1) yields

ln �q

V
= 1

λ3
q

ζ5/2(z1) − 1

V

∑
{n}

δ{n}ln(1 − z0e−βE{n} ), (C2)

where ζs(z) ≡ Lis(z) is the polylogarithm (or generalized zeta
function) and λq is the thermal wavelength,

ζs(z) =
∞∑

n=1

zn

ns
, λq =

(
2π h̄2β

Mq

)1/2

. (C3)

The density of the DQs for continuous and discrete energy
spectra is

Ñ1

V
= 1

β

[
∂

∂μ1
(V −1ln �q)

]
μk=μ̃

= 1

λ3
q

ζ3/2(z), (C4)

Ñ0

V
= 1

β

[
∂

∂μ0
(V −1ln �q)

]
μk=μ̃

= 1

V

∑
{n}

δ{n}
z−1 exp(βE{n}) − 1

, (C5)

where μk = μ̃ (k = 1, 2), z = exp(βμ̃), and chemical poten-
tial μ̃ is given in Eq. (49). One can find that the condition
e−β|E0| � 0.0186 is satisfied for T � 2.17 K because E0/kB =
−8.65 K. Hence, the condition e−β|E0| � 1 is satisfied when
T � Tλ. In this case, the polylogarithm in Eq. (C4) has de-
composition as

ζs(e
−β|E0|) = e−β|E0| + 2−se−2β|E0| + · · · , (C6)

where the first term leads, with high accuracy, to function
ζs(z). Thus, Eqs. (C4) and (C5) can be reduced to Eqs. (55)
and (57) as

ñ1 = 1

λ3
q

exp(−β|E0|), ñ0 = ñq − ñ1, (C7)

where ñ1 = Lim(Ñ1/V ) and ñ0 = Lim(Ñ0/V ). The average
energy of the DQs follows by Eqs. (40) and (41) as

Uq = 〈Ĥq〉 = −
(

∂

∂β
ln �q

)
μk=μ̃

+ μ̃Ñ0 + μ̃Ñ1. (C8)

The entropy of the diatomic quasiparticles in liquid 4He is
defined as Sq = −kB{Tr(ρ̂qlnρ̂q)}μk=μ̃. It can be reduced by
Eqs. (40) and (41) to the form

Sq = kB

(
ln �q − β

∂

∂β
ln �q

)
μk=μ̃

, (C9)

where the partition function �q is given in Eq. (C2).
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