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Superstatistics from a dynamical perspective: Entropy and relaxation
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Distributions that deviate from equilibrium predictions are commonly observed across a broad spectrum of
systems, ranging from laboratory experiments to astronomical phenomena. These distributions are generally
regarded as a manifestation of a quasiequilibrium state and can very often be represented as a superposition
of statistics, i.e., superstatistics. The underlying idea in this methodology is that the nonequilibrium system
consists of a collection of smaller subsystems that remain infinitely close to equilibrium. This procedure has
been effectively implemented in a kinetic setting, but thus far, only in the collisionless regime, limiting its scope
of application. In this paper, we address the effect of collisions on the relaxation process and time evolution
of superstatistical systems. After confronting the superstatistical distributions with experimental and simulation
data, relevant to our analysis, we first study the effect of superstatistics on entropy. We explicitly show that, in
the absence of long-range interactions, the extensivity of entropy is preserved, albeit influenced by the specific
class of temperature fluctuations. Then, we examine how collisions drive the system towards a global equilibrium
state, characterized by a maximum entropy, by employing the relaxation time approximation. This allows us to
define a dynamical version of superstatistics, characterized by a singular time-varying parameter q(t ), which
undergoes a continuous evolution towards equilibrium. We show how this approach enables the determination of
the evolution of the underlying temperature distribution under the influence of collisions, which act as stochastic
forces, gradually narrowing the temperature distribution over time.
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I. INTRODUCTION

Distributions deviating from those predicted by equilib-
rium statistical mechanics are commonly observed across a
diverse spectrum of systems, encompassing nearly all scales,
from laboratory-scale experiments to galaxy clusters. In ex-
perimental settings, one may mention experiments on cold
atoms in optical lattices [1,2], trapped ions [3], driven dissi-
pative dusty plasmas [4], spin glasses [5], particles coupled to
an active bath [6], graphene membranes [7], cell monolayer
systems [8], as well as high-energy collisional experiments
[9,10]. Such nonequilibrium distributions are also common-
place in space environments, having been acknowledged since
the late 1960s in space plasmas [11–15] and, subsequently,
in gravity-dominated systems like stellar clusters and galaxy
clusters [16–20]. Within the gravitational context (or more
broadly in scenarios involving long-range interactions), the
presence of such nonequilibrium distributions finds a simple
explanation: the required (collisional) relaxation time is es-
timated to diverge approximately linearly with the number
of particles [21,22]. Hence, sufficiently massive celestial ob-
jects (e.g., elliptical galaxies) would require a relaxation time
greatly exceeding the age of the universe to reach equilib-
rium. Consequently, they remain trapped in quasiequilibrium
states.

Determining the steady state of a nonequilibrium system is
a very complex issue as it requires—at least in principle—the
knowledge of the complete historical record of perturbations
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that the system has undergone. Several approaches have been
proposed in the literature to address this problem. One ex-
tensively explored avenue is that of nonextensive statistical
mechanics (NSM) [23], which originates from a generalized
form of entropy (i.e., the Tsallis q-entropy), to derive gen-
eralized distributions. The distributions arising within this
paradigm have been widely used in the literature due to
their flexibility in modeling various observations, despite the
ongoing debate over some conceptual issues within NSM
[24–32] (see also Ref. [33] for a holistic perspective on the
debate). Another approach, perhaps more ambitious, is that of
superstatistics [34], which proposes modeling fluctuations in
the local temperature of the nonequilibrium system, through
a temperature distribution. This approach is somehow more
deeply routed in the long tradition of statistical mechanics,
and its essence can be traced back to the work of Kubo [35],
Lavenda [36], and others [37–39] (see also Refs. [40,41] for
related tools in the more general context of stochastic pro-
cesses).

The latter approach has proved to be remarkably fruit-
ful and has evolved into a standard paradigm for addressing
nonequilibrium systems. The concept of superstatistics has
found applications in physical scenarios as disparate as turbu-
lence [42,43,51], plasmas [44–46], ultra-cold gases [47,48],
self-gravitating systems [49,50], high-energy physics [52,53],
and spin systems [54,55], among many others [56–58]. It
has also been applied to other domains, extending its utility
to areas beyond the scope of physics, such as traffic [59],
power grid fluctuations [60], DNA architecture [61,62], rain-
fall statistics [63], air pollution [64], cognitive processes [65],
etc.
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One interesting aspect of superstatistics lies in its ability to
generate Tsallis distributions, known in NSM as a special in-
stance of a broader family of distributions. In particular, three
classes of (inverse) temperature distributions f (β ), namely
the χ2, the inverse-χ2, and the log-normal classes, have
shown compelling empirical support, across various physi-
cal contexts (see Sec. II for a detailed discussion). These
three universality classes offer sufficient flexibility, extending
beyond the domain of application of NSM. Note that the
nonextensive nature of entropy is not explicitly invoked in this
context, thus avoiding potential inconsistencies that remain
subjects of ongoing debate [24–32].

When examining continuous media, like plasmas and grav-
itational systems, the concept of superstatistics can be easily
implemented into kinetic equations (i.e., the Boltzmann equa-
tion in the classical case, or the Wigner-Moyal equation in the
quantum case). This approach has demonstrated certain de-
grees of success [46,48,49]. However, to date, investigations
have primarily focused on the collisionless regime, i.e., the
Vlasov regime. When collisions come into play, the situation
is different as collisional events (even rare) slowly drive the
system irreversibly toward an equilibrium state. Hence, a nat-
ural question arises: Given a quasiequilibrium system, initially
characterized by a superstatistical distribution, how does it
evolve under the effect of collisions? This paper attempts to
address this question.

More precisely, we study a kinetic model in which col-
lisions are accounted for through the so-called relaxation
time approximation (also known as the BGK approximation)
[66,67]. This method has gained recognition as a simple and
efficient way for addressing collisions across a wide spec-
trum of scenarios. Its applications span various problems,
ranging from plasma physics [68,69] to self-gravitating sys-
tems [70] and high-energy physics [71–73], among many
others [74–76]. Within this framework, we construct a dy-
namical class of superstatistical distributions, with a varying
parameter q(t ), and show how this can be used to in-
fer the evolution of the temperature distribution f (β ) over
time, under the effect of collisions. This procedure pro-
vides insights into the underlying temperature dynamics and
sheds light on the “history” of the observed nonequilibrium
distributions.

The rest of this paper is organized as follows. In Sec. II,
we provide a comprehensive overview of the superstatistics
concept, with a particular emphasis on the three universal-
ity classes that have strong empirical support. We discuss
the distributions that emerge within this framework and con-
front them with experimental and simulation data of granular
gases and gas-solid flow [77–79]—a domain where, to our
knowledge, their significance has not yet been recognized.
In Sec. III, we examine their associated entropy and show
that, while preserving the property of extensivity, temperature
fluctuations enter the picture in a subtle way. We confirm
that maximum entropy is attained in an equilibrium state, i.e.,
in the absence of temperature fluctuations. In Sec. IV, we
study how collisions drive the superstatistical system to this
equilibrium state, in the relaxation time approximation, and
construct a dynamical version of superstatistics with a vary-
ing parameter q(t ). Finally, in Sec. V, we draw concluding
remarks and outline future directions.

II. SUPERSTATISTICAL VELOCITY DISTRIBUTIONS

To set the stage, let us first outline the general situation we
will be dealing with here. We are considering systems that are
not in strict thermodynamic equilibrium, but exhibit only local
equilibrium. In such a situation, the given system consists
of small subsystems (or cells) in local equilibrium. These
subsystems represent regions from which thermalization later
spreads throughout the entire system. As the relaxation time
τ0 of a cell is much shorter than the relaxation time τ of the
entire system (at least when long-range interactions are not
involved), there exists a time scale t such that

τ0 � t � τ, (1)

on which the small cells are infinitely close to equilibrium,
whereas the entire system has not yet reached global equi-
librium. In the presence of collisions, the subsystems weakly
exchange with each other, causing a slow drift of the entire
system towards equilibrium. In these conditions the system is
said to be in a quasiequilibrium state [49,81,82]. This scenario
encompasses many relevant physical situations. For instance,
one may think of space plasma environments (e.g., the solar
wind) where binary collisions between particles are rare, or
gravitational systems, which are characterized by a relaxation
time τ exceeding the age of the universe.

The concept of superstatistics presents itself as a powerful
technique of systematically handling such situations. The con-
cept is centered around this simple idea: At a small scale, the
system may relax toward thermodynamic equilibrium, and its
local statistical properties are given by equilibrium Boltzmann
statistics, with a well-defined local inverse temperature β ≡
1/T (throughout the paper we set the Boltzmann constant kB

to unity). The local probability of finding the system at some
energy ε reads as p(ε) ∝ exp(−βε). At the level of the entire
system, however, the (inverse) temperature is not constant but
fluctuates from cell to cell. If the fluctuation operates over a
large spatiotemporal scale, then one may assign a distribution
f (β ) to the inverse temperature, and the statistical properties
of the entire system read as1

B(ε) =
∫ ∞

0
dβ f (β )

exp(−βε)

Z (β )
, (2)

where Z (β ) is the (local) partition function. Note that B(ε)
is simply the Laplace transform of the (rescaled) temperature
distribution

f̃ (β ) ≡ f (β )

Z (β )
. (3)

1One may also think about this in terms of the adiabatic ansatz
[80]: During its evolution, the system travels within its state space
X which is divided up into small cells, each characterized by a
constant value of some parameter β. Within each of these cells,
the system is described by the conditional probability p(A|β ) to be
found in a specific state A ∈ X . As β varies adiabatically across
these cells, the joint distribution of finding the system in the state
A with a given value of β reads as p(A, β ) = p(A|β )p(β ) (i.e., the
De Finetti-Kolmogorov relation). The probability p(A) for finding
the system in the state A is obtained by summing over all possible
values of β, resulting in Eq. (2).
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That is, B(ε) = L{ f̃ }(ε), and conversely, f̃ (β ) = L−1{B}(β ).
This means that the distribution B(ε) is fully determined by
the temperature distribution and vice versa.

An essential ingredient in Eq. (2) is the temperature dis-
tribution f (β ). In principle, the latter may be any normalized
distribution of a positive variable. However, aside from very
simple models (e.g., a two-level distribution), three main
classes of f (β ) emerge as universal limit statistics in the ma-
jority of known systems. These classes are strongly supported
by substantial empirical evidence, and their emergence can
be explained through probabilistic arguments, relying on the
central limit theorem (CLT)2 [85] or the maximum entropy
principle [86]. While our focus will naturally be on these three
classes, our findings can readily extend to other distributions
f (β ) that could be employed to model some specific situa-
tions.

As we will be mainly interested in velocity distributions,
we shall assume, locally, a Maxwell-Boltzmann (MB) distri-
bution

f (v) =
(

βm

2π

)d/2

exp

[
−βmv2

2

]
, (4)

for a d-dimensional system, and discuss the corresponding
superstatistical probability distribution functions (PDFs). The
three universality classes of superstatistics are the following:

(1) χ2 superstatistics. In this case, β is assumed to follow
a χ2 distribution of degree n:

f1(β ) = 1

�
(

n
2

)(
n

2β0

)n/2

βn/2−1e− nβ

2β0 , (5)

where β0 ≡ 〈β〉 is the average of β. The corresponding super-
statistical velocity distribution follows from Eq. (2) as3

B(v) =
(

β0m

πn

)d/2 �
(

n+d
2

)
�

(
n
2

) (
1 + β0

n
mv2

)− n+d
2

. (6)

Interestingly, Eq. (6) is formally identical to the so-called q-
Gaussian distribution, known in NSM [23]. This connection
can be made more transparent upon defining an entropic index
q̃ and an effective inverse temperature β̃ as follows:

q̃ ≡ 1 + 2

n + d
and β̃ ≡ (n + d )β0

n
. (7)

2We note in passing the compelling formal results [83,84] that
explore generalizations of the CLT, using the language of NSM. The
rationale here is that, while the standard CLT applies to independent
random variables, one may relax this condition by allowing corre-
lations between them. From one perspective, such generalized forms
of the CLT may offer insights into the emergence of superstatistics in
the presence of correlations among the microscopic random variables
contributing to β. From another perspective, exploring potential ex-
tensions of the generalized CLT to other classes of superstatistics
might yield valuable formal results.

3In the statistics literature, distributions in the form of Eq. (6) are
referred to as Students t-distributions. They represent a special case
of the Burr-type III distribution.

Equation (6) can then be rewritten in the more standard form,
used in NSM, namely

B(v) ∝
(

1 + (q̃ − 1)
β̃mv2

2

) 1
1−q̃

. (8)

Note that for large values of |v|, Eq. (6) behaves as a
power law, i.e., B(v) ∼ |v|−(n+d ). This property makes it ex-
tremely useful for modeling various space and astrophysical
observations, which frequently exhibit suprathermal tails that
decrease following a power law. In fact, such quasi-power-
law distributions are commonly observed in various physical
contexts, such as space [11,12,15] and laboratory [4] plasmas,
and stellar systems [16–19]. They are also prevalent in diverse
experimental realizations, such as cold atoms in optical traps
[1,2], and high energy collisions [9,10].

(2) Inverse-χ2 superstatistics. In this scenario, it is not
the inverse temperature β that follows a χ2 distribution but
rather the temperature β−1. In turn, β follows an inverse-χ2

distribution:

f2(β ) = β0

�
(

n
2

)(
nβ0

2

)n/2

β−n/2−2e− nβ̂0
2β . (9)

The corresponding velocity distribution follows in this case
from Eq. (2) as

B(v) = 2β0

�
(

n
2

)( m

2π

)d/2
(

β0n

2

)n/2(mv2

β0n

) 2−d+n
4

× K 2−d+n
2

(
√

nmβ0|v|), (10)

Kα (x) being the modified Bessel function of the second
kind. Asymptotically, Eq. (10) exhibits exponential tails in
the velocity. This type of exponential behavior has been ob-
served in several nonequilibrium problems, such as vortex
glasses/liquids [87], fusion plasmas [39], and in the case of
harmonic oscillators coupled to solvent baths [88]. Similar
trends have also been documented in other problems, outside
of the scope of physics, such as cancer disease-specific mor-
tality distributions [89].

(3) Log-normal superstatistics. In this case, β follows a
lognormal distribution,

f3(β ) = 1√
2πsβ

exp

{−(ln β − μ)2

2s2

}
, (11)

with an average of β given by β0 = μes2/2. In this last
situation, a closed-form expression for the corresponding
velocity distribution is currently unavailable, but it can be
readily computed numerically. This class of superstatistics is
also strongly supported by experimental findings. Empirical
evidence of log-normal superstatistics has been found for
instance in Lagrangian and Eulerian turbulence [43,51,85],
in space plasmas [46], in stellar systems [50], and in other
contexts [60].

Figure 1 displays examples of the superstatistical velocity
PDFs, produced by the three universality classes of super-
statistics. For future convenience, and to enable easy compari-
son among them, the PDFs have been (re)parameterized using
a single parameter defined as q := 〈β2〉/〈β〉2, which can be
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FIG. 1. Velocity probability distributions B(v) corresponding to χ2 (a), inverse χ 2 (b), and log-normal (c) superstatistics, for different
values of q := 〈β2〉/β2

0 . The velocity has been normalized to the thermal velocity, i.e., v ≡ β0v/2m.

expressed, for the three classes of f (β ), as

q := 〈β2〉 f1

β2
0

= 1 + 2

n
(n > 2),

q := 〈β2〉 f2

β2
0

= n

n − 2
, (12)

q := 〈β2〉 f3

β2
0

= es2
.

The latter can be regarded as an extension of the Tsallis
index to the other classes of superstatistics. Note, however,
that beyond the χ2 class, there is no direct correspondence
between q := 〈β2〉/β2

0 [Eq. (12)] and the entropic index used
in NSM [23]. In our notation, this parameter quantifies the
departure of a system from (global) equilibrium. In fact, re-
gardless of the class of superstatistics, one has q � 1, with
q = 1 corresponding to equilibrium (i.e., a vanishing variance
of f (β ), implying a constant temperature across the entire
system).

One may see from Fig. 1 that the produced PDFs exhibit
the typical profile found in most physically relevant scenar-
ios. To demonstrate more clearly the empirical validity of
superstatistics, it is worthwhile to compare them with recent
experimental and simulation results. We present two examples
where the relevance of superstatistics has not been recog-
nized before, specifically in the context of gas-solid flows
and granular gases velocity distributions. We have employed
a nonlinear regression method to fit the three universality
classes of superstatistics with nonequilibrium velocity distri-
butions computed from the direct numerical simulations of a
gas-solid flow conducted by Liu et al. [77,78], and the ex-
perimental velocity distributions of (electrostatically driven)
granular gases due to Kohlstedt et al. [79]. The results are
reported in Fig. 2. While a closer analysis and more data might
be necessary for a thorough differentiation between the three
classes in this specific situation, one may clearly see that the
observed deviations from the MB distribution are effectively
captured by the three universality classes of superstatistics.

III. SUPERSTATISTICS AND ENTROPY

Before examining the impact of collisions on the evolution
of a superstatistical system towards equilibrium, it is essential
to discuss the concept of entropy within the superstatistics
framework. This discussion is crucial because the process in-
volves a change in entropy, with its maximum value occurring
in the final equilibrium state. This is particularly relevant as
the extensitivity of entropy has been widely questioned in
the context of the theoretical foundation for nonequilibrium
distributions [90–94], even in the absence of interactions. For
simplicity, we consider a stationary, isolated medium, with
vanishing spatial gradients, i.e., we assume spatial homogene-
ity. In such conditions the density n does not depend on the
location. Let us denote f (r, v; t ) the phase space distribu-
tion function of N particles, and compute the entropy for a
distribution corresponding to the superstatistical distributions
derived in Sec. II. While B(v) is normalized to unity, f (v) is
normalized to the number of particles N . That is,∫∫

f (v)d3rd3v = n
∫∫

B(v)d3rd3v = N. (13)

We consider a general definition of entropy S, valid for
equilibrium and nonequilibrium systems, namely

S = −
∫∫

f [ln( f ) − 1]d3rd3v − N ln

(
h3

m3

)
, (14)

with h being the Planck constant and m the mass of the parti-
cles composing the system. This formulation traces its origins
to the works of Boltzmann [95] and Gibbs [96], and has been
revisited more recently, in particular in the context of plasma
physics [97–99] and for non-Gaussian distributions [100].
We note that Eq. (14) incorporates the quantum mechanical
restriction on the minimum phase-space volume occupied by
an individual particle and the Gibbs factor, avoiding therefore
the so-called Gibbs paradox associated with particle indis-
tinguishability. It is important to note that the formalism
of superstatistics does not make explicit assumptions about
the form of entropy, and alternative entropic forms beyond
Eq. (14) warrant attention. In particular, generalized entropies
are important elements for establishing a structural foundation
for superstatistics, based on the maximum entropy principle
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FIG. 2. Direct numerical simulation data of gas-solid flow nonequilibrium velocity distributions [77] (upper panel) and experimental
velocity distributions of driven granular gases [79] (lower panel), fitted with the three universality classes of superstatistics. The left panel (a),
(c) shows the whole domain while the right panel (b), (d) shows only the overpopulated high energy tail.

[101–104]. From an axiomatic point of view, these entropies
satisfy the first three ShannonKhinchin axioms, but violate the
fourth axiom associated with the composability of statistical
systems. Such constructs are particularly useful in the context
of non-Markovian or nonergodic complex systems. Nonethe-
less, given the scenario considered here and the pragmatic
nature of our approach, the entropy (14) is appropriate as it
remains valid for nonequilibrium situations.

From Eqs. (14) and (13), one may write

S = − ln(n)
∫∫

f (v)d3rd3v −
∫∫

f (v) ln[B(v)]d3rd3v

+
∫∫

f (v)d3rd3v − N ln

(
h3

m3

)
, (15)

which can be recast as

S = N

[
1 + ln

(
m3

nh3

)
+ 	q

]
, (16)

where we have defined the “scaled entropy” as follows:

	q := −
∫

B(v) ln[B(v)]d3v. (17)

The latter encodes all the information on the temperature dis-
tribution [note that the form of B(v) is entirely determined by
f (β )], and the degree of departure from equilibrium, through
the parameter q. As q approaches its equilibrium value q = 1,
B(v) reduces to the MB distribution, and the scaled entropy
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N=N1+N2

V=V1+V2

N1

V1

N2

V2

FIG. 3. A group of free particles confined within a box (left)
eventually split into two separate subsystems (right).

reduces to

lim
q→1

	q = 1

2

[
3 + ln

(
8π3T 3

0

m3

)]
. (18)

In this limit, the entropy (16) reduces to the standard Sackur-
Tetrode equation, for an ideal (monoatomic, classical, and
nonrelativistic) gas at equilibrium, namely

S = −N ln

(
nh3

(2πmT0)3/2

)
+ 5

2
N = N

[
ln

(
1

nλ3

)
+ 5

2

]
,

(19)

where λ = h/
√

2πmT0 is the thermal de Broglie wavelength
defined at the mean temperature T0 ≡ 1/β0.

An interesting feature of Eq. (16) is that nonequilib-
rium effects are contained in the quantity 	q. Otherwise,
the entropy preserves the same properties as the equilibrium
Sackur-Tetrode entropy. In particular, extensivity is preserved,
regardless of the class of superstatistics, as long as 	q �= ∞
[note that all quantities in the square bracket in Eq. (16) are
independent of N].

This can be made more explicit by considering the case
of two volumes V1 and V2, filled, respectively, with N1 and N2

particles, of the same species (see Fig. 3). The two subsystems
are assumed to have the same density n = N1/V1 = N2/V2 and
the same mean temperature T0. These two subsystems are then
mixing and, eventually, fill the total volume V = V1 + V2 with
N1 + N2 particles. Note that when two systems described by
the same class of superstatistics have equal mean temperature
and equal density, it implies that the two distributions for each
subsystem share the same value of q. The entropy of each
subsystem follows from Eq. (16) as

S1 = N1

[
1 + ln

(
m3V1

h3N1

)
+ 	q

]
,

S2 = N2

[
1 + ln

(
m3V2

h3N2

)
+ 	q

]
. (20)

As the two subsystems are assumed to have the same density,
one has

N1

V1
= N2

V2
= N1 + N2

V1 + V2
, (21)

then the total entropy, after the two subsystems have merged,
reads as

S1⊕2 = (N1 + N2)

{
1 + ln

[
m3(V1 + V2)

h3(N1 + N2)

]
+ 	q

}
= S1 + S2,

(22)

which corresponds, in fact, to the sum of the two entropies S1

and S2.
A word of caution is appropriate at this point: Note that

the preceding discussion has been limited to systems with-
out interactions. Its primary objective is to demonstrate that
nonequilibrium distributions, by themselves, do not imply
entropy nonextensivity. However, when (long-range) interac-
tions are involved, this may change the picture. This is where
the recently introduced concept of “entropy defect” [105,106]
may come into play. The latter measures the change in entropy
(leading to nonextensivity) due to the order induced in the
system through the correlations among its constituents—an
effect bearing some analogies with the mass defect that takes
place when nuclear particle systems are assembled.

Along similar lines, it is important to clarify the (some-
times overlooked) distinction between additivity and extensiv-
ity. Additivity asserts that the total entropy of a given system
is identical to the sum of the entropies of its (probabilistically
independent) components, whereas extensivity corresponds
to the requirement that S(N ) ∝ N for N → ∞. Of the two
properties—additivity and extensivity—extensivity is the es-
sential one. The insistence on the (thermodynamic) entropy of
a given system being extensive is crucial due to its connection
to the Legendre transformations structure in thermodynamics
(see, e.g., discussion in [107]). Although the extensivity of en-
tropy can be anticipated in the present scenario, more complex
classes of systems could require a nonadditive entropic form
to ensure extensivity. Compelling arguments supporting this
perspective can be found in Refs. [108–110].

Having confirmed the extensive nature of entropy in the
superstatistics scenario, one may ask how do temperature fluc-
tuations affect entropy. To elucidate this, we have numerically
computed the scaled entropy (17) for the three universality
classes of superstatistics (see Fig. 4). Here, two comple-
mentary interpretations can help understand how temperature
fluctuations enter the picture:

In Fig. 4(a), the scaled entropy has been computed by
imposing a fixed mean temperature T0. One may see that the
presence of fluctuations around T0 results in an increase in en-
tropy. As one compares between the three universality classes,
one may observe that, for the same value of q := 〈β2〉/β2

0 (i.e.,
the same degree of fluctuations), the class of χ2 superstatistics
is the one that has the most significant effect on the entropy,
followed by the log-normal class, and then the inverse-χ2

class. This general tendency can nicely be explained from a
Bayesian perspective, where entropy is regarded as a measure
of ones uncertainty about the measurable properties of a sys-
tem. In fact, if one has access to the mean temperature T0,
the presence of fluctuations around this value introduces an
additional source of uncertainty.

This can be made more explicit by computing the so-called
thermal uncertainty, which has a close connection with en-
tropy [111]. To have an insight, let us consider a minimalistic
version of the system under discussion, i.e., the case of a free
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FIG. 4. The scaled entropy 	q [Eq. (17)], computed numerically for the three universality classes of superstatistics, under two conditions:
(a) with a fixed mean temperature T0 and (b) with a fixed mean energy 〈E〉.

particle in a one-dimensional box of length L. In this scenario,
the thermal uncertainty relation, obtained by averaging the
Heisenberg uncertainty over thermal (equilibrium) statistics,
reads as [111]

〈(�x)(�p)〉 ≡ 1

Z (β )

∞∑
n=1

(�x)(�p)e−βεn ≈
√

3L

6π

√
2πm

β
,

(23)

where the approximation consists of taking the continuous
limit. Generalizing this result to the context of superstatistics
is a simple exercise. For superstatistical distributions in the
generic form of (2), which are essentially Boltzmann distribu-
tions averaged over f (β ), we can combine Eq. (23), with the
moments of f (β ), given by

〈β l〉 f1 = �
(

n
2 + l

)
�

(
n
2

) (
2

n

)l

β l
0,

〈β l〉 f2 = �
(

n
2 + 1 − l

)
�

(
n
2

) (n

2

)l−1
β l

0, (24)

〈β l〉 f3 = el (l−1)s2/2β l
0,

for the three universality classes, and use Eq. (12) to find

〈〈(�x)(�p)〉〉 fi (β ) = αi(q)〈(�x)(�p)〉, (25)

where we have defined the following auxiliary functions:

α1(q) =
�

[
1

q−1 − 1
2

]
�

[
1

q−1

]√
q − 1

,

α2(q) =
�

[ q
q−1 + 3

2

]
�

[ q
q−1

] (
q − 1

q

)3/2

, (26)

α3(q) = q3/8,

with i = 1, 2, 3 corresponding, respectively, to χ2, inverse-
χ2, and log-normal superstatistics. Figure 5 shows αi(q) as a
function of q, for the three classes of superstatistics. One may
see that the presence of temperature fluctuations induces an
increase in the thermal uncertainty, following the same pattern
observed in the scaled entropy 	q.

From a different angle, the fact that nonequilibrium effects
increase 	q, and consequently the total entropy S, leads to an
apparent paradox. In fact, the entropy is expected to reach its
maximum at equilibrium, which corresponds to q = 1. This

FIG. 5. The normalized thermal uncertainty αi(q) [viz. Eq. (26)]
as a function of q, for the three universality classes of superstatistics.
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FIG. 6. The V -T0-q diagram, namely the volume V as a function of the average temperature T0 and q := 〈β2〉/β2
0 , corresponding to a

constant entropy, for χ 2 (a), inverse χ 2 (b), and log-normal (c) superstatistics. For q = 1, one recovers the adiabatic equation, i.e., V ∼ T −3/2
0 .

equilibrium state is associated with the MB distribution in
the case of an ideal gas considered here. This puzzle can
be resolved by noting that, for an isolated system, it is not
the mean temperature T0 but rather the energy 〈E〉 that is
conserved. For the three universality classes, one may express
the energy 〈E〉 = m〈v2〉/2 in terms of T0, and vice versa, by
using the moments (24) and Eq. (12), as follows:

〈E〉1 = d

4 − 2q
T0 ⇔ T0 = (4 − 2q)

〈E〉1

d
,

〈E〉2 = d
2q − 1

2q
T0 ⇔ T0 =

(
2q

2q − 1

) 〈E〉2

d
, (27)

〈E〉3 = q
d

2
T0 ⇔ T0 = 2

q

〈E〉3

d
,

d being the number of degrees of freedom [see Eq. (4)] and
i = 1, 2, 3 corresponding, respectively, to χ2, inverse-χ2, and
log-normal superstatistics. Figure 4(b) displays the scaled en-
tropy (17) for a fixed energy 〈E〉. One may observe that 	q,
and consequently the total entropy S, remains lower than that
of the equilibrium state. The latter is correctly reproduced in
the limit q → 1.

Observing Figs. 4 and 5, an interesting trend emerges:
the three classes of superstatistics tend to align as the value
of q approaches unity. This pattern reflects a broader phe-
nomenon discussed in Ref. [34], that all superstatistics exhibit
a universal behavior when converging towards equilibrium
distributions (for q close to 1). That is, regardless of the class
of fluctuations (even beyond the three universality classes
considered here), distributions (2) display a quadratic correc-
tion (1 + 1

2σ 2ε2) for small fluctuations, where σ represents
the standard deviation of f̃ (β ). It is worth mentioning that
such distributions featuring a quadratic correction beyond the
equilibrium distribution frequently occur in plasma physics.
These are commonly referred to as nonthermal or Cairns
distributions in the plasma physics literature [112,113].

Another interesting result that can be extracted from the
entropy (16) concerns isentropic processes, i.e., processes in
which the entropy of the system remains unchanged. In equi-
librium, an isentropic compression or expansion process of a
parcel of gas implies that the argument of the logarithm in the

SackurTetrode equation (19) remains constant. It follows that
V ∼ T −3/2. This is the standard V − T adiabatic equation (for
three degrees of freedom, i.e., those of the monoatomic ideal
gas). It is interesting to explore how this may change in the
superstatistical scenario. By rewriting the entropy (16) as

S = N

[
1 + ln

(
V m3 e	q

Nh3

)]
, (28)

one observes that, for an isentropic process, V e	q must be
constant. It is only in the case q → 1 that one recovers the
V -T adiabatic equation, namely that V T 3/2 = constant. In the
general context, the lines of constant entropy correspond to
a nontrivial relation between V , T0, and q. Figure 6 shows
the volume as a function of T0 and q, corresponding to an
isentropic process, for the three universality classes of su-
perstatistics, obtained by numerically solving Eq. (28). This
represents a generalization of the standard V -T adiabatic
equation for superstatistical systems.

IV. EVOLUTION TOWARD EQUILIBRIUM:
THE RELAXATION TIME APPROXIMATION

We now turn our attention to the relaxation process of
a system, initially in a quasiequilibrium state described by
a superstatistical distribution, under the effect of collisions.
To explore this situation, we adopt a kinetic approach, con-
sidering the phase space spanned by the space and velocity
coordinates. The state of the system is defined by the distribu-
tion function f (r, v; t ), whose evolution over time is governed
by the Boltzmann equation. That is,

df (r, v; t )

dt
= ∂ f

∂t
+ v · ∇r f + F

m
· ∇v f = C[ f ], (29)

where ∇r and ∇v stand for the partial derivatives with respect
to position r and velocity v, respectively. Above, F represents
the external force and C[ f ] is the collision operator. For
simplicity, we assume homegeneity (i.e., ∇r f = 0) and the
absence of external forces (i.e., F = 0). In these conditions,
the Boltzmann equation (29) reduces to

df (r, v; t )

dt
= ∂ f

∂t
= C[ f (t )]. (30)
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FIG. 7. Velocity probability distributions resulting from the relaxation time approximation scenario calculated using Eq. (34), for an
initial distribution corresponding to χ 2 (a), inverse χ 2 (b), and log-normal (c) superstatistics, with q := 〈β2〉/β2

0 = 1.2. The velocity has
been normalized to the thermal velocity, i.e., v ≡ v/2mT0.

This corresponds to the situation discussed in Sec. III. We note
that, even with these simplifications, the equation remains
quite general as we have not specified the form of the collision
operator yet. For the exact form of C[ f (t )], Eq. (30) corre-
sponds to an integro-differential equation, making it highly
challenging to tackle analytically. It is a common practice
to use model collision operators, namely simplified operators
preserving the main qualitative properties of the original exact
collision operator, while omitting fine details. One noteworthy
approximation of the collision operator that allows gaining
analytical insight is the relaxation time approximation (also
known as the BGK-model). This model was independently
introduced by Bhatnagar, Gross, and Krook [66], and by
Welander [67], as a simplified Boltzmann-like model. In this
approximation, C[ f (t )] reads as

C[ f ] = feq − f

τ
, (31)

where feq is the equilibrium distribution (i.e., the MB dis-
tribution in our scenario) and τ is the relaxation time, i.e.,
the time taken by a nonequilibrium system to reach (global)
equilibrium. While the relaxation time approximation appears
to primarily account for small deviations from equilibrium,
it has been acknowledged [114] that this approximation re-
mains effective well beyond its theoretical limits, as long
as the relaxation time can capture the relevant physics. This
approximation has proven effective in facilitating the ana-
lytical treatment of various problems, raging from plasma
physics [68,69] to self-gravitating systems [70] and high en-
ergy collisions [71–73], among many others [74–76]. With
this approximation, Eq. (30) becomes

∂ f

∂t
= feq − f

τ
, (32)

which can be solved, by assuming some initial distribution
f (t = 0) ≡ fin, to give

f (v) = feq + ( fin − feq) exp

(
− t

τ

)
. (33)

This can be identified with the nonequilibrium distribution
observed at time t , with t � τ . Eq. (33) can be expressed in a

more intuitive form as follows

f (v) = fin (v) exp

(
− t

τ

)
+ feq(v)

[
1 − exp

(
− t

τ

)]
, (34)

emphasizing that, at any given moment, the distribution corre-
sponds to a superposition of the two distributions, fin and feq,
with a “weight” controlled by the dimensionless parameter
t/τ .

To show how this applies to a quasiequilibrium system de-
scribed by superstatistics, we associate our initial distribution
fin to one of the three universality classes of superstatistical
velocity distributions, discussed in Sec. II, and feq to the
equilibrium MB distribution (for simplicity, considering one
degree of freedom). In Fig. 7, we depict the evolution of
superstatistical velocity distributions, obtained from Eq. (34).
One may see that, as time goes by, the distinctive heavy
tails characteristic of quasiequilibrium states fade away, and
the distribution smoothly transforms into the equilibrium MB
distribution (see Fig. 1 for comparison).

In this picture, the system is characterized, at any given mo-
ment, by a superposition of the distributions fin and feq, with
the nonequilibrium distribution gradually evolving toward feq.
Now, one may observe that, in the superstatistics scenario,
the shape of f (v) is entirely determined by the temperature
distribution f (β ) across the system (indeed, the temperature
distribution f (β ) can be univocally determined from f (v)).
At this level of description, the evolution of f (v) translates
into an evolution for the temperature distribution itself: The
temperature distribution starts with a given shape (in princi-
ple, determined by some initial conditions) and progressively
evolves towards f (β ) ≡ δ(β − β0), corresponding to an equi-
librium state, with a constant temperature T0 ≡ 1/β0. Put
otherwise, the constituent cells of our nonequilibrium system
progressively thermalize, forming larger regions at uniform
temperature. At the end of this process, the whole system has
thermalized and is described by the equilibrium distribution
(as illustrated in Fig. 8).

As the distribution smoothly evolves from a specific
initial nonequilibrium state, corresponding to a particular
universality class of superstatistics, toward an equilibrium
distribution, one may define a dynamical factor q(t ), with fin
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FIG. 8. Schematic illustration of the relaxation process: The
initial nonequilibrium system is divided up into small cells, each
exhibiting nearly constant temperature. This initial temperature
distribution is characterized by an index qin. As time goes by, neigh-
boring cells gradually reach thermal equilibrium, resulting in the
emergence of larger areas with uniform temperature. At the end of
the process (i.e., for t/τ → ∞), the entire system attains a uniform
temperature, corresponding to q := 〈β2〉/β2

0 = 1.

corresponding to some initial value qin > 1 and feq corre-
sponding to q(t/τ → ∞) = 1 (in which case the temperature
distribution shrinks to a Dirac δ distribution). Note that a
similar scenario has been nicely elaborated for NSM, in the
context of multiparticle production processes, involving a dy-
namical nonextensivity index [72,73]. The present discussion
can be regarded as an extension to cover the entire range
of superstatistics universality classes. We emphasize that for
inverse χ2 and log-normal superstatistics, there is no direct
correspondence between q := 〈β2〉/β2

0 and the entropic index
used in NSM. Such correspondence can only be established in
the case of the χ2 class (see Ref. [23]).

Now, we can determine the evolution of q(t ) by using
Eq. (33). Although the equation can be numerically solved
in the general case, a more insightful approach can be em-
ployed by eliminating as much of irrelevant information as
possible from the description, enabling us to retain an ana-
lytical treatment. This is particularly relevant in the context
of log-normal superstatistics, where a closed-form expression
for the distribution is not available, but its moments can be
computed analytically. Taking advantage of this, Eq. (33) can
be multiplied by vl (l ∈ N) and integrated over velocity space,
providing us with the evolution of the velocity moments 〈vl〉.

For superstatistical distributions in the generic form of (2),
which are merely MB distributions averaged over f (β ), the
velocity moments can be written as

〈vl〉 ≡
∫

vlB(v)dv = 〈〈vl〉MB〉 f (β ). (35)

Using the moments of the three universality classes of f (β )
[Eq. (24)], one may express the velocity moments as

〈vl〉 f1 =
�

[
1

q−1 − l
2

]
�

[
1

q−1

]
(q − 1)l/2

〈vl〉MB,

FIG. 9. The evolution of q(t ), starting from an initial value qin =
1.2, for the three universality classes of superstatistics.

〈vl〉 f2 =
�

[(
1

q−1

) + 2 + l
2

]
�

[(
1

q−1

) + 2
] (

q − 1

q

)l/2

〈vl〉MB,

〈vl〉 f3 = q
l
4 ( l

2 +1)〈vl〉MB, (36)

where we have used Eq. (12), to express them in terms of q.
In particular, for the lowest moment l = 2 (note that all odd
moments vanish for symmetry reason), one has

〈v2〉 f1 = 1

2 − q
〈v2〉MB (1 � q < 2),

〈v2〉 f2 = 2q − 1

q
〈v2〉MB, (37)

〈v2〉 f3 = q〈v2〉MB.

Using this and Eq. (33), we find the dynamical expression of
q(t ) for the three classes as follows:

q1(t ) = 1 + qin − 1

qin − 1 − (qin − 2)et/τ
,

q2(t ) = qinet/τ

1 + qin(et/τ − 1)
, (38)

q3(t ) = 1 + (qin − 1)e−t/τ .

with i = 1, 2, 3 corresponding, respectively, to χ2, inverse
χ2, and log-normal superstatistics. The evolution of q(t ), as
determined by Eq. (38), is shown in Fig. 9, with an initial
value qin = 1.2, chosen for illustrative purposes. Note that,
for the three universality classes, the equilibrium value q → 1
is reached in the limit t/τ → ∞. It is instructive to observe
that, for log-normal superstatistics, Eq. (38) implies that q(t )
obeys the same evolution equation as f (v) in the relaxation
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FIG. 10. Temperature distributions f (β ) corresponding to χ2 (a), inverse-χ 2 (b), and log-normal (c) superstatistics, for different t/τ ,
determined using Eq. (38). The initial state has been set to qin ≡ q(t/τ = 0) = 1.4. As t/τ increases, the distribution becomes progressively
narrower, eventually approaching a Dirac δ distribution in the limit t/τ → ∞.

time approximation (32). That is,

dq

dt
= qeq − q

τ
, (39)

with qeq = 1.
Now, note that the dynamics of q(t ) fully determines the

dynamics of the temperature distribution f (β ). This allows
determining the changes occurring within the underlying tem-
perature distribution, as driven by collisions, and to capture its
specific form at any given moment. This process is portrayed
in Fig. 10, for the three universality classes of superstatistics.
Starting from a given temperature distribution, characterized
by an initial values qin = 1.4 (for the sake of illustration), the
distribution becomes progressively narrower and eventually
shrinks to a Dirac δ distribution for t/τ → ∞.

It is instructive to note that, despite the simplifications
we have applied here (homogeneity and the absence of an
external force), the general tendency outlined in Eq. (38)
finds support in empirical observations. An appealing exam-
ple is that of stellar astrophysics, where the relaxation time
approximation may be used to effectively model close stel-
lar encounters (see, e.g., Ref. [115]). In this context, it has
long been known that Tsallis distributions [16–18] and, more
broadly, superstatistical distributions [50], accurately model
the observed distributions of radial and rotational velocities
of stars. Extensive analyses reveal that the deviation from the
MB (equilibrium) distribution correlates inversely with the
age of the stellar cluster, with equilibrium distributions ob-
served for ages greater than approximately 170 million years
(Myr). In Ref. [116], this tendency is attributed to a memory
loss” effect while in our interpretation, it can be explained by
the influence of collisions (close stellar encounters in this con-
text) gradually driving the stellar system toward equilibrium
distributions over a long period of time.

Before concluding this section, it is important to note
that, in the situation considered here with a fixed number
of particles N , one would naturally expect an evolution to-
wards equilibrium. Nonetheless, certain complex systems,
especially those involving long-range interactions, may ex-
hibit nonuniform convergence as (N, t ) → (∞,∞). In this
context, we highlight the findings of Ref. [117], where it
has been demonstrated, without making any a priori hypothe-
ses about entropy or other thermodynamic quantities, that
in the ordering limN→∞ limt→∞, Maxwellian distributions
dominate. Conversely, in the limt→∞ limN→∞ ordering, the
crossover occurs in the opposite direction, with q-Gaussian

distributions (corresponding to the χ2 universality class of
superstatistics) becoming dominant.

V. CONCLUSIONS

In this paper, our primary focus has been on quasiequi-
librium systems, characterized by local equilibrium, yet not
reaching global equilibrium. These systems can be effectively
modeled using a superposition of statistics, i.e., superstatis-
tics. We first investigated the effect of superstatistics on
entropy. We showed that, although temperature fluctuations
enter the picture, the extensivity of entropy is preserved (at
least when long-range interactions are not involved). Subse-
quently, we studied a kinetic model, accounting for collisions
via the relaxation time approximation, to explore the evolution
of superstatistical systems towards equilibrium. This allowed
us to define a dynamical version of superstatistics, smoothly
evolving towards equilibrium distributions. This dynamics is
governed by a single time-varying parameter q(t ), whose rate
of change is controlled by the relaxation time τ . Within this
framework, collisions assume the role of a stochastic force,
causing temperature fluctuations, and gradually narrowing the
temperature distribution over time.

The present approach presents interesting prospects for
future research. In fact, the concept of superstatistics has
found interesting applications in the study of continuous me-
dia, where a kinetic treatment is appropriate. However, prior
investigations have been somewhat limited in scope, primar-
ily focusing on the collisional regime. The present approach
offers a pathway to extend this methodology and explore the
influence of collisions on a broader spectrum of phenomena,
such as waves and instabilities in various media.

The approach discussed here, nonetheless, retains its
limitations, especially due to the absence of long-range inter-
actions and the reliance on the relaxation time approximation.
Potential future avenues of research may involve examining
the influence of interactions and considering more general
forms of the collision operator. While the relaxation time ap-
proximation is versatile and accommodating for a wide range
of scenarios, there is room for exploration of more realistic
collision operator forms (see, e.g., Ref. [118] and references
therein). This will shed light on the extent to which the
present conclusions remain applicable in a broader context.
Of course, at the technical level, one anticipates important
challenges when dealing with more sophisticated collisional
operator forms but the underlying rationale remains the same,
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at the conceptual level. In the same context, we stress that
the relaxation time approximation employed here inherently
produces an exponential dependence on time, which is well-
suited for modeling rapid relaxation processes. Nevertheless,
in certain experimentally relevant situations, the initially rapid
relaxation undergoes a gradual slowdown, leading to nonex-
ponential behavior. In such instances, the current model does
not fully capture the dynamics, and one expects a time de-
pendence following more general functions. Examples of such
functions include power laws [119] or stretched exponentials
[120].

Finally, note that the outlined reasoning can be reversed to
explore how collisions might give rise to superstatistical dis-

tributions. In fact, while collisions typically tend to drive the
system toward equilibrium, they can, under certain conditions,
lead to the generation of heavy-tailed distributions that are
characteristic of quasiequilibrium states. This phenomenon
has recently been observed in the velocity distributions of
radio-frequency ion traps [121]. In this scenario, collisions
cause an increase in the high-energy tails of the velocity distri-
bution, for sufficiently high densities. In Ref. [121], this effect
is attributed to the reduction of the mean-free-path to a scale
smaller than the trap diameter, comparable to the distances
where radio-frequency heating occurs. Consequently, a “run-
away” heating of ions near the trap edges takes place, resulting
in an enhanced high-energy tail.
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