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Temporal rich club phenomenon and its formation mechanisms
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The temporal rich club (TRC) phenomenon is widespread in real systems, forming a tight and continuous
collection of the prominent nodes that control the system. However, there is still a lack of sufficient understanding
of the mechanisms of TRC formation. Here we use the international N-nutrient trade network as an example of
an in-depth identification, analysis, and modeling of its TRC phenomenon. The system exhibits a statistically
significant TRC phenomenon, with eight economies forming the cornerstone club. Our analysis reveals that node
degree is the most influential factor in TRC formation compared to other variables. The mathematical evolution
models we constructed propose that the TRC in the N-nutrient trade network arises from the coexistence of
degree-homophily and path-dependence mechanisms. By comprehending these mechanisms, we introduce a
different perspective on TRC formation. Although our analysis is limited to the international trade system, the
methodology can be extended to analyze the mechanisms underlying TRC emergence in other systems.
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I. INTRODUCTION

In many real-world networks, it is common to observe
tightly interconnected communities formed by dominant
nodes in the system [1–5], known as the rich club phe-
nomenon [6]. These nodes exhibit not only strong connections
in the static network structure but also stability and synchro-
nization in the temporal network, referred to as the temporal
rich club (TRC) phenomenon [7]. While the static rich club
has been extensively studied and applied [8–11], the TRC
is a relatively new field. Since the temporal network setup
retains more information and potential communities [12,13],
not every well-connected rich club will evolve into a TRC
occupying a crucial position in the system’s evolution. In-
vestigating the formation mechanism of the TRC is certainly
worthwhile.

The mechanisms responsible for the formation of TRCs
differ across various systems. To comprehend these mecha-
nisms, we need to examine two perspectives. First, we must
identify the nodes that form the tightest structure in the static
network. Different systems exhibit different performances of
static rich clubs [6] and different richness selections lead to
varied results [14,15]. These differences are attributed to the
mechanisms of link formation in networks [16–19]. Second,
we must analyze the evolution process of temporal networks.
Systems evolve differently over time [20], such as social net-
works [21] and power grid networks [22], where the former
has high changeability, while the latter remains relatively
stable. Different modes of evolution result in separate mech-
anisms for the formation of TRCs. Hence, it is necessary to
focus on a single system initially to identify, analyze, and
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simulate its TRC phenomenon to understand the formation
mechanisms of TRCs.

The N-nutrient trade is worth attention. The N nutrient is
a crucial input for agriculture, impacting food security and
sustainability [23,24], and international N-nutrient trade plays
a vital role in the N cycle [25,26], which is linked to ecosystem
health [27], the greenhouse effect [28], and climate change
[29]. Moreover, it exhibits an oligopoly among a few major
players [30], resembling a rich club phenomenon. A detailed
exploration of the formation of this alliance aligns perfectly
with our investigation into the causes of TRCs.

As an international commodity trade, the analysis of the
TRC mechanism in N-nutrient networks naturally draws in-
sights from the literature on international trade. Explanations
encompass the persistence of comparative advantage [31],
the emergence of dominant firms [32], the spatial organiza-
tion of economic activity [33], and the impact of policies
[34]. The gravity model [35], a frequently used framework in
trade research, has depicted the influence of various policies
and distances [36,37]. Additionally, complex network models
have been employed to analyze the mechanisms of trade fric-
tions [38,39]. Leveraging these existing theories enhances our
understanding of the TRC generation mechanism, positioning
the international N-nutrient trade network as a suitable subject
for study.

The rest of the paper is organized as follows. Section II
describes the database, the methodology of building networks,
and the calculations of TRC. Section III A reports the identi-
fication results of the TRC phenomenon in the international
N-nutrient trade network. Sections III B and III C analyze the
localized TRC of different richness and different initial year
to find the main factors that lead to the TRC. Section III D
constructs the theoretical models to explain the formation
mechanisms of the TRC phenomenon. A summary is given
in Sec. IV.
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TABLE I. N-nutrient content ratios in related commodities.

Commodity HS code N content

Urea 310210 46%
Ammonium sulphate 310221 21%
Ammonium nitrate 310230 33.5%
Calcium ammonium nitrate and other 310240 26%

mixtures with calcium carbonate
Sodium nitrate 310250 16%
Urea and ammonium nitrate solutions 310280 32%
Ammonia, anhydrous 281410 82%
Other nitrogenous fertilizers 281420, 310260, 282710, 283410, 310229, 310290, 310270 20%
NPK fertilizers 310520 15%
Diammonium phosphate 310530 18%
Monoammonium phosphate 310540 11%
Other NP compounds 310551, 310559 20%
Potassium nitrate 283421 13%

II. METHODS AND DATA

A. Data

The trade data are sourced from the United Nations Com-
modity Trade Database [40], providing detailed trade flow
data between economies for 30 years (1991–2020). We cal-
culate year-by-year intereconomy N-nutrient trade data based
on the nutrient conversion concentrations in Table I, following
the method provided by the Food and Agriculture Organi-
zation of the United Nations [41]. The data are measured
in tons. To handle repeated trade data, we preprocess it by
using information reported by importing economies as the
basis, supplemented by data from exporting economies [42].
Importing economies’ data is considered more credible due to
its direct connection to import tariffs.

B. Network construction

The international N-nutrient trade network is a complex
system composed of nodes (trading economies), links (trade),
and link weights (trade volume). Its 30-year evolution is cap-
tured by a temporal network denoted by G , comprising 30
single-layer networks. For a single-layer network, it aggre-
gates all trade relations of all economies in a given year t ,
depicted as G(t ) = (V (t ), E (t )). Here the set of nodes V (t ) =
{vit } represents all economies (denoted by vit ) involved in
the N-nutrient trade in year t . The set of links E (t ) = {ei jt }
includes the trade relations (denoted by ei jt ) of N-nutrient
trade exported from economy vi (or economy i for simplicity)
to economy v j (or economy j for simplicity) in year t . For
networks, ei jt is

ei jt =
{

0 if wi jt = 0
1 if wi jt > 0,

(1)

where wi jt is the N-nutrient trade volume (unit in tons) ex-
ported from economy i to economy j in year t .

Converging t = 1991, 1992, . . . , 2020, the overall tempo-
ral network is described as G = {G(t )}, including the set of
all temporal nodes V = ⋃

t V (t ) and the set of all temporal
links E = ⋃

t E (t ). Here G (t1, t2) represents the subtemporal
network from t1 to t2. Note that G (t1, t1) is equal to G(t1). A

temporal link can be described as (i, j, t,w), which denotes
an interaction from node i to node j at time t with weight w.

C. Temporal rich club

The temporal rich club phenomenon, as defined by Pe-
dreschi et al. [7], is characterized by the maximum density of
links between nodes with a minimum required richness, while
the links need to remain stable for a specific duration. The
emergence of this phenomenon indicates that well-connected
nodes in a temporal network tend to form simultaneous and
stable structures.

The definition of TRC originates from the classical rich
club concept in static networks [6]. For a static undirected
network with node richness denoted by r, the rich club coef-
ficient is defined as the density of the subgraph G>r that only
contains nodes V>r with richness greater than r and links E>r

between them:

φ(r) = 2�[E>r]

�[V>r](�[V>r] − 1)
. (2)

�[X] is the number of members in set X. For a directed
network, the rich club coefficient is expressed as

φ(r) = �[E>r]

�[V>r](�[V>r] − 1)
. (3)

Extended to temporal networks, we introduce localized TRC
coefficients

ε(r, t,�) = �[
⋂t+�−1

t E>r (t )]

�[V>r](�[V>r] − 1)
. (4)

Here V>r represents the set of nodes with specific richness.
All nodes associated with the links in

⋂t+�−1
t E>r (t ) are

involved in V>r . The intersection of � subsets of the contin-
uous network from t to t + � − 1 gives the set that remains
stable during this period. The density of this stable part is the
localized TRC coefficient ε(r, t,�). When � = 1, ε(r, t, 1)
corresponds to the static rich club coefficient φ(r) of the
network G(t ). As � increases, ε analyzes whether the core
of the system at time t remains consistently well connected
from t to t + � − 1.
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Furthermore, when considering the temporal network as a
whole, the maximum density obtained across all initial years
t represents the corresponding TRC under the � parameter.
The TRC coefficient is defined as

M(r,�) = max
t

ε(r, t,�). (5)

The M(r,�) is designed to quantify several aspects: (i)
whether the static rich club patterns correspond to a structure
that existed at some instant, (ii) how dense and stable such a
structure is, and (iii) whether the rich club is formed by links
that appeared at unrelated times. An increasing M(r,�) with
r indicates that the richest nodes tend to be increasingly con-
nected with each other in a simultaneous and stable manner
for a duration of at least �. This requirement is distinct from
distinguishing stable and unstable hubs, as M(r,�) focuses on
the links between hubs. The simultaneous association between
hubs contributes the most to the TRC.

However, it is crucial to consider the random effects in
network evolution. Only the structural evolution beyond these
random effects reveals the real characteristics. For instance,
in a highway network, the built highways often remain con-
tinuously connected, resulting in a high ε. This is a property
of the overall network rather than the rich club. Therefore,
it becomes imperative to construct a null model to calculate
Mrnd(r,�) and compare it with the actual value M(r,�). In
the computation of the null model, a reshuffling procedure
function P[w, t] [43] is employed to permute the timestamps
t of all temporal links while keeping the node indices i and
j constant. This process generates a series of simple random
networks that can help analyze whether intrinsic forces exist
between hubs in the actual system.

For the comparison of M(r,�) and Mrnd(r,�), a ratio is
usually employed to assess the existence of the TRC phe-
nomenon. It is considered to exist when μ̂(r,�) = M(r,�)

Mrnd (r,�) >

1. However, relying solely on this criterion may not be precise
enough [44]. In this study we propose adding a statistical test
as a basis for determining whether a TRC phenomenon exists.
The null hypothesis is that μ(r,�) is not greater than 1. The
p value is calculated as

p = �[μ̂(r,�) � 1]

n
, (6)

where �[μ̂(r,�) � 1] counts the number of μ̂(r,�) values
that are not greater than 1. As n → ∞, the estimated bootstrap
p value will tend toward the ideal bootstrap p value. In our
case, n is set to 1000. The smaller the p value, the stronger the
evidence against the null hypothesis, favoring the alternative
hypothesis that the presence of the TRC phenomenon is statis-
tically significant. By adopting the conventional significance
level of α = 1%, the TRC phenomenon is statistically signifi-
cant if p < 1%. For the portion that passes the statistical test,
we use the value of μ(r,�) = M(r,�)

〈Mrnd (r,�)〉 as a characterization,
with a larger μ(r,�) indicating a stronger TRC phenomenon.

III. RESULTS

A. Identification of the TRC phenomenon

To estimate the TRC phenomenon, the initial step involves
determining which property of nodes represents richness. In

many studies, the node’s degree is the primary richness used
[6]. This choice is influenced by the preferential attachment
model [16,45], considered a reliable model for most realistic
networks, where the probability of new links between nodes
is proportional to their degree. Nodes with high degrees natu-
rally form tight associations, and theoretical reference values
have been provided φunc(k) ∼ k2

〈k〉N . In temporal networks,
degrees naturally extend to aggregate degrees k [7]. Since the
trade network is directed, the aggregate degree is defined as

ki = kout
i + kin

i =
∑

j

(Ei j + Eji ), (7)

where

Ei j =
{

1 if
∑

t ei jt > 0
0 otherwise. (8)

Therefore, the aggregate degree k is initially applied as the
richness to identify whether a TRC phenomenon exists in the
N-nutrient trade network.

Figure 1(a) reports the trend in the number of club mem-
bers as the threshold increases. There are only two nodes in
G>315 that remain permanently stable and fully connected:
the Netherlands and the United States. This membership is
so small as to be meaningless. The club G>280 can maintain
a stable, fully connected state for more than 20 years, which
is shown in Fig. 1(b iii). Club members include the Nether-
lands, the United States, France, China, the United Kingdom,
Belgium, Germany, and Spain. These eight economies consti-
tute the core club of the N-nutrient trade network. As shown
in Fig. 1(b ii), this club is central within a larger club G>200

with 35 members. Furthermore, G>200 is the most central part
of the overall network G , as depicted in Fig. 1(b i).

In Fig. 1(c) we present the TRC coefficients from the
N-nutrient trade network and the coefficients from the null
model. The M(k,�) exhibits a noticeable change at k = 200,
occurring earlier than in the random network. The increas-
ing TRC coefficient suggests a strengthening and stabilizing
association between club members. For the club G > 200,
the result of M(200, 1) > 0.8 indicates a high density of im-
mediate association, though not maintaining a stable state.
The central club G > 280 boasts not only M(280, 1) = 1 but
also M(280, 25) = 1. The long-term stability underscores the
cornerstone role of this club for the system. Considering the
TRC coefficients Mrnd(k,�) of the random network generated
by the null model, derived from the mean of 1000 random
simulations, a crucial observation is that Mrnd(k,�) begins
increasing later as k increases and decays more rapidly as
� increases. The TRC coefficients in the random network
reaching a local maximum suggest that the club represents
a steady-state core structure, due to the null model’s preser-
vation of permanently stable links. For the club G > 280, a
further increase in k would eliminate the central nodes, Spain
and Germany, reducing stability within the club. Therefore,
we consider G > 280 as the most central structure of the N-
nutrient trade system. For this, we provide the mathematical
definition equation of the stable core club G > k∗, which must
satisfy

Mrnd(k∗,�) � Mrnd(x,�) ∀�,∀x ∈ [0, k∗ + 1]. (9)

014126-3



LI, ZHANG, AND ZHOU PHYSICAL REVIEW E 109, 014126 (2024)

FIG. 1. (a) Evolution of the number of nodes with an aggregate degree greater than k as k increases. (b i) Overall network structure of G ,
with the red (dark) area representing nodes and edges in G > 200. (b ii) Network structure of the subnetwork G > 200, with the red (dark) area
indicating nodes and edges in G > 280. (b iii) Network structure of the subnetwork G > 280, with the red (dark) area representing nodes and
edges in G>300. The node size is proportional to the aggregate degree of the node. The width of the links is based on the number of recurrences.
The layout of the three networks is calculated independently, considering only the existing structure. (c) TRC coefficients for (i) the actual
N-nutrient trade network M(k, �) and (ii) the random networks generated by the null model Mrnd(k, �). (d) Ratio μ(k, �) of TRC coefficients
for the actual network M(k,�) to TRC coefficients for the random networks Mrnd(k,�). Those that do not pass the significance test are left
blank. (e) Distribution of TRC coefficients in the random networks Mrnd(k, �), denoted by the blue solid line, and the value of TRC coefficients
in the actual network M(k,�), denoted by the black dashed line for (i)–(iii) statistically significant cases and (iv) the statistically insignificant
case.

Combining M(k,�) and Mrnd(k,�), we present the ratio
μ(k,�) results in Fig. 1(d). Utilizing bootstrap statistical tests
[Eq. (6)], we identify the fraction of statistical significance
above 1% as not having a significant TRC phenomenon, de-
picted as blanks. The values of μ(k,�) are shown for the
fraction of statistical significance below 1%. Four typical
statistical results are reported in Fig. 1(e), with Figs. 1(e i)–
1(e iii) being statistically significant. As k increases, the
club exhibits a broader distribution. Figure 1(e iv) shows a
nonsignificant result for the core club G>280 in a short-time
simulated situation. Recognizing whether it is a true TRC re-
quires a certain time of evolution due to the close links within
the club. From the overall results, peripheral nodes (those
with k < 150) in the system show a more pronounced simul-
taneity in trade relationships. Small economies, influenced
by globalization, are integrating into the international trade

system, leading to apparent simultaneity. Large economies,
with sustained high interconnectivity, are less affected by
globalization. However, when the core group G>280 is dis-
rupted at k > 290, a notable simultaneity effect is observed.
The remaining club members no longer maintain permanent
relations and the time trend induces strong simultaneity, re-
flected in relatively high values of μ(290, 24–29).

In conclusion, our analysis confirms the presence of the
TRC phenomenon in the N-nutrient trade network, utilizing
the aggregate degree as the richness metric. Through a com-
parison between actual TRC coefficients and those simulated
by the null model, we identify a central cornerstone club in the
network. The collapse of this club marks a shift from a stable
to an unstable state. Smaller players are notably influenced
by the globalization trend, developing simultaneous trade re-
lations. Given the contemporary rise of trade protectionism
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and counterglobalization, the phenomenon of synchronization
warrants careful consideration.

B. Comparison of the TRCs of different richness

In the preceding section we comprehensively examined the
overall temporal network from 1991 to 2020 for TRC analy-
sis, using the aggregate degree k as the richness to describe
synchronization and clustering phenomena in the system.
However, understanding the formation mechanism of TRC
requires extracting more information from the system. We aim
to disassemble the overall temporal network layer by layer
and observe localized TRC with each initial year t , calculated
using Eq. (4). Additionally, to investigate the TRC formation
mechanism, we need to identify the most critical richness
of the nodes for the appearance of TRC. Therefore, we will
choose four importance metrics as richness for constructing
different localized TRCs for comparison.

Benefiting from the maturity of static network structure
research, various properties can be used as richness. Central-
ity metrics of nodes such as degree, eigenvector, PageRank,
betweenness, and closeness can be applied. Weight is a nec-
essary consideration in complex systems [46] and weighted
network variables such as strength and average strength can be
used [14,15]. Variables outside the network can also be used,
such as the gross domestic product GDPt . Rich economies
are considered to be the most influential nodes and they tend
to occupy the most central part of trade, forming dominant
roles. Specifically, for the influence of the economy on the
N-nutrient system, it is proportional to the total amount of N
nutrient that an economy can control, which is the sum of the
production and import of the economy. Here we use the total
supply TS as a variable, recorded as

TSit = sin
it + produceit , (10)

where sin
it is the amount of imports in the economy i in year t

and produceit is the amount of production in the economy i in
year t . The higher TSit is, the more N nutrients the economy
can make decisions with and the more naturally it can have a
more important position in the N-nutrient system. From the
perspective of the trade network, the total trade volume of
the economy sit = sin

it + sout
it is regarded as the main network

centrality in the weighted network and the most dominant
measure of influence in the actual trade system. Definitely, the
most classic centrality indicator, the instantaneous degree kt

in G(t ), is a must, calculated as kit = kout
it + kin

it = ∑
j (ei jt +

e jit ). All these indicators are collected in the initial year t to
analyze the evolution from t to t + � − 1 as Eq. (4). Summing
up the above, we will use four indicators as the richness:
the economy’s GDPt as the importance as a whole, the total
supply TSt as the importance in the N-nutrients system, the
instantaneous degree kt as the importance in the unweighted
trade network, and the total trade volume st as the importance
in the weighted trade network. Through these clubs, we intend
to compare the difference and clarify the reasons affecting the
TRC phenomenon.

In Fig. 2 we present the results for two initial years t =
2000 and 2010, representing different stages of the system. To
facilitate comparison between the four different indicators, we
standardized the values and ranked them. This is a common

approach in rich club studies [1,44]. In Fig. 2(a) we report
the Jaccard similarity J (V>rt ,V>k ) between the rich club of
nodes with richness rt larger than a specific rank and the
club of nodes with the aggregate degree k larger than the
same specific rank, calculated as J (V>rt ,V>k ) = �|V>rt ∩V>k |

�|V>rt ∪V>k | .
Despite the difference in order, the top-ranked nodes sorted
by kt and those sorted by k tend to be the same economies.
This invariance of the instantaneous club to the overall club is
one of the keys to the TRC.

After analyzing the results in Figs. 2(b)–2(e) and the
results for other initial years, we observe a consistent
pattern:

∑
rank(kt ),�

ε(rank(kt ), t,�) >
∑

rank(GDPt ),�

ε(rank(GDPt ), t,�) >

∑
rank(st ),�

ε(rank(st ), t,�) >
∑

rank(TSt ),�

ε(rank(TSt ), t,�).

(11)

This empirical result suggests that, in the context of local-
ized TRC formation, the order of importance is as follows:
instantaneous degree (kt ) > GDP (GDPt ) > total trade volume
(st ) > total supply (TSt ). This order aligns with the ranking
order of the Jaccard similarity between the rich club based on
different indicators and the club based on aggregate degrees
k. It emphasizes the importance of kt in the study of TRC and
highlights the requirements for the formation of a stable rich
club. Nodes with high kt are more prone to forming stable and
closely related clubs. These nodes are considered well-known
network hubs, leading to increased probability and stability
of connections. This effect exists in wealthy economies with
less stability. When rich clubs are constructed based on st ,
the localized TRC phenomenon weakens significantly. Major
economies, sorted by the sum of imports and exports, are un-
likely to generate localized TRCs, indicating an unstable trade
group. The reason could be that major economies often rely
more on their own domestic production, as observed in the
case of the United States, a significant net importer that still
produces about 70% of its N-nutrients domestically. Although
we use the sum of imports and production TSt as a proxy,
major economies sorted by TSt are unlikely to generate local-
ized TRCs. For example, India, despite being a global leader
in N-nutrient production, neither occupies a central position
in the trade network nor establishes a stable import-export
structure. This might explain why India has become increas-
ingly dependent on imports instead of self-production from
2000 to 2020. These observations suggest that trade volume
or availability is not the most dominant factor in the formation
of a stable rich club. In general, the clubs constructed using
different variables exhibit different performances, with degree
being the most significant factor in generating localized TRCs.
This implies that a good reputation and a central position
in the trade network play crucial roles in the formation of
localized TRCs.

C. Evolution of the TRC of different richness

The preceding section provides a static view, while com-
paring evolutionary processes is necessary to explore the
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FIG. 2. (a) Jaccard similarity J (V>rt , V>k ) between the club sorted by richness rt and the same size club sorted by the aggregate degree k.
(b)–(e) Comparison of the localized TRC coefficients ε(rt , t, �) for the four richness at t = 2000 and 2010. All four richness are compared
in ranked form: (b) ranked by the GDP of the economy in year t , (c) ranked by the economy’s total supply TS in year t , (d) ranked by the
economy’s instantaneous degree k in year t , where k is the sum of the out-degree and in-degree, and (e) ranked by the total trade volume s of
the economy in year t .

transition from localized TRC to TRC. To address this con-
cern, we conducted an evolutionary analysis of the localized
TRC coefficients from 1991 to 2011 using the four richness
measures. Due to the crucial position of the top-ranking nodes,
we use the top 20 as the scale to represent the evolution,
recorded as V 20

>rt
. Since J (V 20

>GDPt
,V 20

>k ) and J (V 20
>kt

,V 20
>k ) are

similar, the comparability is enhanced. The evolution analysis
will provide a clearer understanding of the formation process
of TRC in the N-nutrient trade network.

In Fig. 3 we observe the localized TRC phenomenon
for different richness and initial years t , using the top 20
economies as the club. The maximum evolution time is set
to � = 10. Overall, the results of all richness show increasing
TRC coefficients over time, reflecting the increasingly dense
trade relationships between economies brought about by glob-
alization. For the top 20 GDPt club in Fig. 3(a), the most
stable state is formed in 2009, during the global economic
crisis. The shock highlights the special characteristics of these
economies, which may have played a role in protecting their
GDP during the crisis. The TSt has the lowest TRC coefficient
in Fig. 3(b). For the top 20 economies ranked by degree kt in
Fig. 3(c), the highest TRC coefficient is observed. From 1991
to 1996, there is a significant increase in both stability and
correlation. After that, the club maintains high stability while
having a tight correlation. While node strength s is important
for judging whether nodes will be related to each other in a
weighted network, it is not as significant in the analysis of

TRC. In Fig. 3(d) the localized TRC coefficient for the top 20
clubs ranked by st is low, with only some tight relationships
observed after 2008 in the static network and relatively poor
stability over time.

Through the comparison of the evolution of the localized
TRC coefficient for the four richness, a clear pattern emerges:
For the vast majority of � and t , we have

ε(rank20(kt ), t,�) > ε(rank20(GDPt ), t,�)

> ε(rank20(st ), t,�) > ε(rank20(TSt ), t,�). (12)

This pattern confirms that nodes with high instantaneous de-
grees tend to form the most stable central structures, a feature
that persists throughout the time evolution, indicating that
reputation and network importance are the vital factors to the
TRC.

It is worth noting that J (V 20
>GDPt

,V 20
>k ) is usually higher

than J (V 20
>kt

,V 20
>k ) in Fig. 3(e). The kt captures the club that

is most stable and tight in the short term based on the in-
stantaneous structure G(t ). If we only calculate the localized
TRC at moment t , kt is actually better than k. The TSt and
st are increasingly failing to capture the most stable parts of
the system. Because the weights elevate the importance of
certain peripheral nodes, this explains the low TRC coeffi-
cients. On the other hand, based on Fig. 3(f), unlike the stable
GDPt ranking, the kt ranking is changeable, with a trend from
unstable to stable. This implies the structural information
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FIG. 3. Evolution of the localized TRC coefficients for a fixed rich club of the top 20. (a) Top 20 economies with the highest GDPt . (b) Top
20 economies with the highest TSt . (c) Top 20 economies with the highest kt . (d) Top 20 economies with the highest st . (e) Evolution of the
Jaccard similarity J (V 20

>rt
, V 20

>k ) between the top 20 club sorted by richness rt and the fixed top 20 club sorted by the aggregate degree k. (f)
Evolution of the Jaccard similarity J (V 20

>rt
, V 20

>rt−1
) between the top 20 club sorted by richness rt and that sorted by richness in the last year rt−1.

from kt needs suitable extrapolation and simulation to ensure
correctness in the long term.

Despite the changing club membership, there is an overall
trend

ε(rank20(kt ), t,�) > ε(rank20(kt ), t − 1,�), (13)

indicating that the core club maintains an expanding trend
over time to ensure its status in the growing system. The key to
the TRC with low � lies in the latter part of the system, while
that with high � lies in the former part. The earlier a strong
localized TRC is formed, the stronger the TRC phenomenon
that can be produced, which still shows the importance of
degree. All this suggests that the degree is the most critical
richness of nodes to the formation of the TRC from the view
of year by year.

D. Formation mechanisms of the TRC phenomenon

We have identified the TRC phenomenon that exists in the
N-nutrient trade network in Sec. III A and the primary factor
in the formation of TRC is the node’s degree in Secs. III B
and III C. To further understand the mechanism behind this
phenomenon, we need to construct complex network models

to investigate why TRC occurs. Since the degree is the key
factor, it is reasonable to build evolution models based on
degree. The network evolution model is denoted by Gmodel,
based on a certain mechanism from the actual trade network.
The model network is built on the structure of the actual
network before moment t and evolves independently. When
a model generates a similar TRC as the actual system, the
mechanism behind the evolution model can be considered a
possible answer to why TRC occurs or at least a mathematical
explanation for it.

The TRC is composed of localized TRCs, so simulating the
TRC requires building the localized TRC year by year first.
In order to simulate the formation of the localized TRC, the
model networks need to evolve at a rate close to the actual
network. Accordingly, we introduce two variables from G .
One is the survival rate of links from G(t ) to G(t + 1),

psur (t ) = �[E (t ) ∩ E (t + 1)]

�[E (t )]
, (14)

which means the average probability that a link in G(t ) reoc-
curs in G(t + 1). Another is the birth rate of links from G(t )
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to G(t + 1),

pbirth(t ) = �[E (t + 1)] − �[E (t ) ∩ E (t + 1)]

�[V>r](�[V>r] − 1) − �[E (t )]
, (15)

which means the average probability that a link not in G(t )
appears in G(t + 1). Here we can directly construct the base
model GER that breaks or generates links with equal prob-
ability, similar to the Erdős-Rényi (ER) model. The set of
nodes is kept at constant V and the set of links is updated
as EER(t ) = {eER

i jt }, while the evolutionary process of all links
is

eER
i j(t+1) = eER

i jt h(ξ, psur (t )) + (1 − eER
i jt )h(ξ, pbirth(t )). (16)

Here

h(a, b) =
{

1 if a � b
0 if a > b

(17)

and ξ is a random number uniformly distributed in [0,1]. The
value of ξ is reassigned independently each time. In this way,
multiple simulations can be performed to ensure the reliability
of the results.

Highly developed economies are more likely to continue
to have trade relations with each other [47], and nodes with
high out-degrees are more likely to connect to nodes with
high in-degrees [17], which is widely known as preferential
attachment (PA). The mathematical hypothesis given for this
is that the probability of trade occurring between economies i
and j is proportional to the product of their out-degree and in-
degree, i.e., �(i, j) ∼ kout

i kin
j . Based on this, we constructed

the network model GPA. Here psur (t ) and pbirth(t ) are invoked
to control the density of the generated network. The link
evolution process can be written as

ePA
i j(t+1) = ePA

i jt h
(
ξ, β̂s

t kout
it kin

jt

) + (
1 − ePA

i jt

)
h
(
ξ, β̂b

t kout
it kin

jt

)
,

(18)

where kout
it and kin

jt represent the instantaneous out-degree of
node i and in-degree of node j in GPA(t ), respectively. The
parameters are

β̂s
t = psur (t )�[EPA(t )]∑

EPA(t ) kout
it kin

jt

(19)

and

β̂b
t = pbirth(t )�[EPA(t )]∑

EPA(t ) kout
it kin

jt

, (20)

where EPA(t ) is the set of ePA
i jt = 1 and EPA(t ) actually refers

to the set of ePA
i jt,i �= j = 0.

However, the result reveals that GPA captures only a partial
picture of the TRC phenomenon. It cannot create a totally
stable core club similar to that observed in the N-nutrient
trade system. For further exploration, based on the fact that
longer-lasting links in the N-nutrient trade are more likely
to persist [48], we introduce another formation mechanism,
referred to as a kind of path dependence. If economy i’s past
decision was to import N nutrients from economy j, then the
probability that i imports from j now rises. Here the trade
disruption probability of ei jt is inversely proportional to its

existing duration τi jt in the history. The mathematical hypoth-
esis is 1 − �(i, j) ∼ 1

τi jt
. We name this evolution model that

incorporates this mechanism the temporal preferential attach-
ment (TPA) model, whose link evolution process is described
as

eTPA
i j(t+1) = eTPA

i jt h

(
ξ, β̂s

t

(
1 − βτ

τi jt

)
kout

it kin
jt

)

+ (
1 − eTPA

i jt

)
h
(
ξ, β̂b

t kout
it kin

jt

)
, (21)

with

β̂s
t = psur (t )�[ETPA(t )]∑

ETPA(t )
(τi jt −βτ )kout

it kin
jt

τi jt

(22)

and

β̂b
t = pbirth(t )�[ETPA(t )]∑

ETPA(t ) kout
it kin

jt

. (23)

Here τi jt is the existing duration of the link ei jt ; τi jt = x means
ei j exists from GTPA(t + 1 − x) to GTPA(t ). In addition, βτ is
estimated from actual data and here βτ ≈ 1

2 .
We generated the base model, the ER model, and two

mechanistic models, the PA model and the TPA model. A
demonstration of the differences between models is rep-
resented in Fig. 4(a). For node a, the probability of link
occurrence with four other nodes bcde is equal in GER. In
GPA, the probability is proportional to another node’s kin, since
node a’s kout is the same. The probability of eac and eae will
increase in GTPA because of their presence in G(t − 1). The set
including {G(t ), Gmodel(t + 1), Gmodel(t + 2), . . . , Gmodel(t +
� − 1)} will be used to calculate the localized TRC coef-
ficient εmodel(r, t,�). The TRC coefficient Mmodel(r,�) can
then be obtained by iterating over all εmodel(r, t,�).

In Fig. 4(b) we compare these three simulated networks
with the actual network at the same evolution time � using
the Jaccard index [49], calculated as J (G ,Gmodel ) = |E ∩Emodel|

|E ∪Emodel| .
We set the initial year to 2000. Results show that GPA and
GTPA preserve a similar proportion of links to the actual trade
network as they evolve. After an initial decrease in similar-
ity, both models maintain a stable portion of about 0.4 of
the actual network. Note that the number of the same links
has practically increased over time as the network density
increases. Comparing the two models, GTPA shows a slight ad-
vantage in maintaining similarity. In contrast, the similarity of
GER to the actual network continuously decreased over time,
approaching that of a completely independent distribution.
Overall, the PA and TPA models preserve some properties of
the actual network through the evolutionary process, allowing
us to analyze whether their mechanisms contribute to the
formation of the TRC phenomenon.

As models based on instantaneous degree evolution, the
first thing to consider is the localized TRC coefficient when
the nodes’ kt is the richness. In Fig. 4(c) we show the results
when the initial year is set to t = 2000 as representative. The
right graph shows the localized TRC coefficient in the real
system. The middle graph depicts the localized TRC result of
GPA. We can observe a TRC phenomenon, but weaker than the
actual situation. The core experiences decay and the system
tends toward decentralization. The result of GTPA is shown in
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FIG. 4. (a) Simple schematic diagram to demonstrate the difference between the three models in the probability of links occurrence, which
is proportional to the width of lines. (b) Jaccard index of the actual network versus the three model networks, namely, Erdős-Rényi model, the
preferential attachment, and the temporal preferential attachment, revealing the extent to which each model captures the features of the actual
network. (c) Comparison of the localized TRC coefficients ranked by the instantaneous degree k2000 for the actual network, the PA model, and
the TPA model. (d) Comparison of the localized TRC coefficients ranked by the instantaneous strength s2000 for the actual network, the PA
model, and the TPA model. (e) Comparison of the TRC coefficients M(k,�) ranked by the aggregate degree k for the actual network, the PA
model, and the TPA model.

the left graph. It is much closer to the actual situation and
retains strong stability in the core structure over long periods
of evolution.

Then we analyze the performance of the other rich clubs.
Figure 4(d) reports the results sorted by the strength st .
Though the calculations of the PA and TPA models are un-
related to GDPt , TSt , and st , all these rich clubs of GTPA show
high similarity to the actual situation. Stable clubs triggered
by degrees naturally extend into other clubs that have some
correlation with degrees. It can be a reasonable explanation

for the observed TRC phenomenon of other variables in the
actual system.

In the end, we iterate εmodel(k, t,�) at each initial time
t to calculate the TRC coefficient Mmodel(k,�) to com-
pare with M(k,�). The collection is similarly calculated as
Mmodel(k,�) = maxt εmodel(k, t,�), where k is the aggregate
degree. The comparison is in Fig. 4(e). A distinct difference
between MPA(k,�) and M(k,�) depends on whether the core
club is stable. The PA mechanism alone is not sufficient to
explain the formation of the strong TRC phenomenon. On
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the other hand, MTPA(k,�) may be stronger than M(k,�).
Because the model cannot capture the impact of exogenous
events, such as the 2008 economic crisis and the COVID-
19 pandemic, it can cause significant disruptions and lead
to the collapse of stable rich clubs. The model is ideal. We
have also constructed a model with only the path-dependence
mechanism and found that the results are completely off the
mark. Therefore, we conclude that the TRC phenomenon in
the N-nutrient trade network depends on the combination of
degree homophily and path dependence and cannot be gener-
ated without either one.

IV. CONCLUSION

To summarize, we have developed an effective network
model to simulate the temporal rich club phenomenon in the
N-nutrient trade network, which is crucial for global food
security and ecological security. The model helps us under-
stand the formation mechanism of TRC. Before modeling, our
preparations included identifying the statistically significant
TRC phenomenon in the N-nutrient trade network. The most
stable cornerstone group in the N-nutrient trade network from
1991 to 2020 includes the Netherlands, the United States,
France, China, the United Kingdom, Belgium, Germany, and
Spain. From this group, other economies form a comprehen-
sive trade network. Due to the ongoing trend of globalization,
both unstable components and smaller economies exhibit tem-
poral simultaneity.

After analyzing the localized TRC of different initial years
and richness, our analysis showed that degree is the most
dominant factor for the TRC. It is a prerequisite for modeling
evolution, which is based on the nodes’ degree. The rich club,
sorted by instantaneous degree, has the strongest static corre-
lation and temporal stability, followed by GDP, trade volume,
and total supply. This indicates that building upstream and
downstream trading partners to establish reputation and influ-
ence is more important than initially thought. The association

structure between well-connected nodes becomes tighter and
more stable over time. Additionally, the oligopoly alliance
tends to maintain an expanding trend.

Regarding the formation of the TRC, we incorporated two
mechanisms into the mathematical evolution model. The first
mechanism suggests that nodes with high export degrees tend
to export to nodes with high import degrees, characterized
as degree-homophily driven by supply and demand and rep-
utation attraction. It is related to the preferential attachment
in complex networks and trade gravity in economics. The
second mechanism proposes that the longer the trade lasts, the
more stable it becomes, akin to path dependence explained
by communication costs, comparative advantages, and scale
effects. Through our model, we confirmed that the simultane-
ous existence of these two mechanisms leads to the emergence
of a TRC similar to the actual system during the theoreti-
cal model’s evolution. The coexistence of these mechanisms
results in an oligopoly alliance controlling the entire system
over long-term evolution.

While our attempt to explain the formation of the TRC in
the N-nutrient trade network provides a different perspective
on the evolution of the system and the prominent nodes set,
it is essential to note the limitation of our study being fo-
cused on a single system. The conclusions and models may
not be directly applicable to other networks, given that the
intrinsic mechanisms of different systems can vary. Since
our mechanism-based evolutionary models are an effective
approach for understanding the formation of the TRC, our
work can still serve as a reference for the in-depth exploration
of the TRC phenomenon in various networks.

ACKNOWLEDGMENTS

This work was partly supported by the National Natural
Science Foundation of China (Grant No. 72171083) and the
Fundamental Research Funds for the Central Universities.

[1] S. Zhou and R. Mondragon, IEEE Commun. Lett. 8, 180
(2004).

[2] Y. Wei, W. Song, C. Xiu, and Z. Zhao, Appl. Geogr. 96, 77
(2018).

[3] D.-J. Kim and B.-K. Min, Comput. Struct. Biotechnol. J. 18,
1761 (2020).

[4] E. T. Bullmore and O. Sporns, Nat. Rev. Neurosci. 13, 336
(2012).

[5] Y. Hu and D. Zhu, Physica A 388, 2061 (2009).
[6] V. Colizza, A. Flammini, M. Serrano, and A. Vespignani, Nat.

Phys. 2, 110 (2006).
[7] N. Pedreschi, D. Battaglia, and A. Barrat, Nat. Phys. 18, 931

(2022).
[8] Y. Leo, E. Fleury, J. Ignacio Alvarez-Hamelin, C. Sarraute, and

M. Karsai, J. R. Soc. Interface 13, 20160598 (2016).
[9] C. Tang, X. Dong, Y. Lian, and D. Tang, Future Gener. Comput.

Syst. 105, 492 (2020).
[10] M. Chinazzi, G. Fagiolo, J. A. Reyes, and S. Schiavo, J. Econ.

Dyn. Control 37, 1692 (2013).

[11] X.-K. Xu, J. Zhang, and M. Small, Phys. Rev. E 82, 046117
(2010).

[12] A. Li, S. P. Cornelius, Y. Y. Liu, L. Wang, and A. L. Barabasi,
Science 358, 1042 (2017).

[13] C. Presigny, P. Holme, and A. Barrat, Phys. Rev. E 103, 052304
(2021).

[14] T. Opsahl, V. Colizza, P. Panzarasa, and J. J. Ramasco, Phys.
Rev. Lett. 101, 168702 (2008).

[15] M. A. Serrano, Phys. Rev. E 78, 026101 (2008).
[16] A.-L. Barabási and R. Albert, Science 286, 509 (1999).
[17] A. Barabasi, H. Jeong, Z. Neda, E. Ravasz, A. Schubert, and

T. Vicsek, Physica A 311, 590 (2002).
[18] F. Papadopoulos, M. Kitsak, M. A. Serrano, M. Boguñá, and

D. Krioukov, Nature (London) 489, 537 (2012).
[19] Y. Yuan, A. Alabdulkareem, and A. S. Pentland, Nat. Commun.

9, 4704 (2018).
[20] G. Petri and P. Expert, Phys. Rev. E 90, 022813 (2014).
[21] V. Gelardi, D. Le Bail, A. Barrat, and N. Claidiere, Proc. R. Soc.

B 288, 20211164 (2021).

014126-10

https://doi.org/10.1109/LCOMM.2004.823426
https://doi.org/10.1016/j.apgeog.2018.05.009
https://doi.org/10.1016/j.csbj.2020.06.039
https://doi.org/10.1038/nrn3214
https://doi.org/10.1016/j.physa.2008.12.016
https://doi.org/10.1038/nphys209
https://doi.org/10.1038/s41567-022-01634-8
https://doi.org/10.1098/rsif.2016.0598
https://doi.org/10.1016/j.future.2019.12.001
https://doi.org/10.1016/j.jedc.2013.01.010
https://doi.org/10.1103/PhysRevE.82.046117
https://doi.org/10.1126/science.aai7488
https://doi.org/10.1103/PhysRevE.103.052304
https://doi.org/10.1103/PhysRevLett.101.168702
https://doi.org/10.1103/PhysRevE.78.026101
https://doi.org/10.1126/science.286.5439.509
https://doi.org/10.1016/S0378-4371(02)00736-7
https://doi.org/10.1038/nature11459
https://doi.org/10.1038/s41467-018-07089-x
https://doi.org/10.1103/PhysRevE.90.022813
https://doi.org/10.1098/rspb.2021.1164


TEMPORAL RICH CLUB PHENOMENON AND ITS … PHYSICAL REVIEW E 109, 014126 (2024)

[22] B. Hartmann and V. Sugar, Sci. Rep. 11, 6575 (2021).
[23] X. Zhang, E. A. Davidson, D. L. Mauzerall, T. D.

Searchinger, P. Dumas, and Y. Shen, Nature (London) 528, 51
(2015).

[24] J. A. Foley, N. Ramankutty, K. A. Brauman, E. S. Cassidy, J. S.
Gerber, M. Johnston, N. D. Mueller, C. O’Connell, D. K. Ray,
P. C. West, C. Balzer, E. M. Bennett, S. R. Carpenter, J. Hill,
C. Monfreda, S. Polasky, J. Rockstrom, J. Sheehan, S. Siebert,
D. Tilman, and D. P. M. Zaks, Nature (London) 478, 337
(2011).

[25] J. N. Galloway, A. R. Townsend, J. W. Erisman, M. Bekunda,
Z. Cai, J. R. Freney, L. A. Martinelli, S. P. Seitzinger, and M. A.
Sutton, Science 320, 889 (2008).

[26] B. Gu, X. Ju, J. Chang, Y. Ge, and P. M. Vitousek, Proc. Natl.
Acad. Sci. USA 112, 8792 (2015).

[27] D. E. Canfield, A. N. Glazer, and P. G. Falkowski, Science 330,
192 (2010).

[28] J. Cui, X. Zhang, S. Reis, C. Wang, S. Wang, P. He, H. Chen,
H. J. M. van Grinsven, and B. Gu, Nat. Sustain. 6, 1166
(2023).

[29] C. Ren, X. Zhang, S. Reis, S. Wang, J. Jin, J. Xu, and B. Gu,
Nat. Food 4, 294 (2023).

[30] M. A. Hernandez and M. Torero, Agric. Econ. 44, 723 (2013).
[31] B. Kogut and U. Zander, Org. Sci. 3, 383 (1992).
[32] D. J. Teece, G. Pisano, and A. Shuen, Strat. Manage. J. 18, 509

(1997).
[33] R. Baldwin and F. Robert-Nicoud, J. Int. Econ. 92, 51 (2014).

[34] E. Helpman and P. Krugman, Market Structure and Foreign
Trade: Increasing Returns, Imperfect Competition, and the
International Economy (MIT Press, Cambridge, 1987).

[35] J. McCallum, Am. Econ. Rev. 85, 615 (1995).
[36] J. Anderson and E. van Wincoop, Am. Econ. Rev. 93, 170

(2003).
[37] E. Helpman, M. Melitz, and Y. Rubinstein, Q. J. Econ. 123, 441

(2008).
[38] T. Chaney, Am. Econ. Rev. 104, 3600 (2014).
[39] B. Jun, A. Alshamsi, J. Gao, and C. A. Hidalgo, J. Evol. Econ.

30, 247 (2020).
[40] https://comtrade.un.org.
[41] https://fao.org.
[42] R. C. Feenstra, R. E. Lipsey, H. Deng, A. C. Ma, and H. Mo,

World Trade Flows: 1962–2000, NBER Working Paper No.
11040, 2005 (unpublished).

[43] L. Gauvin, M. Génois, M. Karsai, M. Kivelä, T. Takaguchi,
E. Valdano, and C. L. Vestergaard, SIAM Rev. 64, 763 (2022).

[44] Z.-Q. Jiang and W.-X. Zhou, New J. Phys. 10, 043002 (2008).
[45] R. Albert and A. L. Barabasi, Phys. Rev. Lett. 85, 5234 (2000).
[46] A. Barrat, M. Barthelemy, R. Pastor-Satorras, and A.

Vespignani, Proc. Natl. Acad. Sci. USA 101, 3747 (2004).
[47] J. C. Hallak, Rev. Econ. Stat. 92, 453 (2010).
[48] M.-Y. Li, L. Wang, W.-J. Xie, and W.-X. Zhou, J. Stat. Mech.

(2023) 023401.
[49] G. Palla, A.-L. Barabási, and T. Vicsek, Nature (London) 446,

664 (2007).

014126-11

https://doi.org/10.1038/s41598-021-86103-7
https://doi.org/10.1038/nature15743
https://doi.org/10.1038/nature10452
https://doi.org/10.1126/science.1136674
https://doi.org/10.1073/pnas.1510211112
https://doi.org/10.1126/science.1186120
https://doi.org/10.1038/s41893-023-01154-0
https://doi.org/10.1038/s43016-023-00730-z
https://doi.org/10.1111/agec.12084
https://doi.org/10.1287/orsc.3.3.383
https://doi.org/10.1002/(SICI)1097-0266(199708)18:7<509::AID-SMJ882>3.0.CO;2-Z
https://doi.org/10.1016/j.jinteco.2013.10.002
http://www.jstor.org/stable/2118191
https://doi.org/10.1257/000282803321455214
https://doi.org/10.1162/qjec.2008.123.2.441
https://doi.org/10.1257/aer.104.11.3600
https://doi.org/10.1007/s00191-019-00638-7
https://comtrade.un.org
https://fao.org
https://doi.org/10.1137/19M1242252
https://doi.org/10.1088/1367-2630/10/4/043002
https://doi.org/10.1103/PhysRevLett.85.5234
https://doi.org/10.1073/pnas.0400087101
https://doi.org/10.1162/REST_a_00001
https://doi.org/10.1088/1742-5468/acb5ef
https://doi.org/10.1038/nature05670

