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A gambling demon is an external agent that can terminate a time-dependent driving protocol when a certain
observable of the system exceeds a prescribed threshold. The gambling demon is examined in detail both
theoretically and experimentally in a Brownian particle system under a compressing potential trap. Insight for
choosing an appropriate work threshold for stopping is discussed. The energetics and the distributions of the
stopping positions and stopping times are measured in simulations to gain further understanding of the process.
Furthermore, the nonstationary and far-from-equilibrium stochastic process in the action of the gambling demon
allows us to examine in detail some fundamental issues in stochastic thermodynamics, such as irreversibility
and stopping-time fluctuation relation. Paradoxical violation of the stopping-time fluctuation relation can be
reconciled in terms of the entropy production associated with fast hidden internal degrees of freedom. All the
simulation or theoretical results are confirmed experimentally.
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I. INTRODUCTION

The breakthrough in nonequilibrium statistical mechanics
and fluctuation relations [1–4] in the last few decades allowed
a quantitative description for stochastic nonstationary pro-
cesses in the mesoscopic scale that is far from equilibrium.
Remarkably, it is now well-demonstrated that it is possible
to have Second Law violating rare events on the trajectory
level. With the advances in stochastic thermodynamics [5]
and experimental techniques [6–8], one can manipulate and
even control these far-from-equilibrium processes [9–11] in
strongly fluctuating environment and quantitatively predict
their properties [12–15], even under sophisticated feedback
protocols.

Frontier topics, such as the thermodynamic theory in meso-
scopic systems for stochastic trajectories that terminate at
some stopping times once some criterion is reached, which
is a generalization of the first-passage times, have recently
been addressed [16–19]. For steady-state nonequilibrium sys-
tems, the stochastic entropy production at stochastic stopping
times obeys an integral fluctuation relation [16], and there
are universal bounds for the finite-time survival probability
of the stochastic work extraction and heat dissipation [17].
On the other hand, for the more challenging case of nonsta-
tionary processes, there is also a thermodynamic bound [19]
for the work exerted by an external time-dependent protocol
averaged over all trajectories with stochastic stopping times,
which can be viewed as a generalization of the usual Second
Law of thermodynamics. Furthermore, an integral fluctuation
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relation, termed stopping-time integral fluctuation theorem,
was derived [18], which constrains the dissipative work in
these nonstationary processes with stopping criterion.

Exploiting the information on the stochastic work extrac-
tion by stopping the process at an appropriate chosen moment
is the working principle of the “gambling demon” that can
extract useful work in far-from-equilibrium nonstationary pro-
tocols [20]. Recently, we realized experimentally a gambling
demon to extract work with a prescribed stopping threshold
of cumulative work in the paradigm system of a Brow-
nian particle in a time-dependent squeezing potential trap
[21]. The mechanism for the demon to win over the Second
Law of Thermodynamics (i.e., having a negative dissipative
work) is analyzed by sorting out the statistics of the stopped
trajectories, which further leads to improved strategies of
time-dependent stopping threshold to enhance the winning
profits.

The nonstationary stochastic process of the gambling de-
mon under a compressing trap also allows us to examine in
detail some fundamental issues in stochastic thermodynam-
ics. By considering the time-reversed process, the gambling
demon provides a convenient platform to investigate the ir-
reversibility and stopping-time fluctuation theorem. In this
paper, we investigate the action of the gambling demon under
a squeezing potential trap theoretically by Langevin dynamics
simulations and also experimentally. The energetics, stopping
positions, stopping times, and their distributions are investi-
gated in detail. The time-reversed protocol of the gambling
demon is considered to examine the irreversibility and entropy
production in the demon’s action. The stopping-time integral
fluctuation relation is tested and its apparent deviation can be
understood in terms of the hidden internal degrees of free-
dom that cannot be observed directly under the mesoscopic
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FIG. 1. Simulation results of the work evolution trajectories of the gambling demon under the harmonic potential U (x, λ(t )) = 1
2 λ(t )x2

with compressing protocol λ(t )
λ(0) = 2 − cos πt

τ
with τ = 2. Twenty trajectories are shown in each graph. The threshold Wth is marked by the

horizontal dot-dashed line. The instantaneous free energy change, �F (t ) = 1
2 ln λ(t )

λ(0) , is denoted by the dashed curve. (a) Wth = 0.2. (b) Wth =
0.4.

framework in stochastic thermodynamics. Furthermore, our
study is related to stopping processes or generalized first-
passage time problems in nonsteady nonequilibrium systems
and is also relevant in the use of Martingale theory in stochas-
tic thermodynamics [22].

II. THE GAMBLING DEMON AND THE ASSOCIATED
ENERGETICS

The nonstationary external driving is denoted by some
arbitrary protocol λ(t ) that changes one state to another in
the time interval 0 � t � τ . The stochastic system is allowed
to evolve from some initial state, which can be taken to be
at equilibrium, under the action of the potential U (x, λ(t )) to
some final state. The nonsteady process is, in general, far from
equilibrium that abides by the traditional Second Law of ther-
modynamics [23] which guarantees that the mean work done
on the system cannot be less than the free energy change, i.e.,
〈W 〉 � �F , when averaged over many trajectories. The differ-
ence in the mean work and the free energy change, 〈Wdiss〉 =
〈W 〉 − �F , is the mean dissipative work for the process. One
can view the nonequilibrium Second Law abiding or violating
trajectories, respectively, as winning or losing in a gambling
process in which a negative (positive) dissipative work Wdiss

is regarded as a winning (losing) scenario. Then with the de-
cision to stop the process when the cumulative work (betting
capital) exceeds some assigned threshold (denoted by Wth), the
stochastic stopping process of a nonequilibrium trajectory is
viewed as the action of a gambling demon, which has been
recently realized in an electron box experiment [20] and a
Brownian particle under a squeezing harmonic potential [21].
As revealed in

Ref. [21] the key idea for the gambling demon to achieve
winning is to exploit the stopping action for two major goals.
The first is to cut the expected and potentially big losses
by early stopping when the cumulative work reaches the
threshold. The second is to stop and harvest some appropriate
winning profit without taking the risk until the end of the
journey. Figure 1 shows the work trajectories under the action
of a gambling demon with a given Wth. Only a small fraction
of the trajectories can complete their journey (red trajectories)
for a low value of Wth as shown in Fig. 1(a). Throughout

this paper, the energetic quantities such as work, heat, or free
energy are in units of kBT , where kB is the Boltzmann constant
and T is the temperature. Time t is in units of the characteristic
relaxation time τR which is given by the ratio of the drag co-
efficient of the Brownian particle to the initial spring constant
of the harmonic trap. The number of trajectories without being
interrupted by the demon (red trajectories) increases with Wth

[see Fig. 1(b)]. These noninterrupted trajectories are always
winning with Wdiss < 0. On the other hand, those trajectories
that are stopped by the demon can be winning (blue trajecto-
ries) or losing (black trajectories). Those losing and stopped
trajectories (black trajectories) are essential for the demon
to achieve winning on average by cutting big losses in the
early stopped events. Those winning and stopped trajectories
(blue trajectories) reflect the active role of the demon to gain
winning profits. The uninterrupted winning trajectories (red
trajectories) in which the demon takes no action, are not the
dominant factor in achieving winning. The detailed statistics
of these three types of trajectories have been analyzed in
Ref. [21]. For each trajectory, the instantaneous work W (t) is
monitored, and a binary information of W (t ) is less than Wth

or not is used for the stopping decision. While the acquisition
of 1-bit memory does not require energy, resetting 1-bit of
memory to acquire another new information costs kBT �n2,
as given by Landauer’s principle [8,24]. Here, we implicitly
assume the gambling demon has a very large memory capacity
and it does not need to erase information during its action.

Under the action of the gambling demon, the
ensemble average of an observable O is 〈O〉ts ≡∑

x[0,ts] P(x[0,ts] )O(ts, x[0, ts]) with stochastic stopping times
ts, where x[0,ts] denotes a trajectory that ends at some ts
whose probability is P(x[0,ts] ). For an explicit squeezing trap
protocol, we consider the potential trap of the form

U (x, λ(t )) = 1

2
λ(t )xn, n = 2, 4, · · · (1)

with λ(t ) = λ(0)

[
1 + b

(
1 − cos

πt

τ

)]
, (2)

where b > 0 and τ is the driving duration. In most cases, we
take b = 1 and λ has a threefold increase when the squeezing
process is completed. The corresponding instantaneous free
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FIG. 2. Energetic quantities of the gambling demon trajectories under the compressing harmonic protocol for the potential U (x, λ(t )) =
1
2 λ(t )x2 with λ(t )

λ(0) = 2 − cos πt
τ

with τ = 4. 8000 trajectories are used. (a) Heat Q, (b) dissipative work Wdiss vs ts for various values of Wth.
(c) Q plotted against the stopped position xs for Wth = 0.1. The trapping potential at t = τ is shown by the dashed curve. (d) Wdiss plotted
against the stopped position xs for Wth = 0.1.

energy change can be calculated to give �F (t ) = 1
n ln λ(t )

λ(0) .
In most cases, we focus on the paradigm case of a Brownian
particle under a harmonic potential with n = 2. An anhar-
monic trap with n = 4 is also considered in some simulation
studies. We first carry out simulations by generating stochastic
trajectories from the solution of the overdamped Langevin
equation ẋ(t ) = − n

2γ
λ(t )xn−1 + ξ (t ), where γ is the drag co-

efficient and ξ is a zero-mean white noise with 〈ξ (t )ξ (t ′)〉 =
2kBT

γ
δ(t − t ′). The Langevin equation is solved numerically

using the Euler-Maruyama scheme with a time step of δt =
2 × 10−4, where time is in the unit of the characteristic relax-
ation time τR = γ

kBT ( kBT
λ(0) )2/n and all distances are in units of

( kBT
λ(0) )1/n. Ensemble averages are computed using 5000 to 20

000 stochastic trajectories under the action of the demon.
Figures 2(a) and 2(b) show the Langevin dynamic

simulations results of the stochastic heat and dissipative work
as a function of the stopped time ts, of the Brownian system
under various stopping thresholds of the gambling demon.
The stochastic heat has large fluctuations, and the trajectories
are stopped at a later time for larger Wth. On the other hand, the
stochastic Wdiss has a smooth dependence on the stopped time
which can be understood from the action of the demon to stop
the trajectory at W = Wth, hence Wdiss(ts) = Wth − �F (ts)
for ts < τ . On the other hand, for unstopped trajectories with
ts = τ , Wdiss(τ ) = W (τ ) − �F (τ ), which is stochastic but its
value is � Wth − �F (τ ). More information can be revealed
by examining the energetics as a function of the stopped

position xs. Figure 2(c) shows the general trend of more heat
flow to the system for trajectories stopped far away from
the potential well center, and heat can be extracted from the
system if it is stopped closer to the well center. Figure 2(c)
indicates that the heat is bound by 1

2λ(τ )x2
s (the dashed

curve) which follows from the First Law of thermodynamics
Q = �U − W with W > 0 for compression, which gives
Q < �U = 1

2λ(ts)x2
s − 1

2λ(0)x(0)2 � 1
2λ(ts)x2

s � 1
2λ(τ )x2

s .
Fig. 2(d) shows that trajectories stopped very far away from
the well center are always losing and the majority winning
profit trajectories (Wdiss negative) are stopped at locations

within a distance of ∼
√

kBT
λ(0) inside the well.

The distribution functions of various energetic quantities
are displayed in Fig. 3. The work W is always positive due to
the compressing potential. P(W ) displays an abrupt truncation
due to the stopping action of the demon for smaller values
of Wth [see Fig. 3(a)]. The associated jump at W = Wth is
due to the large number of stopped trajectories for small Wth,
but no such abrupt jump occurs for large Wth since nearly all
trajectories completed their trips. The stochastic heat for the
trajectories shows broad distribution [see Fig. 3(b)], indicat-
ing the strong fluctuating nature of heat exchange with the
environment. The stopping times and locations of the parti-
cles can reveal the situation when the particle is stopped by
the demon. The xs vs ts scattered plot of the stopped par-
ticle shown in Fig. 3(c) reveals that the particles stopped
near the well center can complete their journeys, and there
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FIG. 3. Simulation results for the harmonic potential U (x, λ(t )) = 1
2 λ(t )x2 with compressing protocol λ(t )

λ(0) = 2 − cos πt
τ

with τ = 4.
(a) Work distribution P(W ). (b) Heat distribution P(Q). (c) The stopped position xs plotted against the stopped time ts with τ = 4 for various
values of Wth. (d) Stopped distance distribution P(xs ). (e) Stopped time distribution P(ts ). (f) Distribution of the dissipative work Wdiss.

is a tendency that particles stopped early are further away
from the well center. The distribution of the stopped position
[see Fig. 3(d)], xs, changes from the unimodel peak at the
well center for large Wth (where most trajectories complete
their trips) and gets broadened as Wth decreases. And for the
tight threshold of small Wth, the distribution becomes bimodal
with a more significant amount of trajectories stopped by
the demon, and most particles are stopped significantly away
from the well center and very few particles are stopped near
the center. For large Wth, the stopping time distribution ap-
proaches a δ function at ts = τ as no trajectory is stopped by
the demon [see Fig. 3(e)]. As the work threshold gets small,
P(ts) displays a spectrum of stochastic stopping times due
to the action of the demon, superposed with an abrupt peak
at tS = τ due to the large portion of unstopped trajectories.

The completion peak at ts = τ becomes lower for smaller Wth

as the fraction of unstopped trajectories becomes higher. A
winning trajectory is characterized by W (ts) < �F (ts), i.e.,
Wdiss < 0. The stochastic dissipative work distribution under
the action of the demon is shown in Fig. 3 f for different
values of Wth. For large Wth, there is no stopping action of
the demon and the system obeys the usual fluctuation theorem
(Wdiss is the stochastic total entropy production) and hence
an average losing scenario of 〈Wdiss〉 > 0 is guaranteed. On
the other hand, the change of behavior of P(Wdiss) for smaller
Wth is due to the truncation of large and positive Wdiss mainly
contributed from the losing and stopped trajectories [black
trajectories in Fig. 1(a)]. the demo can achieve significant
winning for small Wth, mainly due to the truncation of large
positive (big loss) Wdiss and an increase in the winning tra-
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FIG. 4. Simulation results for the harmonic potential U (x, λ(t )) = 1
2 λ(t )x2 with compressing protocol λ(t )

λ(0) = 2 − cos πt
τ

. (a) The averaged
free energy change, heat and work as a function of the stopping threshold, Wth. τ = 2. (b) Normalized mean stopping time 〈ts〉ts/τ plotted as a
function of Wth for various values of τ .

jectories. The mean energetic quantities, 〈�F 〉ts , 〈Q〉ts and
〈W 〉ts , averaged over a large number of trajectories under
the action of the demon are displayed in Fig. 4(a). 〈�F 〉ts
increases monotonically with Wth and saturates to the value
of �F (τ ) (= 1

2 ln 3 � 0.5493 here) for large values of Wth in
which all trajectories can complete their trips without being
stopped. 〈W 〉ts is positive due to the squeezing protocol and
is monotonically increasing with saturation towards a value
that is greater than �F (τ ). On the other hand, the average
heat 〈Q〉ts shows a nonmonotonic behavior with positive mean
heat flow into the system for small Wth and mean heat flow
out of the system to the environment as Wth becomes large.
The dependence of the action of the demon on the threshold
can be revealed by plotting the (scaled) average stopping time
as a function of Wth as displayed in Fig. 4(b). 〈ts〉ts increases
monotonically with Wth as expected, and saturation begins to
set in for Wth � �F (τ ) (denoted by the vertical dashed line).
This again indicates that for the demon to be effective, one
should choose a threshold that is smaller than �F (τ ) so that
a significant number of trajectories are stopped.

The performance of the demon is evaluated by the dissipa-
tive work averaged over many trajectories which are plotted
as a function of the threshold for different τ ’s in Fig. 5(a).
〈Wdiss〉ts is positive for large values of threshold respecting the
usual second law of thermodynamics. But for small values of

Wth, 〈Wdiss〉ts is negative, indicating that useful work can be
extracted by the action of the demon. In addition, maximal
work can be extracted (〈Wdiss〉ts is most negative) for some
(small) value of Wth. Such a most negative 〈Wdiss〉ts depends
on τ whose dependence is displayed in Fig. 5(b), showing a
broad peak around a small value of τ ∼ 0.08.

III. CHOOSING THE THRESHOLD Wth

As demonstrated by the simulation results in the previous
section, one needs to choose Wth a couple of times smaller
than �F (τ ) for the demon to be effective [see Fig. 4(b)] and
to achieve good winning profit [see Fig. 5(a)]. However, with
a chosen Wth that is too low, we discard some trajectories that
could have won more if they were kept for a longer time. A
trajectory stopped at ts < τ is winning if ts > ατ , where 0 <

α = α(Wth ) � 1, which can be solved from �F (ατ ) = Wth.
Here, we take advantage of knowing the time dependence
of the compressing protocol λ(t ), and hence the variation
of �F (t ) is also known precisely. Notice that the stopped
trajectory is winning because �F (t ) increases faster than the
cumulative work, but d�F

dt will slow down once t > t∗ where
the peak of d�F

dt occurs at t∗ [see Fig. 6(a)]. For the potential
and compressing protocol in Eqs. (1) and (2), α(Wth ) and t∗
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FIG. 5. Simulation results for the harmonic potential U (x, λ(t )) = 1
2 λ(t )x2 with compressing protocol λ(t )

λ(0) = 2 − cos πt
τ

. (a) 〈Wdiss〉ts as

a function of Wth for τ = 2, 4. The case of anharmonic trap of 1
2 λ(t )x4 for τ = 2 is also shown. (b) Maximal dissipative work (magnitude)

measure from the simulation results of the gambling demon vs τ .

014124-5



ALBAY, JUN, AND LAI PHYSICAL REVIEW E 109, 014124 (2024)

(a) (b)

FIG. 6. For harmonic potential U (x, λ(t )) = 1
2 λ(t )x2 with compressing protocol λ(t )

λ(0) = 2 − cos πt
τ

. (a) �F (t ) and τ d�F
dt vs t

τ
. (b) α(Wth )

plotted as a function of Wth. The horizontal dashed line marks the value of α = t∗
τ

.

can be easily obtained to be

α(Wth ) = 1

π
cos−1

(
1 + 1

b
− enWth

)
, (3)

t∗

τ
= 1

π
cos−1

(
b

1 + b

)
. (4)

Figure 6(b) shows the variation of α(Wth ) for the n = 2 har-
monic potential. A good choice of Wth will allow a winning
trajectory to be stopped at ts with t∗ > ts > α(Wth )τ before
d�F

dt slows down. Hence, one should choose Wth < W ∗
th where

α(W ∗
th )τ = t∗ as depicted in Fig. 6(b). In this case W ∗

th can be
solved to give

W ∗
th = 1

n
ln

1 + 2b

b(1 + b)
. (5)

For b = 1, one gets W ∗
th = 0.202 for the harmonic trap. As

shown in the simulation results in Fig. 5(a), optimal winning is
achieved (〈Wdiss〉 most negative) around Wth < W ∗

th. Similarly,
W ∗

th = 0.101 for the case of nonharmonic trap with 1
2λ(t )x4,

and a high winning is confirmed from the simulation results in
Fig. 5(a). For general protocol of the form λ(t ) = �( t

τ
) and

general trapping potential of the form given by Eq. (1), W ∗
th can

be obtained by first finding the root α∗ from �(α∗)�̈(α∗) =
�̇2(α∗), and a suitable choice of the threshold is then given by
Wth � W ∗

th = 1
n ln �(α∗ )

�(0) .

IV. IRREVERSIBILITY AND STOPPING-TIME
FLUCTUATION RELATION

We first examine the irreversibility of the nonstationary
driving process of λ(t ) without the action of the demon.
One considers the reverse protocol that starts to drive the
system immediately after the end of the forward protocol with
λR(t ) = λ(τ − t ) for the same duration τ . The irreversibility
for a trajectory at a time 0 � t � τ is given by the log-ratio
of the probabilities of the particle in the forward process at
time t to that of the reverse one when it is played back for the
same duration:

δ(t ) = ln
P(x(t ), t )

PR(x(t ), τ − t )
, (6)

where P(x, t ) and PR(x, t ) are the position probability
distribution functions in the forward and reverse processes,

respectively. The process is irreversible if P(x, t ) and
PR(x, τ − t ) are distinct. Figure 7(a) shows the simulation
results of the forward and reverse distributions at some given
time which clearly indicate the irreversible nature of the
nonstationary protocol. It is easy to see from the definition of
δ(t ) in Eq. (6) that it obeys the integral fluctuation relation:

〈e−δ(t )〉 =
∫

dxP(x, t )
PR(x, τ − t )

P(x, t )

= 1, for 0 � t � τ, (7)

which in turn gives

〈δ(t )〉 � 0, (8)

exemplifying the irreversibility nature or “Second Law”
for general nonequilibrium processes. Notice that δ(τ ) = 0
since the initial configuration of the reverse process is, by
definition, the ending configuration of the forward process,
i.e., the system is played back immediately when the forward
protocol ends. On the other hand, δ(0) � 0 with the equality
holds only in the quasistatic limit of an infinitely slow
protocol, otherwise, δ(0) > 0 for general finite duration
protocols in nonequilibrium processes.

The ensemble average of the stochastic distinguishability
of the forward and reverse trajectories up to time t defined in
Eq. (6) is given by

〈δ(t )〉 =
∫

dxP(x, t ) ln
P(x, t )

PR(x, τ − t )
≡ �KL(t ), (9)

which is simply the Kullback-Leibler (KL) divergence of
the forward from its reverse distribution that can serve as
an alternative measure for the irreversibility at a given time.
The irreversibility can also be conveniently characterized by
the difference in the variances of P(x, t ) and PR(x, τ − t ).
For harmonic potentials, these variances (denoted respectively
by w(t ) and wR(τ − t )) can be calculated explicitly and are
given by Eq. (A9) and (A11) in the Appendix. The theo-
retical time-dependent variances of the forward and reverse
distributions together with their ratio are plotted in Fig. 7(b),
indicating that forward and reverse variances are distinct.
In addition, their ratio is a measure of the degree of irre-
versibility, which is also time-dependent but is always � 1.
The measured variance ratio obtained from simulations is

014124-6



GAMBLING DEMON AND STOPPING-TIME FLUCTUATION … PHYSICAL REVIEW E 109, 014124 (2024)

-3 -2 -1 0 1 2 3
x

0

0.1

0.2

0.3

0.4
P(x,t)
P

R
(x,τ-t)

(a)

0 0.2 0.4 0.6 0.8 1
t/τ

0

0.5

1

1.5

2

>

<

w(t)
w

R
(τ-t)

w(t)/w
R
(τ-t)

simluations

(b)

FIG. 7. Brownian particle under the harmonic potential U (x, λ(t )) = 1
2 λ(t )x2 with compressing protocol λ(t )

λ(0) = 2 − cos πt
τ

. (a) Simulation
results for the forward and reversed position probability distributions at t = 0.7 for τ = 2. (b) Theoretical results of w(t ) and wR(τ − t ) and
their ratio for τ = 2. Simulation results (�) are also shown.

also plotted, showing perfect agreement with the theoretical
values.

The stochastic distinguishability or irreversibility associ-
ated with the action of the gambling demon can be examined
by δ at the stopped moment and position, which are shown
in the scattered plots in Fig. 8(a) and 8(b). Here, δ(t ) is
obtained using Eq. (6) by measuring the forward and reverse
position distributions. There is a general trend of stronger
irreversibility when the particle is stopped at earlier times
and stopped at positions further away from the trap center.
The degree of irreversibility can be quantitatively revealed
by δ(t ) averaged over the stopped trajectories. Figure 9(a)
shows the simulation results of 〈δ〉ts that peaks for some

characteristic Wth at which the process is most irreversible.
This can be understood from the KL-divergence irreversibility
defined in Eq. (9) that can be calculated theoretically [see
Eq. (A13) in the Appendix], which also displays a peak as
a function of t , as shown in Fig. 16(a) in the Appendix. Since
in general ts increases with the threshold Wth [see Fig. 4(b)],
thus the irreversibility also peaks at some Wth as revealed
in Figs. 9(a)–9(c) for 〈δ〉ts . Using the KL-divergence mea-
sure for irreversibility, �KL(ts) defined in Eq. (9), with the
stopping times ts sampled from Langevin simulation trajec-
tories, the average 〈�KL〉ts is obtained as a function of Wth

as shown in Fig. 8(c), also display maximal irreversibility at
some Wth.
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FIG. 8. Simulation results for the harmonic potential U (x, λ(t )) = 1
2 λ(t )x2 with compressing protocol λ(t )

λ(0) = 2 − cos πt
τ

. (a) δ(ts ) vs ts and
(b) δ(ts ) vs xs for Wth = 0.1 and τ = 4. (c) �KL averaged over ts sampled from the trajectories of the Langevin simulations plotted as a function
of Wth for several values of τ .

014124-7



ALBAY, JUN, AND LAI PHYSICAL REVIEW E 109, 014124 (2024)

FIG. 9. Simulation results for the harmonic potential U (x, λ(t )) = 1
2 λ(t )x2 with compressing protocol λ(t )

λ(0) = 2 − cos πt
τ

. The uncertainties
are estimated from several independent runs (typically five) and are about the size of the symbols. (a) 〈Wdiss〉ts and −〈δ〉ts vs Wth. τ = 2. The
filled symbols (�) are results obtained using the theoretical result of δ(t ) in Eq. (A12) and averaged over the stopping times in the simulation.
(b) is similar to (a) but for τ = 4. (c) 〈Wdiss〉ts vs Wth for the nonharmonic potential U (x, λ(t )) = 1

2 λ(t )x4 with the same λ(t ) and τ = 2. The
case of harmonic potential is also shown for comparison. (d) −〈Wdiss〉ts vs 〈δ〉ts for various values of τ .

The variation of irreversibility due to the action of the
gambling demon as a function of the stopping threshold can
be examined by plotting the simulation results of −〈δ〉ts as a
function of Wth in Figs. 9(a)–9(c). One can also compute 〈δ〉ts
using the theoretical result of δ(t ) in (A12) and averaged over
the stopping times in the simulation, and the results are dis-
played in Fig. 9(a) (filled diamonds) showing good agreement.
The averaged dissipative work is also displayed, showing
that 〈Wdiss〉ts > −〈δ〉ts revealing that there is room to extract
useful work (i.e., 〈Wdiss〉ts < 0, winning) due to the highly
irreversible nature of the process associated with the action
of the demon. It is clear that 〈δ〉ts is always non-negative,
exemplifying the second law of thermodynamics. For large
values of Wth, 〈δ〉ts approaches zero since all trajectories can
complete their journey and by definition P(x, τ ) = PR(x, 0).
〈δ〉ts is maximal at a threshold that is also close to a large neg-
ative mean dissipative work. This again reflects the situation
that the demon is effective in winning in a highly irreversible
scenario. Figure 9(d) plots −〈Wdiss〉ts vs 〈δ〉ts for various values
of τ , showing the general trend of more winning profit for
stronger irreversibility.

A. Experimental test

To confirm the above theoretical and simulation results,
we conducted experiments on the gambling demon under a
squeezing harmonic potential. The experimental setup con-

sists of a 1-μm sized Brownian particle trapped in the
squeezing potential controlled by the optical feedback trap
[25]. The particle is first located in the equilibrium state for
50 ms, and the stiffness of the harmonic potential starts to
increase from λ=5 pN/μm to 15 pN/μm for the process time
τ according to the given protocol, Eq. (2), with b = 1. The
relaxation time for this system is τR = γ /λ(0) � 1.9ms. At
the end of the driving time τ , the stiffness of the potential
starts to decrease according to the reverse protocol λR(t ).
Figures 10(a)–10(c) are the time evolution of the particle
position distributions in the squeezing potential and its reverse
protocol for various process times. The initial equilibrium
distribution gets sharper around the well center as the stiffness
of the harmonic trap increases until the end of the forward
process at t = τ . Then, the stiffness immediately increases
according to the reverse protocol for the same duration τ , and
the distribution gets broadened. It is clear that the evolution
of the distribution during the reverse process differs signif-
icantly from the forward one for small values of τ = 2 ms
and 4 ms, but such difference becomes rather small when
the driving protocol is slow (τ = 10 ms). The experimen-
tal stopped times are plotted against the stopped locations
and are shown in Fig. 11(a) for various stopping thresholds,
which is in agreement with the simulation results as shown
in Fig. 3(c). The experimentally measured stopped position
distributions for various stopping thresholds are shown in
Fig. 11(b). For large Wth, P(xs) peaks at the well center
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FIG. 10. Compressing harmonic protocol for the potential U (x, λ(t )) = 1
2 λ(t )x2 with λ(t )

λ(0) = 2 − cos πt
τ

. Experimental results on the
evolution of position distributions during the process for τ = (a) 2 ms, (b) 4 ms, and (c) 10 ms. The horizontal dashed lines indicate the
end of the forward process.

since almost all trajectories can complete their journeys. The
peak of P(xs) becomes broadened as Wth decreases, and for
small Wth, P(xs) is bimodal with most particles being stopped
significantly away from the well center and only very few
particles are stopped near the center. The experimental mea-
sured P(xs) agrees well with the simulation results shown in
Fig. 3(d).

To examine the irreversibility of the squeezing harmonic
trap experimentally, we measure the time evolution of the
position variances of the forward and reverse protocols for
various values of τ , as shown in Fig. 11(c). The difference
between w(0) and wR(τ ) increases for faster processes since
the system is highly nonequilibrium and hence highly irre-
versible for small τ . The variances of the forward processes
agree well with the analytical results from Eq. (A9) in the
Appendix. The agreement of wR(t ) with the theoretical result
of Eq. (A11) in the Appendix for the reverse process is less
satisfactory, especially for a small value of τ . Presumably, this
is due to the fact that the initial state of the reverse protocol
might deviate from the final state of the forward process
(which is far from equilibrium) due to the finite response or
delay times in the electronics of the experimental control. The
average dissipative work 〈Wdiss〉ts , which is related to the mean
profit of the gambling demon, is measured experimentally as
a function of the threshold for different values of τ ’s, together
with the average irreversibility 〈δ〉ts , as shown in Figs. 12(a)
and 12(b), which is in good agreement with the simulation
results shown in Figs. 9(a) and 9(b). For fast processes (small
τ ), 〈Wdiss〉ts can achieve a more negative value in a regime of
small Wth, indicating that more useful work (winning profit)
can be extracted by the action of the demon. In addition,
maximal winning can be achieved near the regime of higher

irreversibility 〈δ〉ts . A plot of the experimental 〈Wth〉ts vs 〈δ〉ts is
shown in Fig. 12(c), which is in agreement with the simulation
results (Fig. 9(d)) of the general trend of more winning profit
for highly irreversible processes.

B. Stopping-time integral fluctuation theorem with internal
degrees of freedom

The quantity δ in the gambling demon has been
shown [20] to obey the stopping-time integral fluctuation
relation

〈e−Wdiss−δ〉ts = 1, (10)

which was verified experimentally for the single electron
box system. From the Jensen inequality, Eq. (10) implies
〈Wdiss〉ts � −〈δ〉ts which explains why the demon has room
to achieve winning. We shall examine the validity of the
above fluctuation relation for the present gambling demon
case of a Brownian particle in a squeezing trap. Figure 13
shows the simulation results of 〈e−Wdiss〉ts and 〈e−Wdiss−δ〉ts as
a function of the threshold for different values of τ . We also
perform similar measurements experimentally, and the results
are shown in Fig. 14(a). The experimental and simulation
results indicate that 〈e−Wdiss〉ts appreciably exceeds unity for
smaller values of Wth implying the violation of the usual
integral fluctuation theorem due to the stopping action of the
demon, and a positive δ should be introduced to restore the
integral fluctuation relation as suggested in Eq. (10). Fur-
thermore, both the simulation and experimentally measured
values of 〈e−Wdiss−δ〉ts are close to unity in most regimes, but
for some regime of Wth, 〈e−Wdiss−δ〉ts is significantly less than
unity. Such a deviation from Eq. (10) persists for different
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FIG. 11. (a) Experimental results of the stopped time ts vs the stopped location xs for various work thresholds Wth under the action of the
gambling demon with τ=10 ms. (b) The corresponding stopped location distributions P(xs ) for the case in (a). (c) The variance evolution of
particle positions of the forward (solid curves) and reverse (dashed curves) processes with τ = 2 ms (red), 4 ms (green), and 10 ms (blue). The
corresponding theoretical results are denoted by the grey curves.

values of τ ’s and also for non-harmonic trapping poten-
tial [see Fig. 13(d)]. As discussed in the following, such
discrepancy from the stopping-time integral fluctuation rela-
tion (10) can be attributed to the entropy production due to
some internal degrees of freedom that were not taken into
account.

To examine further theoretically, we consider the system
setting consisting of the observed slow degrees of freedom
(d.o.f.), which is the particle position x(t ) together with the in-
ternal and hidden d.o.f. (can be thought of as the fast Brownian
kicks or other fast fluctuations in the experiments). Now the
entropy production of the system includes the observed and
internal contributions, written as �Ssys = �S + �Sint, where
quantities for the system, internal, and observed d.o.f. are
denoted with the subscripts “sys”, “int” and no subscript, re-
spectively. Here the energetics are in units of kBT and entropy
is in units of kB for convenience. The observed energetics are
related by �U = W + Q and �F = �U − �S. Hence, the
observed dissipative work Wdiss = W − �F = �S + �Sint −
Q − �Sint ≡ �Stotal − �Sint , where �Stotal = �Ssys − Q is
the total entropy production of the environment plus the ob-
served and internal d.o.f. Denote the coordinate of the internal
d.o.f. by xint, and the distribution functions of the system in
the forward and reverse processes, respectively, by P(x, xint, t )
and PR(x, xint, t ), the irreversibility of the system now is

related to δ(t ) of the observed d.o.f. by

δsys(t ) = ln
P(x(t ), xint (t ), t )

PR(x(t ), xint (t ), τ − t )
(11)

= ln
P(x(t ), t )

PR(x(t ), τ − t )
+ ln

P (xint (t ), t |x(t ))

PR(xint (t ), τ − t |x(t )

(12)

≡ δ(t ) + δint (t ), (13)

where P and PR are the corresponding conditional probabil-
ities. Then, invoking the Doob’s optional stopping theorem
[26], which states that for any Martingale stochastic vari-
able M(t ), 〈M〉ts = 〈M(0)〉. And since it has been shown
in Ref. [20] that e−�Stotal −δsys is Martingale, it follows that
e−Wdiss−δsys−�Sint is also Martingale. Hence together with Eq. (7)
at t = 0, we have (since Wdiss(0) = �Sint = 0)

〈e−Wdiss−δsys−�Sint 〉ts = 〈e−δsys (0)〉 = 1. (14)

Hence if we define the effective internal entropy production
�S̃int ≡ �Sint + δint, then Eq. (14) can be written as

〈e−Wdiss−δ−�S̃int 〉ts = 1, (15)

which is the generalized stopping time integral fluctuation
theorem in terms of the observed Wdiss and δ when the internal
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(a) (b)

(c)

FIG. 12. Experimental results for 〈Wdiss〉ts (black line) and 〈δ〉ts (red line) as a function of Wth for τ = (a) 2 ms, (b) 10 ms. Error bars (green
shadows) were obtained from bootstrap using 1000 resamplings of size 3000. (c) −〈Wdiss〉ts as a function of 〈δ〉ts for τ = 2 ms, 4 ms, and 10
ms.

d.o.f. is taken into account. In fact Eq. (15) has the same form
as the stopping time integral fluctuation relation developed in
Ref. [18] in the presence of some internal degrees of freedom.
Now the experimental and simulation results [see Figs. 13
and 14(a)] can be understood in terms of Eq. (15) as follows.
〈e−Wdiss〉ts significantly exceeds unity in regimes of smaller Wth

in which many trajectories are stopped before completion.
The stopping-time fluctuation theorem (15) can be rewritten
as 〈e−Wdiss e−(δ+�S̃int )〉ts . For the far-from-equilibrium situation
considered here, one expects �S̃int is negligible when com-
pared with δ, hence δ + �S̃int ≈ δ > 0 and thus 〈e−Wdiss〉ts >

1. For large Wth in which most trajectories can complete,
both δ ≈ 0 (since δ(τ ) = 0) and �S̃int ≈ 0 (since ts � τ and
all internal d.o.f. are well equilibrated), then 〈e−Wdiss〉ts →
〈e−�Stotal 〉 = 1, which follows from the usual integral fluc-
tuation theorem. On the other hand, the experimental and
simulation results of 〈e−Wdiss−δ〉ts < 1 in some intermediate
values of Wth [see Figs. 13 and 14(a)] suggest that in this
regime, there is a non-negligible negative effective entropy
production of the internal d.o.f., i.e., �S̃int < 0, which can be

understood intuitively with the following physical picture: For
intermediate values of Wth, a large portion of the trajectories
are stopped with very short ts [see Fig. 3(e)] for the distri-
bution of the stopping times) and the internal d.o.f. cannot
be fully relaxed. In addition, such early-stopped trajectories
receive not many strong thermal kicks with the work already
reaching Wth in a very short time. These early-stopped tra-
jectories sampled by our gambling demon are biased with
strong directional ballistic kicks that push the particle far
from the trapping center. In other words, the fast d.o.f. in the
environment near the particle are in a much orderly fashion
as compared to the initial t = 0 situation, thus there would be
a decrease in the corresponding entropy leading to �S̃int < 0.
To verify the above scenario, we measure experimentally the
position distribution of the trajectories before some stopped
times within a time window of 2 ms as shown in Fig. 14(b).
For large stopping times, the particle trajectory is located pre-
dominantly around the well center. But the particle trajectory
stays far away from the well center if the particle is stopped at
an early time, as described in the above picture.
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FIG. 13. Compressing harmonic protocol for the potential U (x, λ(t )) = 1
2 λ(t )x2 with λ(t )

λ(0) = 2 − cos πt
τ

. (a) 〈e−Wdiss 〉ts and 〈e−Wdiss−δ〉ts vs
Wth for τ = 2. The filled symbols (�) are results obtained using the theoretical result of δ(t ) in Eq. (A12) and averaged over the stopping
times in the simulation. (b) 〈e−Wdiss 〉ts and 〈e−Wdiss−δ〉ts vs Wth for τ = 4. (c) is similar to (a) and (b) but for τ = 10 and 100. (d) 〈e−Wdiss 〉ts and
〈e−Wdiss−δ〉ts vs Wth for the nonharmonic potential U (x, λ(t )) = 1

2 λ(t )x4 with the same λ(t ) and τ = 2. The case of a harmonic potential is also
shown for comparison. The uncertainties are estimated from several independent runs (typically five) and are about the size of the symbols.

Finally, from the measured 〈e−Wdiss−δ〉ts and stopping time
integral fluctuation theorem (15), one can give an order of
magnitude estimate of the maximal value of �S̃int (in unit
of kB): 1 = 〈e−Wdiss−δ−�S̃int 〉ts ≈ 〈e−Wdiss−δ〉ts e

−�S̃int , and with
〈e−Wdiss−δ〉ts � 0.92 to 0.95, one then gets �S̃int ∼ −0.08 to
−0.05.

V. CONCLUSION

In this paper, the energetics including the average dissi-
pative work, the distributions of the stopping positions, and
stopping times of a Brown particle in a squeezing potential
under the action of a gambling demon with a prescribed work
threshold are investigated by simulations and also measured
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FIG. 14. Experimental results of the compressing harmonic potential for τ=2 ms, 4 ms and 10 ms. (a) 〈e−Wdiss 〉ts (solid curves) and
〈e−Wdiss−δ〉ts (dashed curves) vs Wth. Error bars (shadows) were obtained from bootstrap using 1000 resamplings of size 3000. (b) The position
distribution of trajectories before different stopped times within a time window of 2ms. τ = 10 ms and Wth = 0.25.

014124-12



GAMBLING DEMON AND STOPPING-TIME FLUCTUATION … PHYSICAL REVIEW E 109, 014124 (2024)

experimentally. A strongly irreversible process is essential
for the demon to be effective in winning. The degree of
irreversibility of the process is further studied by investi-
gating the time-reversed protocol of expanding the potential
trap. The time-dependent variance of the position distributions
of the forward and reverse processes together with the quantity
δ are employed to quantify the irreversibility. The stopping-
time fluctuation relation, which involves Wdiss and δ, is also
examined for a broad range of stopping threshold Wth. Both
the simulation result and experimental measurements found
that the stopping-time fluctuation relation can be reconciled
with a significant negative internal entropy production associ-
ated with hidden internal degrees of freedom in some regime
of Wth.
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APPENDIX: MEAN ENERGETICS, TIME-DEPENDENT
POSITION DISTRIBUTIONS AND MEAN

IRREVERSIBILITY FOR U (x, λ(t )) = 1
2 λ(t )x2

Under the protocol of ramping the stiffness of the harmonic
trap, the particle distribution function does not follow the
Boltzmann distribution due to the time-dependent variation
that leads to nonequilibrium behavior. But the distribution is
still Gaussian [27,28] with

P(x, t ) =
√

β

2πw(t )
e− βx2

2w(t ) , (A1)

where β = 1/(kBT ) and w(t ) satisfies

ẇ = 2

γ
(1 − λ(t )w(t )). (A2)

For arbitrary λ(t ), w can be solved to give

w(t ) = e− 2
γ

∫ t
0 dsλ(s)

[
w(0) + 2

γ

∫ t

0
due

2
γ

∫ u
0 dsλ(s)

]
. (A3)

The mean change in internal energy is given by

β〈�U (t )〉 = 1
2 (λ(t )w(t ) − λ(0)w(0)) = 1

2 (λ(t )w(t ) − 1),
(A4)

where the last equality holds if the initial state is at equilib-
rium. The mean cumulative work at time t can be calculated
as

β〈W (t )〉 = 1

2

∫ t

0
λ̇(t )w(t )dt . (A5)

Integrating by parts upon Eq. (A5) and invoking Eq. (A4) and
the First Law of thermodynamics, one obtains the mean heat
flow into the system

β〈Q(t )〉 = 1

2

∫ t

0
λ(t )ẇ(t )dt = 1

γ

∫ t

0
λ(t )[1 − λ(t )w(t )]dt,

(A6)
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FIG. 15. Time dependence of the mean energetics for the com-
pressing harmonic protocol for the potential U (x, λ(t )) = 1

2 λ(t )x2

with λ(t )
λ(0) = 2 − cos πt

τ
with τ = 4.

where the last equality follows from Eq. (A2). For λ(t ) =
λ(0)[1 + b(1 − cos πt

τ
)], one has

∫ t

0
λ(s)ds = λ(0)

[
(1 + b)t − bτ

π
sin

πt

τ

]
,

∫ t

0
λ(τ − s)ds = λ(0)

[
(1 + b)t + bτ

π
sin

πt

τ

]
. (A7)

Together with β�F (t ) = 1
2 ln λ(t )

λ(0) = 1
2 ln[1 + b(1 − cos πt

τ
)],

all the time-dependent mean energetics can then be theoret-
ically calculated. It will be convenient to express all times
in units of τR ≡ γ /λ(0), lengths in units of

√
kBT/λ(0) and

energies in units of kBT for numerical results. Figure 15 shows
the theoretical results of the mean time-dependent energetics
as a function of time during the squeezing of the harmonic
potential.

For the case of harmonic trapping potential, the time-
dependent position distribution is still Gaussian [27,28] with

P(x, t ) =
√

β

2πw(t )
e− βx2

2w(t ) , (A8)

where β = 1/(kBT ) and w(t ) satisfies ẇ = 2
γ

(1 − λ(t )w(t )).
For arbitrary λ(t ), w can be solved to give

w(t ) = e− 2
γ

∫ t
0 dsλ(s)

[
w(0) + 2

γ

∫ t

0
due

2
γ

∫ u
0 dsλ(s)

]
. (A9)

For the reverse process with λR(t ) = λ(τ − t ), the distribution
function is similarly given by

PR(x, t ) =
√

β

2πwR(t )
e− βx2

2wR (t ) (A10)

with wR(t ) satisfies ẇR = 2
γ

(1 − λ(τ − t )wR(t )) with the ini-
tial condition wR(0) = w(τ ). wR can be solved similarly to
give

wR(τ − t )

= e− 2
γ

∫ τ−t
0 dsλ(τ−s)

[
w(τ ) + 2

γ

∫ τ−t

0
due

2
γ

∫ u
0 dsλ(τ−s)

]
.

(A11)
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FIG. 16. Harmonic potential U (x, λ(t )) = 1
2 λ(t )x2 with compressing protocol λ(t )

λ(0) = 2 − cos πt
τ

. (a) Theoretical result of �KL (t ) calculated
from Eqs. (A9), (A11), and (A13) for several values of τ . (b) Theoretical results for the peak value of �KL and �KL (0) vs τ . The simulation
results of �KL (0) (symbol) are also shown.

Finally, from Eq. (6), the irreversibility for a trajectory at a
time t is then given by

δ(t ) = βx2(t )

2

[
1

wR(τ − t )
− 1

w(t )

]
+ 1

2
ln

(
wR(τ − t )

w(t )

)
.

(A12)
And the average irreversibility at time t

〈δ(t )〉 ≡ �KL(t ) = 1

2

[
w(t )

wR(τ − t )
− 1

]
+1

2
ln

(
wR(τ − t )

w(t )

)
,

(A13)

which can be theoretically computed directly using Eqs. (A9)
and (A11) and is plotted in Fig. 16(a) showing a peak in
�KL(t ) for some optimal value of tm which can be calculated
analytically by setting �′

KL(tm) = 0 in Eq. (A13) and invoking
Eqs. (A9) and (A11) to give

1

w(tm)
+ 1

wR(τ − tm)
= 2λ(tm). (A14)

The optimal value of tm and the corresponding value of maxi-
mal irreversibility �KL(tm), can then be obtained theoretically
and is shown in Fig. 16(b) as a function of τ . It is worth
noting that �KL(tm) itself also peaks at τ � 0.5, suggesting
for protocol with τ around this value, the system is max-
imally irreversible and the gambling demon would have a
good chance to win. It is also easy to verify the second
Law from Eq. (A13) since 〈δ(t )〉 = �KL(t ) = 1

2 ( w(t )
wR (τ−t ) −

1 − ln w(t )
wR (τ−t ) ) � 0. One can also explicitly verify the in-

tegral fluctuation relation (7) by directly calculating using
Eqs. (A12) and noting that the distribution P(x, t ) is given by
Eq. (A1)

〈e−δ(t )〉 =
√

w(t )

wR(τ − t )

〈
e
− β

2

(
1

wR (τ−t ) − 1
w(t )

)
x2(t )〉

(A15)

=
√

β

2πwR(τ − t )

∫
dxe− β

2 x2 1
wR (τ−t ) = 1. (A16)
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