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Ising model for the freezing transition

Jacobo Troncoso * and Claudio A. Cerdeiriña †

Instituto de Física e Ciencias Aeroespaciais da Universidade de Vigo and Unidad
MSMN Asociada al CSIC por el IQF Blas Cabrera, Ourense 32004, Spain

(Received 30 March 2023; revised 10 July 2023; accepted 10 December 2023; published 18 January 2024)

We introduce a three-state Ising model with entropy-volume coupling suitably incorporating a packing
mechanism into a lattice gas with no attractive interactions. On working in a great grand canonical ensemble
in which the energy, volume, and number of particles are all allowed to fluctuate simultaneously, the model’s
mean-field solutions illuminate a strictly first-order transition akin to hard-sphere freezing while describing
the thermodynamics of solid and fluid phases. Further implementation of attractive interactions in a natural
way allows every aspect of the phase diagram of a simple substance to be reproduced, thereby accomplishing
the van der Waals picture of the states of matter from first principles of statistical mechanics. This fairly
accurate qualitative description plausibly renders mean-field theory a reasonable approach for freezing in three
dimensions. At the same time, our mean-field treatment itself suggests freezing to persist in infinitely many
dimensions, as advanced from recent simulations [Charbonneau et al., Eur. Phys. J. E 44, 101 (2021)].
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I. INTRODUCTION

An outstanding question to the theory of condensed
matter is the statistical-mechanical characterization of the
solid-liquid transition that ordinary substances are known to
undergo. The status of the problem by the mid-1970s is sum-
marized in Ashcroft and Mermin [1] by a seven-line statement
indicating that only “very crude” theories exist. Shortly af-
terward, the theory of topological order showed that melting
in d = 2 dimensions is triggered by an equilibrium concen-
tration of dislocation defects [2], while computation of phase
diagrams from classical density functional theory became no-
torious [3]. Nevertheless, despite progress, no definite theory
for d = 3 (and higher dimensions) currently exists.

Our incomplete understanding even concerns the most el-
ementary hard-sphere system: while its freezing transition
was revealed long ago on the phenomenological grounds of
molecular simulation [4,5], a rigorous proof or at least good
heuristics to approach the problem mathematically are still
lacking [6]. The topic has received a great deal of attention
as a most basic example of entropy-driven phase transition
[7,8] and the system itself is relevant to diverse areas of
mathematics, physics, and other branches of the natural sci-
ences and engineering [9,10]. Most remarkably, hard-sphere
freezing is thought since pioneering work [11,12] to under-
lie the corresponding process for a simple substance whose
particles interact via short-range forces. This has significantly
contributed to conform the modern perspective of van der
Waals original ideas highlighting the relevance of repulsive
forces [13].

The van der Waals picture of freezing is different from its
condensation counterpart insofar as in the former case the
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transition is already displayed by the primitive hard-sphere
system. Elucidating essential microscopic mechanisms un-
derlying hard-sphere freezing is therefore highly advisable—
Ising-like models appearing as a promising tool owing to their
lattice-based nature and simplicity. In this connection, great
effort has been devoted over decades to the class of hard-core
lattice particle models [6,14–20]. These are two-state variants
that start from the vacant-occupied site dichotomy charac-
teristic of lattice gases and consider a +∞ pair interaction
potential that makes the presence of a particle in a given site
to exclude occupancy of up to its kth neighbors—thereby
mimicking the effects of harsh repulsive forces associated
with hard molecular cores. A number of k = 1 versions in
d = 3 are known to exhibit critical points [21] that are incon-
sistent with the strict first-order nature of freezing. While such
undesired criticality is absent for certain variants with k > 1
[18], the possibility of getting an adequate description from an
elementary k = 1 model is seemingly ruled out. This situation
sharply contrasts with that for condensation, for which the
standard lattice gas with k = 1 attraction [22] is known to
perform reliably.

In the search for a most basic Ising prototype of the freez-
ing transition, we introduce here a three-state model with
k = 1 that pertains to the so-called Blume-Emery-Griffiths
class [23,24]. On allowing particles to move in their respec-
tive “cells,” our approach crucially embraces compressible
cells and locally fluctuating free volumes [25,26] to charac-
terize a microscopic mechanism of molecular packing. This
yields a phase transition akin to hard-sphere freezing together
with an appropriate description of the thermodynamics of
solid and fluid phases. An augmented variant consistently
incorporating attractive interactions is then found to lead to
every basic feature of the phase diagram of a simple sub-
stance. The statistical-mechanical treatment demands a great
grand canonical ensemble associated with a completely open
thermodynamic system [27]. We work at the mean-field level
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FIG. 1. Two-dimensional illustration of our hard-sphere model
for a square lattice. (a) Individual cell states, with the shaded grey
areas representing the free volume explored by particles in disor-
dered and positional states (v̇0 and v̇1, respectively). (b) Assembly
of two nearest-neighbor cells containing particles with positional
order; in the hypothetical case that all their six-nearest neighbors
likewise contain particles with positional order, both cells receive
inputs delimitated by the isosceles trapezoids in the left graph to
become the squares of reduced area in the right one.

throughout, with its inherent qualifications and limitations in
mind.

The paper is organized as follows. The model is described
in Sec. II, which also includes an account of the great grand
canonical ensemble, the mean-field treatment, and the connec-
tion with thermodynamics. Numerical results are presented in
Sec. III. Section IV summarizes our findings and discusses
them in a broad context.

II. MODEL

A. Description

Consider the d-dimensional space divided into elementary
cells of volume v0, each of which associated with a point
of a Bravais lattice of coordination number c. As Fig. 1(a)
illustrates, each cell can be in three states. In two of them,
it can be empty or singly occupied in a disordered configu-
ration by a hard sphere of diameter σ whose center explores
a free volume v̇0 < v0. In the remaining state, a particle just
explores a preferential, restricted free volume v̇1 < v̇0 around
the center of its cell. A molecular-packing mechanism is then
implemented on simply postulating that the total volume of
an assembly of two nearest-neighbor cells is decreased by
δv > 0 when particles in them have the prescribed positional
order [see Fig. 1(b)]. Packing is thus characterized by a k =
1 entropy-volume coupling involving cell’s positional order.
Such a coupling may be regarded ferromagneticlike inasmuch

as it contemplates a volume decrease. As a result, our packing
mechanism is analogous to the one for condensation in the
standard lattice gas, which entails a k = 1 particle-energy
coupling involving cell’s occupancy.

We shall impose the close-packed, static lattice picture to
be recovered in the limiting case that all cells have positional
order. This demands the lattice leading to close packing at the
given d , but also the condition

v0 − vcp = c

2
δv, (1)

where vcp stands for the volume per particle at close packing,
while it is to be noted that c

2 is the number of nearest neighbors
per cell. We may further consider

v0 = λdσ
d , vcp = γdσ

d , and v̇1 = ωd v̇0, (2)

with subscript d indicating that the corresponding parameter
is d dependent. Note that λd > 1 and ωd < 1, while in, e.g.,
three dimensions one has the face-centered cubic lattice with
γ3 = 1/

√
2 corresponding to π/3

√
2 ≈ 0.74 for the custom-

arily defined packing fraction.
The description of the hard-sphere piece of our model

being completed, we further suppose that particles in nearest-
neighbor cells attract each other. For every pair of adjacent
occupied cells, there is a background interaction energy
−ε0 < 0 that is supplemented by an extra energy −δε < 0
when both cells have positional order. In accord with standard
conventions regarding dimensionality scalings [28], we shall
consider

ε0 = 2

c
a and δε = 2

c
δa, (3)

with c monotonically increasing with d .
The two ferromagneticlike couplings just introduced are

consistent with a normal pair potential like the one due of
Lennard-Jones and Devonshire. Specifically, the occupancy-
related coupling has to do with the range at which the
attractive piece of the pair potential becomes significant and
is exactly the same underlying condensation in the standard
lattice gas. On the other hand, the positional-related coupling
mimics the minimum of the potential well.

B. Great grand canonical ensemble

The system’s energy E , volume V , and number of par-
ticles N are all allowed to fluctuate simultaneously. A
statistical-mechanical treatment thus embodies e−β(El +pVl −μNl )

Boltzmann factors for microstates {l}, where p stands for the
pressure and μ for the chemical potential while β ≡ 1/kBT
with kB the Boltzmann constant and T the temperature. De-
spite the corresponding great grand canonical ensemble being
introduced long ago [27,29,30], only recently has its potential
usefulness been illuminated [25,26,31–36]. Recalling its main
features thus merits some attention.

The probability of a given microstate is [27,29,30,33]

pl = e−β(El +pVl −μNl )


(T, p, μ)
, (4)
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with


(T, p, μ) =
∑

l

e−β(El +pVl −μNl ), (5)

the corresponding partition function. As for averaged values,
one finds from (4) and (5)

〈N〉 = 1

β

(
∂ ln 


∂μ

)
T,p

, 〈V 〉 = − 1

β

(∂ ln 


∂ p

)
T,μ

, (6)

and

〈E〉 = −
(∂ ln 


∂β

)
p,μ

− p〈V 〉 + μ〈N〉. (7)

On the other hand, insertion of (4) into the standard formula
relating {pl} to the entropy,

S = −kB

∑
l

pl ln pl , (8)

leads to

〈E〉 = T S − p〈V 〉 + μ〈N〉 − kBT ln 
. (9)

We may express 
(T, p, μ) in terms of its associated grand
canonical partition functions �(T,V, μ) as


(T, p, μ) =
Vmax∑

V =Vmin

e−βpV �(T,V, μ), (10)

where for N cells

Vmin = N vcp and Vmax = N v0. (11)

For a macroscopic system composed of particles interacting
via short-range forces, all terms in the sum of (10) are nearly
1. This is so because �(T,V, μ) = eβp(T,μ)V , with the p(T, μ)
function yielding the equilibrium pressure p corresponding to
T and μ. In light of this, (10) leads to


(T, p, μ) = c

2
N (12)

because the gap between accessible volumes is δv and (Vmax −
Vmin)/δv = c

2N from (1) and (11).
Equation (12) is to be seen as indicating that 
(T, p, μ) is

a function constrained to take an O(N ) constant value. Such
an order of magnitude is a general property of the sum over
microstates in the right-hand side of (5). Certainly, the sum is
also O(N ) for microcanonical, canonical, and grand canonical
ensembles, but only for the great grand canonical one does it
identify with the associated partition function. We realize in
Sec. II D that (12) crucially leads to a standard thermodynamic
description.

C. Mean-field solution

We introduce spin-1 Ising variables si = −1, 0, 1, i =
1, 2, ...,N , characterizing the state of each cell, with si = 0
for a vacant cell, si = −1 for a cell containing a particle in
a disordered configuration, and si = 1 for a cell containing a
particle with positional order. We are then led to write

N{si} =
N∑
i=1

s2
i , (13)

V {si} = N v0 − δv
∑
〈i j〉

si + 1

2

s j + 1

2
sis j, (14)

and

Ep{si} = −ε0

∑
〈i j〉

s2
i s2

j − δε
∑
〈i j〉

si + 1

2

s j + 1

2
sis j, (15)

where Ep stands for the system’s interaction potential energy.
On performing integrations over momenta and over the

coordinates of each particle in its cell, we get for (5)


(T, p, μ) =
∑

s1=−1,0,1

. . .
∑

sN =−1,0,1

(
v̇0

d

)∑N
i=1

si−1
2 si

×
(

v̇1

d

)∑N
i=1

si+1
2 si

e−β(Ep{si}+pV {si}−μN{si}),

(16)

where  ≡ h/
√

2πmkBT stands for the de Broglie thermal
wavelength for a particle of mass m, with h the Planck’s
constant. It shall be useful to write


(T, p, μ) =
∑

s1=−1,0,1

. . .
∑

sN =−1,0,1

e−βH{si}, (17)

where

H = Ep + pV − μN − T Sfv, (18)

with

Sfv{si} = kB

{
ln

[
(v̇0v̇1)

1
2

d

] N∑
i=1

s2
i + 1

2
ln ωd

N∑
i=1

si

}
. (19)

To evaluate H, we first adopt

si = 〈s〉 + δsi and s2
i = 〈s2〉 + δs2

i , (20)

with 〈s〉 and 〈s2〉 corresponding average values. On inserting
these into (13)–(15) and (19), the standard mean-field calcu-
lation proceeds by neglecting δsiδs j , etc. terms. After some
algebra, we get for (18)

H{si} = NK0 − K1

N∑
i=1

s2
i − K2

N∑
i=1

si, (21)

with

K0 = pσ d [λd + 1
4 (λd − γd )(〈s2〉 + 〈s〉)2]

+ a〈s2〉2 + 1
4δa(〈s2〉 + 〈s〉)2, (22)

K1 = 1
2 pσ d (λd − γd )(〈s2〉 + 〈s〉) + μ

+ kBT ln
[
(v̇0v̇1)

1
2 −d

]
+ 2

[
a〈s2〉 + 1

4δa(〈s2〉 + 〈s〉)
]
, (23)

and

K2 = 1
2 pσ d (λd − γd )(〈s2〉 + 〈s〉)

+ 1
2 kBT ln ωd + 1

2δa(〈s2〉 + 〈s〉), (24)
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as obtained with the aid of (1)–(3). This is only exact in the
d → ∞ limit and is generally assumed to be a reasonably
good approximation for the d = 3 case of obvious physical
interest.

Equations (17) and (21) carry a trivial factorization to get


 = {e−βK0 [1 + eβ(K1+K2 ) + eβ(K1−K2 )]}N , (25)

whose introduction into the exact relations

〈s2〉 = kBT

N
∂ ln 


∂K1
and 〈s〉 = kBT

N
∂ ln 


∂K2
(26)

leads to the self-consistency equations

〈s2〉 = eβ(K1+K2 ) + eβ(K1−K2 )

1 + eβ(K1+K2 ) + eβ(K1−K2 )
, (27)

〈s〉 = eβ(K1+K2 ) − eβ(K1−K2 )

1 + eβ(K1+K2 ) + eβ(K1−K2 )
. (28)

Being obtained from 
(T, p, μ), 〈s2〉 and 〈s〉 are functions of
T , p, and μ and thereby imply that K0, K1, and K2 in (22) to
(24) are likewise functions of T , p, and μ.

D. Thermodynamic limit

We define

n ≡ 〈s2〉 and n− ≡ 1
2 (〈s2〉 + 〈s〉). (29)

The former identifies to the overall fraction of occupied cells
and is introduced for notational convenience, while the latter
is the overall fraction of cells containing particles with po-
sitional order and notably simplifies (22) to (24). With these
provisos, we conveniently rewrite (25) as

kBT ln 


N = −K0 + kBT ln[1 + eβ(K1+K2 ) + eβ(K1−K2 )]. (30)

According to the definitions (6) and (7), this yields

〈N〉 = Nn, (31)

〈V 〉 = N [λd − (λd − γd )n2
−]σ d , (32)

and

〈E〉 = N
(

d

2
nkBT − an2 − δan2

−

)
, (33)

where we have used (22) to (24) [with (29)] while it is to be
noted that all terms of the type (∂n/∂T )p,μ cancel out.

At this stage, constraint (12) is taken into account. This
implies that the left-hand side of (30) vanishes in the
thermodynamic limit (N → ∞) since ln 
 = O(lnN ). On
accordingly equating the right-hand side to zero, we get

K0 = kBT ln[1 + eβ(K1+K2 ) + eβ(K1−K2 )], (34)

which via the functional dependence of K0, K1, and K2 on
T , p, and μ provides the concrete form of the system’s T pμ
relation.

Combination of (34) and (27) [with (22) to (24) and (29)]
gives

pσ d = −kBT ln(1 − n) + an2 + δan2
−

λd + (λd − γd )n2−
. (35)

Similarly, (27) and (28) [with (22) to (24) and (29)] lead to

pσ d = kBT ln{n−[ωd (n − n−)]−1]} − 2δan−
2(λ − γd )n−

(36)

and

μ = kBT {ln(v̇−1
0 d ) + ln[(n − n−)(1 − n)−1]} − 2an, (37)

so from (35) and (36), one finds

T = an2 + δan2
− − 2δa�n−

kB ln{[ωd (n − n−)n−1
− ]� (1 − n)−1} , (38)

with � = [λd + (λd − γd )n2
−]/[2(λd − γd )n−].

Note from (31) to (33) that, in accord with extensivity, 〈N〉,
〈V 〉, and 〈E〉 all scale with N . Then, being O(lnN ), kBT ln 


may be regarded as subextensive and hence negligible in (9)
when N → ∞, so the Euler equation holds in that limit.
Furthermore, insertion of (31) to (33), (35), (37), and (38) into
(9) gives for the entropy

S = d

2
NnkB + Sfv + Scomb, (39)

with

Sfv = N kB[n ln(v̇0
−d ) + n− ln ωd ], (40)

and

Scomb = −N kB[n− ln n− + (n − n−) ln(n − n−)

+ (1 − n) ln(1 − n)], (41)

which render S likewise extensive. The free volume contribu-
tion (40) is of course equivalent to (19) and originates from the
distinct positions available to particles in their respective cells.
On the other hand, (41) is the standard combinatorial formula
associated with the distinct number of ways of distributing the
three types of cells along the lattice.

We may finally note that the differential relation d ln 
 =
(∂ ln 
/∂T )p,μdT + (∂ ln 
/∂ p)T,μd p + (∂ ln 
/∂μ)T,pdμ

leads, in light of (6), (7), (9), and (12), to Gibbs-Duhem
relation

0 = SdT − 〈V 〉d p + 〈N〉dμ. (42)

We therefore meet all aspects of the standard thermodynamic
description expected for the systems with short-range interac-
tions of our current interest.

III. NUMERICAL RESULTS

A. Hard-sphere system

The hard-sphere system is characterized by a = δa = 0.
This implies that both p and T cancel out when (35) and (36)
are combined, so we actually have in place of (38):

λd + (λd − γd )n2
−

2(λd − γd )n−
= ln(1 − n)

ln[ωd (n − n−)n−1
− ]

. (43)

On the other hand, the expression for the number density ρ ≡
〈N〉/〈V 〉 is from (31) and (32):

ρσ d = n

λd − (λd − γd )n2−
. (44)

The joint consideration of (43) and (44) indicates that only
one among ρσ 3, n, and n− is independent. This implies that
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FIG. 2. Hard-sphere d = 3 model behavior as obtained from cal-
culations explained in Sec. III A. The order parameters n and n− in
the insets are plotted as a function of ρσ 3 too. Orange solid curves
correspond to ω3 = 0.1 and blue dashed ones to ω3 = 0.2, with
λ3 = 1.08 in both cases.

(35) and (36) (with a = δa = 0) are, in practice, of the form
p/kBT = f (ρ), as statistical mechanics demands for a hard-
sphere system [37].

To obtain numerical results, one may first prescribe d and,
concomitantly, γd . We shall focus on the d = 3 case, for
which the face-centered cubic lattice with γ3 = 1/

√
2 is to

be selected (cf. Sec. II A). Then, for each given ρσ 3 value,
one may solve (43) and (44) for n and n− to finally obtain
the corresponding pσ 3/kBT value from (35). Figure 2 shows
that the corresponding pσ 3/kBT vs ρσ 3 curve exhibits a van
der Waals loop when ω3 is small enough. This is known to
be the signature of a phase transition, which we identify with
freezing. It is important to note that ρσ 3 always changes dis-
continuously from one coexisting phase to another, implying
that the transition is strictly first-order (i.e., no critical point).
The standard graphical analysis of Fig. 3 further illustrates this
point.

Note also from Fig. 2 that n ≈ 1 along coexistence. This
implies that the transition originates from a two-state model
with disordered and positional cells, in which n− acts as an or-
der parameter of entropic nature [cf. (40)]. In this connection,
the up-down symmetry of the underlying Ising model implies
that the coexisting phases fulfill (n−)fluid + (n−)crystal ≈ 1. It
then turns out from (31) and (39) to (41) that

Sfluid − Scrystal

NkB
≈ −1

2
ln ωd . (45)

Accordingly, ω3 = 0.1 was chosen so as to meet the (Sfluid −
Scrystal )/NkB 	 1.16 value determined from molecular simu-
lation [38]. On the other hand, we got an optimal λ3 = 1.08
value yielding the simulated (ρσ 3)fluid 	 0.938 result [39].

0 0.2 0.4 0.6 0.8 1
-0.04

0

0.04

0.08

G

N kBT

n−

98 K

100 K

102 K

FIG. 3. Scaled Gibbs free energy per particle, with G = 〈E〉 −
T S + p〈V 〉, for hard spheres of diameter σ = 3 Å and mass m =
3 × 10−26 kg in d = 3 as obtained from (31) to (33) and (39) to
(41) as a function of the order parameter n− at p = 3160 bar and
temperatures indicated explicitly. The stable phase is at 98 K the
one with higher n− (solid) and at 102 K the one with lower n−
(fluid). Solid-fluid coexistence occurs at 100 K at the selected p. This
picture, characterized by a finite difference between the n− values of
the coexisting phases, remains for any path crossing the coexistence
curve in the p-T plane. Note that curves have been conveniently
shifted so as to get a common G/〈N〉kBT value at the minimum
corresponding to lower n−.

These values of ω3 and λ3 lead to (ρσ 3)crystal 	 1.186, which
departs from the 1.037 simulated one [39].

While one may hope to get a closer numerical esti-
mate of (ρσ 3)crystal by further refining the model beyond
its oversimplified description of the excluded-volume prob-
lem, such an expediency is outside the scope of the present
paper. In any event, the quantitative discrepancy between
the values in Fig. 2 and simulation data is nothing surpris-
ing inasmuch as a mean-field treatment is only exact in
the d → ∞ limit. A further caveat regarding our mean-field
approach concerns nonadditivity, which has been shown to
make Blume-Emery-Griffiths models to exhibit ensemble in-
equivalence and negative heat capacities for certain ranges of
parameter values [40]. These peculiarities, unrealistic for the
systems with short-range interactions of our current interest,
are fortunately absent for the parameter setting adopted here
to accommodate freezing.

B. Simple substance

We now consider the d = 3 model with added attractive
interactions (a, δa 
= 0) and focus on its capability to describe
the phase behavior of a simple substance like argon, for which
the Lennard-Jones potential is known to perform reliably.
Thus, with the same values of λ3 and ω3 quoted in Sec. III A,
we choose values for σ , a, and δa consistent with argon’s
Lennard-Jones parameters. In particular, on starting from
σ

argon
LJ 	 3.4 Å and ε

argon
LJ 	 0.0103 eV [42], we set σ = σ

argon
LJ
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FIG. 4. Phase diagram for the simple-substance model in the p-T , T -ρ, and p-ρ planes as obtained from calculations explained in Sec. III B.
Lines in the p-T plane determine the conditions of two-phase coexistence bounded by the triple point t and the gas-liquid critical point c. Lines
in the T -ρ and p-ρ planes enclose regions of two-phase coexistence for crystal (green), liquid (orange), and gas (blue), with horizontal dashed
lines joining the states of three-phase coexistence associated with t . The model’s values for the triple-point temperature and melting enthalpy
are, respectively, Tt ≈ 110 K and �hmelting ≈ 1.4 kJ mol−1, their experimental counterparts being Tt ≈ 84 K and �hmelting ≈ 1.2 kJ mol−1

[41].

and choose optimal a 	 0.04044 eV and δa 	 0.02178 eV
values fulfilling ε0 + δε = ε

argon
LJ [cf. (3) with c = 12].

To obtain the phase behavior, we may impose the con-
ditions of isothermal coexistence μ(T, ρ ′) = μ(T, ρ ′′) and
p(T, ρ ′) = p(T, ρ ′′). Note, however, that explicit p(T, ρ) and
μ(T, ρ) expressions are precluded by the dependence of the
model’s equations on n and n− (see Sec. II D). Thus, given
T and ρ, one may first solve (38) and (44) for n and n−
to then get p(T, ρ) and μ(T, ρ) from (35) and (37). With
this prescription, conditions of two-phase coexistence are met
with the aid of standard recipes.

Figure 4 shows that the resulting phase diagrams display
all basic features revealed by experiment. The figure’s caption
specifies that the model compares favorably (at a semiquan-
titative level) with argon’s experimental data. A qualitative
difference is the symmetry of the gas-liquid and solid-liquid
coexistence curves in the T -ρ and p-ρ planes, reminiscent
of the up-down symmetry of the underlying Ising model but
absent in experimental data. Note also in passing that further
calculations (not shown here) indicate that our classical model
qualitatively describes the thermodynamics of the solid phase
at sufficiently high temperatures for quantum effects to be of
no major relevance.

We have checked that around gas-liquid criticality, our
three-state model reduces to a standard lattice gas with inter-
action energy −ε0. The fairly reliable picture of Fig. 4 is thus
not surprising as condensation is concerned. It is, however,
a remarkable result for freezing. Crucial to this transition is
its primitive hard-sphere counterpart discussed in Sec. III A.
An additional relevant feature is the coupling of −δε with
positional order, which, as described in Sec. II A, consistently
characterizes the minimum of the Lennard-Jones potential
underlying simple substances.

IV. SUMMARY AND DISCUSSION

A d-dimensional three-state Ising model has been
described in Sec. II A. In addition to the standard distinction

between occupied and empty cells, it considers cells
containing particles exploring a restricted free volume. Such
positional-order cells serve to feature molecular packing via
an entropy-volume coupling of ferromagneticlike nature just
involving first neighbors. This characterization of the effects
of harsh repulsive forces is in sharp contrast with the one
provided by hard-core lattice particle models, which approach
the problem via an antiferromagnetic coupling of energetic
nature that needs to be extended beyond first neighbors
[6,14–20]. Our most basic model is aimed to describe the
hard-sphere system and, as specified in Sec. II A, leads to
an augmented version for a simple substance when attractive
interactions are incorporated in a way consistent with a
normal pair potential like the one due to Lennard-Jones and
Devonshire. Since the nature of our assumptions entails the
system’s energy, volume, and number of particles to fluctuate
simultaneously, a statistical-mechanical treatment demands
working in the great grand canonical ensemble described
in Sec. II B. This has been accomplished at a mean-field
level as explained in Sec. II C, while the connection with
thermodynamics is made in Sec. II D.

As shown in Sec. III A, the primitive model with no
attractive interactions exhibits a single phase transition
akin to the freezing of the hard-sphere fluid in d = 3
earlier revealed by molecular simulation [4,5]. The model
accounts for the strict first-order nature of freezing [43,44].
In this connection, we stress that a strictly first-order
transition has been accommodated in a framework—the Ising
framework—traditionally paradigmatic for the critical point.
We speculate that this nontrivial result originates from the
entropic nature of the transition’s positional order parameter.

The model’s version perturbatively incorporating attractive
interactions has been found in Sec. III B to exhibit a behavior
qualitatively consistent with all experimentally known basic
attributes of the phase diagram of a simple substance. This
perseveres on the contemporary perspective of van der Waals
theory, indicating that switching on attractive interactions
in a reference hard-sphere system suffices to describe the
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thermodynamics of a simple substance. Such a picture was en-
visioned for freezing by Longuet-Higgins and Widom [11,12],
who, however, started from the corrected equation of state
of hard-spheres provided by molecular simulation [4]. Our
present approach develops such a van der Waals picture by
preliminarily meeting the hard-sphere phenomenology from
first principles of statistical mechanics.

The nice accord with evidence arising from experiment and
simulation makes it tempting to speculate that our model may
constitute an adequate Ising prototype of freezing. Further-
more, such a piece of phenomenological consistency plausibly
renders the in-effect d → ∞ mean-field solutions so far ex-
plored a reasonable approximation for freezing in d = 3.
Mean-field theory thus appears again as a sensible approx-
imation of the three-dimensional world, just as found for
condensation since van der Waals’s early work and conjec-
tured for glass and jamming phenomenology in the latest
theory of simple glasses [28]. One obvious benefit of our
mean-field approach is that it suggests freezing to persist in
infinitely many dimensions, as claimed recently from simu-
lations proving that the hard-sphere phase diagram retains its
d = 3 main features up to d = 10 [45].

An open question regarding our mean-field treatment
is whether it may eventually lead to undesired features
associated with nonadditivity such as ensemble inequivalence
or negative heat capacities. There is an expectation [46] that
avoidance of such features demands the thermodynamic limit
to be taken before the mean-field one. Since our present ap-
proach considers the mean-field limit first, it turns out that
ensemble inequivalence, etc. are to be expected. Therefore,
while we have not observed any trace of these features for the
parameter setting adopted, there might be ranges of parameter
values for which they arise as it indeed happens for systems
with long-range interactions [40].

It is to be emphasized that the great grand canonical ensem-
ble employed, while seldom used for decades, is increasingly
receiving attention to provide satisfactory solutions to long-
standing problems such as the Yang-Yang anomaly in fluid
criticality [25,26], the unusual thermodynamics of liquid and
supercooled water [31,34], or the elementary freezing tran-
sition targeted in this paper. A fully unconstrained ensemble
in which temperature, pressure, and chemical potential are
independently fixed has recently proved useful for problems
involving long-range interactions such as they occur, e.g.,
in self-gravitating systems [33,35,36]. There is thus a sug-
gestion that consideration of systems in completely open
environments may constitute a step further in our statistical-
mechanical characterization of the physical world.

Future work entails analyzing the validity range of the
model’s mean-field solutions. An obvious expediency in this
connection would be to get the model’s exact solutions for
finite d with the aid of molecular simulation. Likewise, it
would be appealing to accomplish a study of the nonaddi-
tivity problem paralleling work developed over the years for
systems with long-range interactions [47,48]. It would also
be natural to further extend the investigation to substances be-
yond the van der Waals paradigm. One prominent candidate is
water, for which incorporation of the orientational degrees of
freedom associated with hydrogen bonding looks promising
[34]. Work on some of these issues is currently in progress.
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