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Universal quantum Otto heat machine based on the Dicke model
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In this paper we study a quantum Otto thermal machine where the working substance is composed of N
identical qubits coupled to a single mode of a bosonic field, where the atoms and the field interact with a reservoir,
as described by the so-called open Dicke model. By controlling the relevant and experimentally accessible
parameters of the model we show that it is possible to build a universal quantum heat machine (UQHM) that
can function as an engine, refrigerator, heater, or accelerator. The heat and work exchanges are computed taking
into account the growth of the number N of atoms as well as the coupling regimes characteristic of the Dicke
model for several ratios of temperatures of the two thermal reservoirs. The analysis of quantum features such as
entanglement and second-order correlation shows that these quantum resources do not affect either the efficiency
or the performance of the UQHM based on the open Dicke model. In addition, we show that the improvement in
both efficiency and coefficient of performance of our UQHM occurs for regions around the critical value of the
phase transition parameter of the model.
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I. INTRODUCTION

Quantum thermodynamics [1–13], which is described by
the laws of quantum mechanics and thermodynamics, plays
a fundamental role in understanding the transitions between
various forms of energy and has become a vibrant branch of
modern research. A quantum heat engine (QHE) [4,14–22]
is a quantum device to study the thermodynamic properties
of quantum systems and generates power from the heat flow
between hot and cold reservoirs. In recent years, the study of
thermal nanomachines has been driven by the great theoret-
ical and experimental effort dedicated to the investigation of
their properties in the quantum regime. Nowadays, there are
many experimental platforms to explore QHE, such as trapped
ion systems [23–26], optomechanics [27,28], ultracold atoms
[29,30], nuclear magnetic resonance (NMR) [31–33], and su-
perconducting circuits [34–38].

Among thermal machines, great interest has been devoted
to cyclic thermal machines, both refrigerators and engines,
operating in the quantum regime where energy exchanges
can occur, for example, between the reservoir and just two
levels of a single atom or between levels of a quantum har-
monic oscillator. Several typical quantum cycles have been
extensively studied, such as Carnot, Otto, and Stirling cycles
[4,12,13,20,39–47]. In this paper, we are only concerned with
the quantum Otto cycle. The performance of the quantum
Otto cycle depends strongly on the choice of the working
substance. For example, recent studies show that, with two
temperatures fixed, the Otto cycle performed with fermionic
substances can surpass the performance of the same cycle
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when performed with bosonic substances [48]. Regarding the
Otto cycle there are several cases being considered, such as
single spin systems [49,50], two-level atoms [22], coupled
spin systems [40,51,52], coupled spin-3/2 [53], harmonic
oscillators [23,54], relativistic oscillators [55], Bose-Einstein
condensates [56,57], and light-matter systems described by
the Jaynes-Cumming [58–61] and quantum Rabi [62–67]
models.

Despite the several studies on light-matter systems, there
are very few works devoted to investigating a quantum Otto
heat engine operating with multiqubits interacting with a sin-
gle cavity mode in the dressed picture and taking into account
dissipation as well as the number of two-level atoms, as
described by the open Dicke model (ODM). Over the past
decades, the Dicke model has been theoretically studied in
several contexts, as for example quantum phase transition
[68–76], quantum entanglement [77–79], chaos [80], lasing
[81], and quantum thermodynamics [82]. According to the
qubit-photon coupling ratio λ/ω, where λ is the coupling
strength and ω is the frequency of the cavity mode field, the
ODM can be divided into different coupling regimes: weak
and strong coupling regime (λ/ω < 0.1), ultrastrong coupling
regime (USC) (0.1 � λ/ω < 1), which was experimentally
realized in a variety of quantum systems [83–91], and deep
strong coupling regime (DSC) (1 � λ/ω).

In this work, we study a quantum Otto heat machine
(QOHM) operating under two thermal reservoirs and hav-
ing as a working substance N atoms and one mode of an
electromagnetic field, as modeled by the ODM. We calculate
the total work extracted and the amount of heat exchanged
between the system and the reservoir and both the efficiency
of the engine and the coefficient of performance (COP) of the
refrigerator by numerically solving the ODM using the ex-
tended bosonic coherent state approach and the dressed master
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equation, which is suitable for any coupling strength regime
to describe the ODM dynamics [92–96]. As we will show, it
is possible, by controlling the ODM parameters, to build a
universal quantum thermal machine [97] that, depending on
the choice of parameters, can work either as an engine or as
a refrigerator or as heater or as an accelerator. Furthermore,
our results indicate that it is not possible, for the model an-
alyzed here, to use quantum resources to improve the engine
efficiency or the refrigerator performance.

This paper is organized as follows. In Sec. II we introduce
the open Dicke model and numerically solve it by using
the extended bosonic coherent state approach. In Sec. III
we present our model for a universal QOHM, having as the
working substance N two-level atoms and one mode of the
electromagnetic field, with both atoms and field interacting
with their respective reservoirs through the so-called open
Dicke model. In Sec. IV, we study the roles of the qubit-mode
coupling strength, the number N of qubits, and the tempera-
ture ratio between the cold and hot thermal reservoirs on the
amount of work and heat extractable as well as the impact on
the engine efficiency and the refrigerator performance when
varying the system parameters. Finally, in Sec. V we present
our conclusions.

II. MODEL

The Hamiltonian describing the Dicke model consisting of
a single bosonic field interacting with N identical two-level
qubits is expressed as (h̄ = 1) [98,99]

Ĥ0 = ω0â†â + �Ĵz + 2λ√
N

(â† + â)Ĵx, (1)

where ω0 and � are the frequencies of the single bosonic
mode and qubits, respectively, λ is the qubit-boson coupling
strength, â†(â) denotes the creation (annihilation) operator
of the bosonic field, Ĵx = 1

2 (Ĵ+ + Ĵ−) and Ĵz are the pseu-
dospin operators given by Ĵ± = ∑

i
N σ̂±i, Ĵz = ∑

i
N σ̂z

i, with
σ̂α (α = x, y, z) being the Pauli operators. The pseudospin
operators satisfy the commutation relation [Ĵ+, Ĵ−] = 2Ĵz,
[Ĵz, Ĵ±] = ±Ĵ±.

The Dicke model has a numerically exact solution by
using an extended bosonic coherent state approach [75,76].
For convenience of numerical solution, we first rotate the
angular momentum operators with π/2 along the y-axis
Ĥs = exp(iπ Ĵy/2)Ĥ0 exp(−iπ Ĵy/2), resulting in

Ĥs = ω0â†â − �

2
(Ĵ+ + Ĵ−) + 2λ√

N
(â† + â)Ĵz. (2)

For the two-level qubits, its basis can be spanned by the Dicke
state {{| j, m〉, m = − j,− j + 1, . . . , j − 1, j} with j = N/2
and the Hilbert space of the total system can be ex-
pressed in terms of the basis {|ϕm〉b ⊗ | j, m〉}. In the Dicke
model, the excitation number N̂ = â†â + Ĵz + N/2 is not
conserved. Therefore, the truncation of the bosonic excita-
tion number procedure has to be applied in this system,
especially in the strong qubit-boson coupling regime. By con-
sidering the displacement transformation Âm = â + gm with
gm = 2λm/ω

√
N and taking the total system basis into the

Schrödinger equation, we obtain

−� j+m |ϕm〉b| j, m + 1〉 − � j−m |ϕm〉b| j, m − 1〉
+ω0

(
Â†

mÂm − g2
m

)|ϕm〉b| j, m〉 = E |ϕm〉b| j, m〉, (3)

where Ĵ±| j, m〉 = j±m | j, m ± 1〉, with j±m =√
j( j + 1) − m(m ± 1). Next, we multiply Eq. (3) on the left

by {〈n, j|}, which results in

− � j+n |ϕn+1〉b − � j−n |ϕn−1〉b + ω0
(
Â†

nÂn − g2
n

)|ϕn〉b

= E |ϕn〉b, (4)

where n = − j,− j + 1, . . . , j. Furthermore, the bosonic state
can be expanded as

|ϕm〉b =
Ntr∑

k=0

1√
k!

cm,k (Â†
m)k|0〉Am

=
Ntr∑

k=0

1√
k!

cm,k (â† + gm)ke−gmâ†−g2
m/2|0〉a, (5)

where Ntr is the truncation number of bosonic excitations.
Finally, we obtain the eigenvalue equation

ω0
(
l − g2

n

)
cn,l − � j+n

Ntr∑
k=0

cn+1,kAn〈l|k〉An+1

−� j−n

Ntr∑
k=0

cn−1,kAn〈l|k〉An−1
= Ecn,l , (6)

where the coefficients are An〈l|k〉An−1
= (−1)lDl,k and

An〈l|k〉An+1
= (−1)kDl,k , with

Dl,k = e−G2/2
min[l,k]∑

r=0

(−1)−r
√

l!k!Gl+k−2r

(l − r)!(k − r)!r!
,

G = 2λ

ω0

√
N

. (7)

In the following work, we select the maximum truncation
number Ntr = 50, which is sufficient to give the convergent
excited state energies with relative error less than 10−5.

As is well known, in the thermodynamic limit N → ∞ the
Dicke model undergoes a transition from normal (ground state
with zero photonic and atomic excitations) to superradiant
(ground state with a macroscopic population) phase when the
qubit-boson coupling strength crosses the critical value [99]
λc = 1

2

√
ω0� coth(βω0/2), with β = 1/kT being the inverse

of temperature. The zero and finite temperature transitions
belong to different classes of universality with this difference
manifested, for example, in photon-atom entanglement, which
diverges for T = 0 and remains finite for T �= 0. Moreover,
when N = 1 the Dicke model is reduced to the seminal quan-
tum Rabi model [66,67].

To help clarify the numerical results, we explore two limit
regimes of our model: (i) the thermodynamic limit with
N → ∞ and

√
Nλ = const and (ii) the deep-strong cou-

pling regime with fixed N and λ → ∞. Both regimes allow
one to derive a diagonalizable effective Hamiltonian through
the Holstein-Primakoff (HP) representation of the angular
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momentum operators, which maps the total spin operators Ĵα

to a bosonic mode b̂.
To the case (i), the quantization axis is Ĵz and the

HP transformation, Ĵz = (b̂†b̂ − N
2 ), Ĵ+ = b̂†

√
N − b̂†b̂, Ĵ− =√

N − b̂†b̂ b̂, leading to the large N limit (N 	 〈b̂†b̂〉)
ĤHP(N ) = ω0â†â + �b̂†b̂ + λ(â† + â)(b̂† + b̂). (8)

The above Hamiltonian can be diagonalized in the normal
phase λ � √

ω0�/2 = λc to ĤNP = ε−c†
−c− + ε+c†

+c+ with
the energies given by

(ε±)2 = ω2
0+�2

2
± 1

2

√(
ω2

0−�2
)2 + 16λ2ω0�. (9)

After a suitable displacement of the HP bosons, the super-
radiant phase λ > λc can be cast in a bilinear form and
diagonalized with the normal mode frequencies

(ε±)2 = ω2
0λ

4+�2λ4
c

2λ4
c

± 1

2λ4
c

√(
ω2

0λ
4−�2λ4

c

)2 + 4ω2
0�

2λ8
c .

(10)
The proper quantization axis to case (ii) is Ĵx and the HP

leading Hamiltonian term to large λ(N 	 〈b̂†b̂〉) and eigen-
values’ limit are

ĤHP(λ) = ω0â†â + 4Nλ2

ω0
b̂†b̂ − Nλ(â† + â),

Emn = m
4Nλ2

ω0
+ nω0−N2λ2

ω0
. (11)

We note that the eigenstates of ĤHP(λ) are product states
of photons’ displaced Fock states and atomic states being x
polarized. Furthermore, both limiting cases lead to decoupled
quantum harmonic oscillators that can be used to calculate the
average energy analytically for each stage of the thermody-
namic cycle and hence the work and efficiency.

III. QUANTUM OTTO CYCLE

To perform a quantum Otto cycle, which is composed of
two adiabatic and two isochoric processes [4,5], we consider
N two-level atoms and one electromagnetic field mode, as
described by the Dicke model, as the working substance.
During the isochoric process we left the N atoms and the
electromagnetic field to interact with a hot (cold) reservoir
at temperature Th (Tc). The four strokes of the quantum Otto
cycle are described as follows (Fig. 1).

(1) Quantum isochoric process. The working substance
as modeled by the Dicke Hamiltonian Hh

s with frequency
ω = ωh is brought into contact with a hot reservoir at temper-
ature Th. In this process, the system undergoes a Markovian
evolution, which is described by the quantum dressed master
equation [92–96]

d

dt
ρ̂s = −i[Ĥ0, ρ̂s] +

∑
u;k< j

{
� jk

u nu(� jk )D[|φ j〉〈φk|, ρ̂s]

+� jk
u [1 + nu(� jk )]D[|φk〉〈φ j |, ρ̂s]

}
, (12)

where |φk〉 is the dressed eigenbasis of the Dicke Hamil-
tonian Ĥ as Ĥ0|φk〉 = Ek|φk〉, D[Ô, ρ̂s] = 1

2 [2Ôρ̂sÔ† −
ρ̂sÔ†Ô − Ô†Ôρ̂s] is the dissipator, �

jk
u = γu(� jk )|S jk

u |2 is the

FIG. 1. Schematic representation of the four strokes of an Otto
cycle for the realization of a universal heat machine based on the
open Dicke mode, as detailed in Sec. III. During the isochoric stroke
the frequency of the working substance, as modeled by the Dicke
Hamiltonian, is held fixed while interacting with a hot (cold) reser-
voir at temperature Th (Tc). Only heat is exchanged during this stroke.
In the two quantum adiabatic strokes the working substance is iso-
lated from the reservoir and has its frequency shifted, thus producing
work. No heat is exchanged during this stroke. By controlling the
parameters ω0, �, and λ of the model the machine can work as an
engine, refrigerator, heater, or accelerator.

rate, with S jk
q = 1√

N
〈φ j |(Ĵ+ + Ĵ−)|φk〉 and S jk

c = 〈φ j |(â† +
â)|φk〉, where we consider the Ohmic case γu(� jk ) =
πα(� jk )exp(−|� jk|/ωco), with α being the coupling strength
and ωco being the cutoff frequency of the thermal baths. In the
eigenbasis, the dynamics of the population Pn = 〈φn|ρ̂s|φn〉 is
given by

d

dt
Pn =

∑
u,k �=n

�nk
u nu(�nk )Pk −

∑
u,k �=n

�nk
u [1 + nu(�nk )]Pn, (13)

where �nk
u = −�kn

u .
After a long enough evolution, the system will reach

the only steady state ρ1 = ρss(Th) = ∑
n Pss

n (Th)|Eh
n 〉〈Eh

n | of
Eq. (8) with dρ

dt = 0, Pss
n (Th) being the corresponding popula-

tion. The system eigenstates |φh
k 〉 and eigenvalues Eh

k of Hh
s

were obtained by using the extended bosonic coherent state
approach method [75]. During this process, a heat amount Qh

is absorbed from the hot reservoir, without any work being
done.

(2) Quantum adiabatic expansion process. The system is
isolated from the hot reservoir and the energy levels are
changed from Eh

n to Ec
n by varying the frequency from ωh to ωc

(with ωh > ωc). This process must be done slow enough to en-
sure that the populations Pss

n (Th) remain unchanged according
to the quantum adiabatic theorem. At the end of this adiabatic
expansion the state becomes ρ2 = ∑

n Pss
n (Th)|Ec

n 〉〈Ec
n |. Dur-

ing this process only work is performed, with no heat being
exchanged.

(3) Quantum isochoric process. The working substance
with frequency ω = ωc and modeled by the Hamiltonian Hc

s
is now put into contact with a cold reservoir at temperature
Tc < Th until they reach thermal equilibrium. In this case, we
have a change in the steady state population from Pss

n (Th)
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to Pss
n (Tc), while the eigenvalues Ec

n of the system remain
unchanged, and the state becomes ρ3 = ∑

n Pss
n (Tc)|Ec

n 〉〈Ec
n |.

During this process, only heat is exchanged and an amount of
heat Qc is released to the reservoir, but no work is done.

(4) Quantum adiabatic compression process. The system
is isolated from the cold reservoir and its energy levels
are changed back from Ec

n to Eh
n by varying the frequency

from ωc to ωh. At the end of the process, the popula-
tions Pss

n (Tc) remain unchanged, the state becomes ρ4 =∑
n Pss

n (Tc)|Eh
n 〉〈Eh

n |, and only work is performed on the work-
ing substance, but no heat is exchanged.

Next, let us calculate the work and heat exchanged in
each stroke. According to the first law of thermodynamics,
a quantum system with discrete energy levels can be written
as

dU = δQ + δW =
∑

n

(
EndPss

n + Pss
n dEn

)
, (14)

where En are the energy levels and Pss
n are the occupation

probabilities at steady state. Accordingly, the heat Qh (Qc)
exchanged with the hot (cold) reservoir and the net work W
satisfy the following relations [20]:

Qh =
∑

n

Eh
n

[
Pss

n (Th) − Pss
n (Tc)

]
, (15)

Qc =
∑

n

Ec
n

[
Pss

n (Tc) − Pss
n (Th)

]
, (16)

W = Qh + Qc =
∑

n

(
Eh

n − Ec
n

)[
Pss

n (Th) − Pss
n (Tc)

]
. (17)

In this work we will adopt the following convention: Q > 0
(Q < 0) correspond to absorption (release) of heat from (to)
the reservoir, while W > 0 (W < 0) correspond to work per-
formed by (on) the quantum heat engine. There are only four
working regimes allowed under not violating the Clausius
inequality with the first law of thermodynamics [100]: (1) heat
engine (E), Qh > 0, Qc < 0, and W > 0; (2) refrigerator (R),
Qc > 0, Qh < 0, and W < 0; (3) heater (H), Qc < 0, Qh < 0,
and W < 0; (4) accelerator (A), Qc < 0, Qh > 0, and W < 0.
In this article we are more concerned with the heat engine and
the refrigerator, which are of most interest for useful applica-
tions and whose figures of merit are the efficiency η = W

Qh
and

the coefficient of performance (COP) ξ = Qc

|W | , respectively.

IV. RESULTS AND DISCUSSIONS

A. Working regimes for the universal quantum Otto machine
based on the ODM

We can gain some insight into the Otto cycle by making
a qualitative description of the different working regimes for
the universal QOHM, as shown in Fig. 2 for N = 8 two-level
atoms and ωh/ωc = 2. Note that given two operating temper-
atures of the Otto cycle, by controlling the parameter λ we
obtain the four different types of machine. Also, note that the
four regions are all present at low temperatures, Figs. 2(a)–
2(c), and mainly occupied by refrigerator (cyan area) and heat
engine (magenta area). As the temperature rises, Figs. 2(d),
the engine and refrigerator operating regions stand out even
more. Figures 2(a)–2(c) show that heat engine and refrig-
erator regions are mainly distributed in weak coupling and

FIG. 2. (a)–(d) Various operating regimes of the quantum Otto
machine achieved by varying the temperatures of the hot thermal
reservoir Th and the qubit-boson coupling strength λ, both in units of
ω, keeping fixed the temperature of the cold thermal reservoir, also in
units of ω as (a) Tc = 0.1, (b) Tc = 0.2, (c) Tc = 0.4, and (d) Tc = 2.
The color code stands for heat engine (magenta), refrigerator (cyan),
heater (green), and accelerator (yellow). The other system parameters
are given by N = 8, ωh = 2ω, and ωc = ω.

ultrastrong regimes. Strikingly, up to λ ≈ 0.3 and for λ 	 2,
due to the relative harmonicity of the spectrum, the positive-
work condition (PWC) follows the one for the quantum
harmonic oscillator or qubit, i.e., Th > ωh

ωc
Tc.

Next, we analyze the work regimes for the universal
QOHM for different numbers N of qubits when the tem-
peratures of the hot and cold thermal reservoirs are fixed.
Figure 3 shows the (a) work W , (b) heat Qh, and (c) heat
Qc as a function of the qubit-boson coupling strength λ for
different values of the qubits’ number N , thus evidencing
the four working regimes for different qubits’ numbers. As
mentioned above, the heat engine is distributed in the weak
and strong coupling regimes and the deep strong coupling
regime, whereas the PWC Th > ωh

ωc
Tc is satisfied, while the

refrigerator, heater, and accelerator are located around the crit-
ical coupling λc = 1

2

√
ω0� coth(βω0/2), where the spectrum

is highly anharmonic. Note that increasing the number of N
qubits shifts the engine region to the left, allowing engines to
be built for smaller values of λ as N grows. On the right side,
in the deep strong regime, this behavior is maintained: as N
grows, the region corresponding to the engine also shifts to
the left, increasing the area corresponding to the engine. It is
to be noted that for λ � 0.4 and for λ � 1.5 the work extracted
by the engine practically remains constant with the increase
of N . This behavior is mimicked by the amounts of heat Qh

and Qc exchanged with the reservoirs. Given that increasing
the number of atoms means that more work and heat can be
exchanged, it is somewhat surprising that for certain values
of λ increasing N these quantities remain unchanged. On the
other hand, for the other types of machines, whose regions
correspond to the middle region of Fig. 3, the exchanged work
and heat increases with N .
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FIG. 3. (a) Work output W , (b) heat Qh, and (c) heat Qc as a func-
tion of the qubit-boson coupling strength λ for different number of
qubits N = 2 (solid blue line with circles), N = 4 (solid red line with
plus sign), N = 8 (solid cyan line with cross sign), N = 12 (dished
magenta line), N = 32 (dash dot green line), and N = 56 (solid black
line). Vertical dotted lines divide the different operating regimes of
our universal quantum Otto heat machine by the same color used
to designate the number N of atoms. The solid horizontal gray line
indicates the zero of each quantity. The other system parameters are
given by Th = 0.5, Tc = 0.1, ωh = 2ω, and ωc = ω. All quantities
above are in units of ω.

B. Efficiency and coefficient of performance

Next, we study the efficiency and COP of the Otto quantum
engine and the refrigerator, which are the heat machines of
greatest practical interest. To help our analysis, it is useful
to recall the analytical result of efficiency ηλ=0 = 1 − ωc/ωh,
and COP ξλ=0 = ωc/(ωh − ωc), of an Otto cycle when λ = 0,
which corresponds to N qubits and a noninteracting bosonic
mode. First, we focus on the engine. In Figs. 4(a), 4(b), and
4(c) we plot efficiency as a function of the qubit-boson cou-
pling strength λ for different number of qubits N = 2 (solid
blue line with circles), N = 4 (solid red line with plus sign),
N = 8 (solid cyan line with cross sign), N = 12 (dished ma-
genta), N = 32 (dash dot green), N = 56 (dashed dark blue),
and the thermodynamic limit N → ∞ (solid black) with fixed
Th = 0.5, Tc = 0.1 for Figs. 4(a) and 4(b) and Th = 6, Tc = 2
for Fig. 4(c). Figures 4(d) and 4(e) with Tc = 0.1, and Fig. 4(f)
with Tc = 2, show the efficiency for various temperature ratios
when varying the qubit-boson coupling strength λ with fixed
N = 8. The drop to zero in efficiency, Figs. 4(a) and 4(d), and
its growth from zero to a maximum, Figs. 4(b) and 4(e), occur

due to the transition from the engine to the refrigerator regime,
corresponding to the regions shown in Fig. 3. But, in any case,
it is notable that the falls to zero and the rises to the maximum
occur suddenly rather than smoothly. In particular, for λ � 0.3
the efficiency is independent of the number of atoms used as a
working substance. Also, note that the efficiency drops to zero
for smaller values of λ as N grows, as shown in Figs. 4(a) and
4(d), because of the shift of the engine region to the left as N
grows, as already mentioned when analyzing Fig. 3.

The main advantage of the ODM over the decoupled sys-
tem as a working substance happens around the critical region
λc = 1

2

√
ω0� coth(βω0/2), where η > ηλ=0 only to λ < λc,

an unexpected result, which means the normal phase of the
Dicke model is more suitable to the engine operation than the
superradiant phase, as depicted in Figs. 4(a)–4(f). Remark-
ably, for small temperatures as in Fig. 4(a) the number of
qubits saturates quickly to the thermodynamic limit N → ∞,
with N ≈ 30 being enough to extract the maximum efficiency.

Note that all the calculations we performed were done
assuming thermal equilibrium. Driven-dissipative open Dicke
models are being intensively studied in the context of nonequi-
librium phase transitions [99] and, although relevant to the
case where the four-stroke quantum Otto cycle is carried out
in finite time, where the state of the system is not thermal, it
is beyond the scope of this work and has not been considered.

Interestingly, for values of temperature ratios for which
there is always the engine condition, see Figs. 4(c) and 4(f)
and also Fig. 2, there is still a drop below the ηλ=0 around
the critical coupling. In the deep-strong coupling regime, the
efficiency tends to η = 0.5, which is predicted by the effective
Hamiltonian Eq. (11) and the harmonicity of the spectrum for
the considered temperatures. We point out that, to small num-
ber of atoms N = 8, there is a decrease in the engine operating
region as the temperature gap increases as shown in Fig. 4(d),
with the smallest region corresponding to Tc/Th = 1/3 (solid
black line). Second, note that the efficiency is smaller the
greater the temperature gap is—a somewhat expected be-
havior when compared with the Carnot efficiency ηCarnot =
1 − Tc/Th. As expected, the efficiency of our universal QOHM
based on the open Dicke model never exceeds the Carnot
efficiency. From Figs. 4(a), 4(b), 4(d), and 4(e), it would ap-
pear that the abrupt drop and sudden resurgence of efficiency
values is a characteristic of engine efficiency. However, as can
be seen from Figs. 2(a)–2(d), which shows the region of the
various machines, there are temperature ratios for which there
will always be a condition for the engine to exist. For these
temperature ratios, there will be neither a sudden decrease to
zero nor, consequently, an abrupt resurgence in efficiency. In
fact, for Tc > 1.0 in Fig. 2(a), Tc > 1.2 in Fig. 2(b), Tc > 1.5
in Fig. 2(c), and Tc > 4.5 in Fig. 2(d) the engine condition will
always be fulfilled. This behavior is exemplified in Figs. 4(c)
and 4(f), where we explored other temperature ratios for fixed
N = 8 and Tc = 2. Note from Fig. 4(c) that, in addition to the
abrupt drop in efficiency, which is a signature of the passage
from the region that determines engine condition to that of
refrigerator, for N = 2, 4, and 8, there is also a smooth drop
and rise, indicating that despite the increase of λ the engine
condition continues to be satisfied.

Next, we focus on the refrigerator regime. In Fig. 5 the
COP ξ as a function of the qubit-boson coupling strength is
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FIG. 4. Efficiency η of the quantum heat engine as a function of the qubit-boson coupling strength λ (in units of ω) for different number
of qubits N = 2 (solid blue line with circles), N = 4 (solid red line with plus sign), N = 8 (solid cyan line with cross sign), N = 12 (dashed
magenta line), N = 32 (dash dot green line), N = 56 (dotted deep blue line), and infinity N (solid black line), with fixed Th = 0.5, Tc = 0.1
for (a), (b) and Th = 6, Tc = 2 for (c). Likewise, (d) and (e) and (f) are for the efficiency η of the quantum heat engine as a function of the
qubit-boson coupling strength λ under different temperature ratios Tc/Th = 1/7 (solid blue line with circles), Tc/Th = 1/6 (dashed red line),
Tc/Th = 1/5 (dash dot cyan line), Tc/Th = 1/4 (dotted magenta line), Tc/Th = 1/3 (solid black line), and fixed N = 8, with cold reservoir
temperatures Tc = 0.1 for (d), (e) and Tc = 2 for (f). Here the temperatures are in units ω. The other system parameters are given by ωh = 2ω,
ωc = ω.

FIG. 5. Panels (a) and (b) show the COP ξ as a function of the qubit-boson coupling strength λ (in units of ω) for different Th with fixed
(a) Tc = 0.4, (b) Tc = 2, and N = 8 qubits. (c) COP ξ as a function of the qubit-boson coupling strength λ (in units of ω) under different qubit
numbers with fixed Tc = 2, Th = 2.2. The temperatures are in units of ω. The other parameters of the system are ωh = 2ω, ωc = ω.
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FIG. 6. (a),(b) Efficiency η (c),(d) and COP ξ as a function of the detuning δ = ω − � between the frequency ω of the field mode in
the cavity and the frequency � of each of the N atoms. For comparison, the resonance case δ = 0 is shown in the solid (blue) curve. The
temperatures are fixed at Tc = 0.1 and Th = 0.5, while the number of atoms is N = 8 in (a),(c) and N = 32 in (b),(d). The dashed horizontal
line in (a),(b) indicates the Carnot limit for the efficiency of a thermal engine. These figures are symmetric for negative detuning δ.

investigated for several ratios of temperatures with fixed N =
8 and Tc = 0.4, Fig. 5(a), and Tc = 2, Fig. 5(b). In Fig. 5(c)
we see the effect of the number of qubits on the COP ξ . It
is noteworthy that, for the normal phase, for all temperatures
and number of qubits, we found ξ < ξλ=0. Besides, similar
to the heat engine in the deep-strong coupling regime, the
effective Hamiltonian Eq. (11) leads to an accurate result of
ξ = ξλ=0. As evidenced from Figs. 5(a)–5(c), the region of
coupling λc < λ � 3 is where the COP for universal QOHM
having the Dicke model as a working substance surpass that of
the decoupled system used to fuel the quantum refrigerator. In
addition, as observed in Figs. 5(a) and 5(b), the COP strongly
depends on the temperature ratio, thus differing from ξλ=0 =
ωc/(ωh − ωc), being higher to small temperature ratios, as
the Carnot COP, keeping the limit ξ � ξCarnot = Tc/Th − Tc.
We note from Fig. 5 that for ratios of temperature where the
universal QOHM would work as heat engine with λ = 0 (un-
coupled case), corresponding to Th

Tc
< ωh

ωc
, for some coupling

ranges the universal QOHM works as a refrigerator with COP
lower than that of the uncoupled case.

So far we have only considered the case of resonant in-
teraction; now we will investigate how detuning δ = � − ω

between the frequency � of each of the N qubits and the
frequency ω of the field mode in the cavity affects the UQHM

figures of merit. Figure 6 shows the efficiency (a),(b) and COP
(c),(d) for several values of δ. The resonance case, δ = 0, is
shown in the solid (blue) with circles curve; the other curves
are for the nonresonance cases. The efficiency, Fig. 6(a) for
N = 8 and Fig. 6(b) for N = 32, presents several peaks, with
its maximum value demarcated by the Carnot limit indicated
by the horizontal dashed curve. Notice how, for certain values
of the coupling parameter λ, the efficiency initially increases
until it is very close to the maximum for N = 8 or always
reaches its maximum value for N = 32. Note also that, as the
detuning δ increases, the peaks corresponding to the maxi-
mum efficiency values shift to the right, that is, towards larger
values of the coupling parameter λ. Similarly, the behavior
of COP, Figs. 6(c) and 6(d), also presents maximum peaks,
which also occur for higher values of λ as the detuning δ

increases. Unlike efficiency, however, note how COP initially
decreases before starting to increase until reaching the max-
imum, which only occurs for coupling values λ > 1. These
results indicate that detuning is an important control parame-
ter to be optimized to obtain the best thermal performance for
both efficiency and the COP and must be taken into account
when considering finite time process.

Lastly, we explore in Figs. 7(a)–7(c) the effect of the fre-
quency ratio ωh/ωc on the work exchanged, Fig. 7(a), as well
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FIG. 7. (a) Work W , (b) efficiency η, and (c) COP as a function of the frequency ratio ωh/ωc for coupling strength λ = 0.05 (solid blue
line with circles), λ = 0.1 (solid red line with plus sign), λ = 0.2 (solid cyan line with cross sign), λ = 0.4 (dashed magenta line), λ = 0.5
(dash dot green line), λ = 0.7 (dash dot deep green line), and λ = 1.2 (solid black line). The temperatures of the cold and hot reservoirs, given
in units of ω, were fixed at Tc = 0.1 and Th = 0.4, respectively. The number of qubits is fixed to N = 8.

as on the efficiency, Fig. 7(b), and performance, Fig. 7(c), for
the universal QOHM. The coupling strengths are λ = 0.05
(solid blue line with circles), λ = 0.1 (solid red line with
plus sign), λ = 0.2 (solid cyan line with cross sign), λ = 0.4
(dashed magenta line), λ = 0.5 (dash dot green line), λ = 0.7
(dash dot deep green line), and λ = 1.2 (solid black line).
The temperatures were fixed as Tc = 0.1 to the cold thermal
reservoir and Th = 0.4 to the hot thermal reservoir. The fre-
quency ratios, in addition to indicating more clearly the PWC
condition, also allow for extracting the point that maximizes
both the efficiency and the COP for the universal QOHM.
Note the same behavior already observed in other figures, both
for efficiency and for COP. In Fig. 7(b) we see that after a
growth until reaching a maximum, there is an abrupt drop,
precisely at the point where the engine operating condition
changes to the refrigerator condition. In Fig. 7(c), where there
is a sudden appearance of COP in the refrigerator region, the
COP also reaches a maximum and then decreases smoothly.
The value of the maximum frequency ratio can thus be used
to maximize both efficiency and COP, and for the engine this
condition is the so-called efficiency at maximum power [23].

To finish this section, we point out that we also studied two
other protocols to carry out the adiabatic processes, namely (i)
keeping the frequencies constant and changing the coupling
strength and (ii) changing the number of qubits that interact
with the quantum mode and fixing both the frequencies and
the coupling strength. As verified by our numerical calcula-
tions (not shown here), in both protocols the efficiency and the
coefficient of performance do not overcome the case in which
the working substance is composed of a field mode decoupled
from the qubits.

C. Quantum correlations at thermal equilibrium

In this section, we investigate whether quantum correla-
tions are present at thermal equilibrium and, if so, whether
they affect the efficiency or COP of the universal quan-
tum heat machine (UQHM) based on the open Dicke model

(ODM). In accordance with our analytical and numerical
studies, shown in Figs. 8(a)–8(f), we claim that quantum
properties surviving thermalization are not the reason for
the superior performance of efficiency, extractable work, and
COP for the UQHM based on the ODM. The improvements
we observed both in efficiency (Fig. 5) and COP (Fig. 6)
are due to the structure of the energy levels, as evidenced
by the validity condition N 	 〈b̂†b̂〉 to derive the effective
Hamiltonian Eq. (8), that is, small temperatures require a
smaller number of qubits to lead to the anharmonicity around
the critical point that is present at all temperatures in the
thermodynamic limit.

To calculate quantum correlations, we resort to the follow-
ing complementary quantities: (i) the second-order correlation
function, which captures the occurrence of sub-Poissonian
statistics to the electromagnetic field inside the cavity, (ii) the
negativity, which quantifies atom-field entanglement, and (iii)
the spin quadrature, which quantifies the degree of squeezing
for the atomic variables and is a witness of quantum entan-
glement between the two level systems. We emphasize that
other quantum measures, such as mutual information, pho-
ton squeezing, and quantum discord, were investigated and
omitted because they showed the same general behavior of
the considered quantities.

First, note that the conventional definition of the normal-
ized zero-delay second-order correlation function is [101]

g(2)(0) = 〈(â†)2(â)2〉
〈â†â〉2

. (18)

This quantity describes the probability of detecting two
photons simultaneously. This definition holds for weak light-
matter couplings, where the intracavity photons, whose
annihilation operator is described by â, suffice to explain the
observed photon correlations. On the other hand, in the USC
regime, where the qubit system strongly dresses the bosonic
field, the second-order correlation function is derived from the
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FIG. 8. Two-photon correlation function G(2)
N (0) (a),(c),(e) and negativity N (ρ ) (b),(d),(f) as a function of the coupling strength λ. In

(a)–(c) the two-photon correlation function, negativity, and the spin quadrature parameter are shown for several qubit number N , including
the thermodynamic limit, with the cold thermal reservoir temperature fixed at Tc = 0.1 (a)–(c) and Tc = 2 (d)–(f). In (g)–(i), the qubit number
was fixed at N = 8 and the cold thermal reservoir temperature was chosen as Tc = 0.1 (solid blue line with circles), Tc = 0.4 (red dash line),
Tc = 0.2 (green dot line), and Tc = 5 (black dash line). The other system parameters are ωc = ω. The coupling strength λ and temperatures are
in units of ω.

input-output formalism as [102,103]

G(2)(0) = 〈(X̂ −)2(X̂ +)2〉
〈X̂ −X̂ +〉2 , (19)

where

X̂ + = −i
∑
k> j

�k jXjk|φ j〉〈φk|, (20)

with X̂ − = (X̂ +)†, �k j = Ek − Ej is the energy gap, and
Xjk = 〈φ j |(â† + â)|φk〉. Here, Xjk describes the transition
from the higher eigenstate |φk〉 to the lower one |φ j〉. Notice
that, in the weak qubit-photon interaction limit (i.e., λi � 1),
the operator X̂ + is reduced to X̂ + = −iωâ. Thus the correla-
tion function in Eq. (19) simplifies to the conventional case.
When G(2)(0) < 1 the light presents the nonclassical effect of

antibunching and can be taken as an unequivocal indication of
quantumness.

As for the negativity N (ρ) of a subsystem A, it can be
defined in terms of a density matrix ρ as [104,105]

N (ρ) = ‖ρTA‖1 − 1

2
, (21)

where ρTA is the partial transpose of ρ with respect to subsys-
tem A and ‖X‖1 = Tr|X | = Tr

√
X †X is the trace norm or the

sum of the singular value for the operator X . Nonzero negativ-
ity values indicate the presence of quantum correlations in the
form of entanglement, being greater the greater the amount of
entanglement present.

To study atomic correlations we use the spin squeezing
parameter, which also is a measure of entanglement between
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atoms. According to Kitagawa and Ueda, the spin squeezing
parameter is defined as [106]

ξ 2 = 2(�Sn⊥ )2

J
= 4(�Sn⊥ )2

N
, (22)

where n⊥ refers to an axis perpendicular to the mean spin 〈S〉
and Sn⊥ = S · n⊥. Spin squeezing parameter ξ 2 < 1 indicates
that the system is spin squeezed.

We computed G(2)(0) in Figs. 8(a), 8(d), and 8(g), N (ρ)
in Figs. 8(b), 8(e), and 8(h), and the spin parameter ξ 2 in
Figs. 8(c), 8(f), and 8(i) as a function of the coupling strength
λ for different numbers of qubits. In Figs. 8(g), 8(h), and 8(i)
we set N = 8 and investigated the effect of different tempera-
tures on the quantumness of the work substance. Note that the
quantum correlations are degraded by increasing the number
N of qubits and increasing the temperature Th, whereas η and
ξ increase with the number of qubits for all temperatures. If
we compare Figs. 8(a)–8(i) showing maximum antibunching,
maximum entanglement, and spin squeezing with Figs. 4(a)–
4(f) and 5(a), 5(b) which respectively show efficiency and
COP, we will see that there is no correspondence between
the maximum of quantum correlations and the maximum of
efficiency and COP.

As far as the second-order correlation is concerned, the ef-
ficiency is higher in the deep strong coupling regime (λ > 2),
Figs. 4(b) and 4(e), and, therefore, far from the region where
the second-order correlation shows the sub-Poissonian effect.
The same conclusion can be drawn from Figs. 5(a)–5(c) for
the COP, whose maxima lie in regions far from the value of the
critical parameter λ. With regard to negativity, Figs. 7(b), 7(e),
and 7(h) show that the maximum of negativity, and therefore
of entanglement, does not coincide with the maximum of
efficiency and COP. For example, in Fig. 4(b) for Tc = 0.1
and various values of N , the efficiency is practically constant
with the coupling parameter and therefore independent of the
amount of entanglement, whereas in Fig. 7(b) the negativity,
also at Tc = 0.1, and the various values of N present maxi-
mums and minimums when varying the coupling parameter.
The same can be said about the COP: there is nothing in
the analysis of the maximums that indicates the relevance of
negativity for its improvement. Take, for example, Fig. 7(d)
for Tc = 2, where negativity remains zero for a large range of
values of λ and then increases monotonically until to λ = 2,
with similar behavior even for different values of N . Compare
with Fig. 5(c), where the COP has a very different behavior
depending on N , with no correspondence with negativity.

Consider now the spin quadrature parameter, where
Fig. 7(c) indicates the presence of squeezing and entangle-
ment with maxima close to the critical point at Tc = 0.1 and
for all values of N . When we look at the efficiency and the
COP, Figs. 4 and 5, respectively, we see that there is no cor-
respondence between the atomic squeezing and the UQOHM
figures of merit. Also, while at Tc = 2 Fig. 7(c) shows that
there is no squeezing for all N , Fig. 4(f) shows that the effi-
ciency passes through a maximum before decreasing. These
same conclusions are supported by additional numerical cal-
culations that we performed (not shown here). To summarize
this section, and as previously mentioned, we point out that
the improvement in the efficiency and performance of the

UQOHM using the Dicke model as the working substance
cannot be attributed to quantum resources [107,108], but it
is due to the high anharmonicity of the spectrum around the
critical point of the Dicke model.

Our UQOHM protocol presents nontrivial experimental
challenges, mainly involving coupling strength and low-
temperature environments. Although the physical model
considered is general and has been implemented in a large
number of systems [109–111], standard ways of generating
the Dicke model in the laboratory involve driven dissipative
systems that give rise to a nonequilibrium scenario. We an-
ticipate that our proposal may be susceptible to experimental
implementation through extensions of current implementa-
tions of the USC and DSC realizations of the Rabi model
[83–91], for the case of N qubits with incoherent collective
processes leading to an equilibrium thermal steady state.

V. CONCLUSION

In summary, in this work we propose a universal quantum
Otto heat machine (UQOHM) based on the open Dicke model
(ODM). The ODM is composed of N atoms of two levels
(qubits) that interact with a mode of the electromagnetic field
and both the mode and the N qubits, which constitute the
working substance of the universal machine, interact with
thermal reservoirs. This model presents a critical point and
can be solved analytically in the thermodynamic limit N →
∞. By universal thermal machine we mean that it is possi-
ble, by adjusting the atom-field coupling parameter λ of the
ODM, to build all types of thermal machines, namely engines,
refrigerators, heaters, and accelerators. Focusing on engines
and refrigerators, which are the machines with the greatest
applicability, we show, for a wide temperature range and a
large number of qubits, including in the thermodynamic limit,
how the engine efficiency and the performance coefficient of
the refrigerator change with the parameter λ of the ODM.

We also conducted a study of the quantum correlations
present in the ODM using the second-order correlation func-
tion, negativity, and spin squeezing, showing that, for certain
values of the coupling parameter λ of the Dicke model, both
the antibunching effect and the entanglement survive thermal-
ization. Next, we show that it is possible, close to the critical
point, to obtain both an efficiency and a performance for the
UQOHM that is greater than the case in which the system
is uncoupled, thus showing the advantage of using the Dicke
model as the working substance. Furthermore, the detailed
study of the second-order correlation function, negativity, and
atomic spin quadrature indicates that there is no correspon-
dence between the improvement in efficiency and COP of the
UQOHM and the quantum resources arising from antibunch-
ing, spin quadrature, and entanglement. This claim is strongly
supported by the disappearance of all quantum quantifiers
adopted at moderate temperatures where, by increasing the
number of atoms, it is still possible to surpass the efficiency
and COP of a system that uses uncoupled atoms and field as
working fluid. This effect is absent in previous studies using
the Rabi model which, unlike what we found here, led to
associating gains in efficiency and COP with the presence of
quantum correlations.
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Addressing intriguing questions for further investigation in
the context of finite-time thermodynamics involves exploring
the fluctuations and statistical distribution of work and heat
[112–114] and, additionally, gaining insight into the influence
of criticality in the working substance, as presented in the
Dicke model, within the bounds of nonequilibrium fluctua-
tions of many-body quantum thermal engines [115].
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