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We study the spectrum of a system of coupled disordered harmonic oscillators in the thermodynamic limit.
This Euclidean random matrix ensemble has been suggested as a model for the low temperature vibrational
properties of glass. Exact numerical diagonalization is performed in three and two spatial dimensions, which is
accompanied by a detailed finite size analysis. It reveals a low-frequency regime of sound waves that are damped
by Rayleigh scattering. At large frequencies localized modes exist. In between, the central peak in the vibrational
density of states is well described by Wigner’s semicircle law for not too large disorder, as is expected for simple
random matrix systems. We compare our results with predictions from two recent self-consistent field theories.
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I. INTRODUCTION

The nature of the vibrational excitations in athermal amor-
phous solids remains an open and important topic affecting
inter alia thermal properties of glasses at low temperatures
[1]. The vibrational properties of glassy materials differ
strongly from the ones of crystals [2] as is well established
by scattering experiments [3–7]. Computer simulations of
various particle models have shown that the preparation of
the glass state matters and a number of diverse phenomena
have been discovered [8–20]. As a consistent comprehensive
theoretical picture is still lacking [21], a simple idealized
model appears desirable, where a part of the phenomena can
be studied in detail.

In 1999, Mézard, Parisi, and Zee introduced ensembles
of Euclidean random matrices (ERM) [22], which were
studied as simple models for low temperature glasses by
Martin-Mayor et al. [23], Grigera and coworkers [24–26],
and Schirmacher and coworkers [27–30]. Random matrix en-
sembles have successfully been employed in a wide variety
of physical systems with disorder [31–33], and the special
ERM ensemble may arguably be considered the most ide-
alized model for the vibrations in glass. Particles perform
harmonic motion around random positions. The restoring
forces depend on the distances between the positions via a
positive spring function, and translational invariance is postu-
lated. Only properties averaged over the random positions are
studied. Based on diagrammatic perturbation expansions in
field theoretic approaches, self-consistent theories for the cen-
tral Green’s functions have been developed [24,25,27,28,34].
They allow the (approximate) calculation of the vibrational
density of states (vDOS) and of the dynamical structure factor.

While ERM had been studied intensively up to a decade
ago, open questions remained on the sound damping and on
the spatial characteristics of the eigenmodes. In the present
paper, we investigate the most simple ERM model, already
considered in Refs. [24,28], a homogeneous and isotropic
system with a positive Gaussian spring function, and re-
solve the open questions: Even though the ERM system is
purely harmonic, Rayleigh damping of sound arises because

plane waves are not precise eigenmodes of the Hessian. The
only state parameter turns out to be the rescaled density n,
which encodes the amount of disorder. We perform large
scale numerical investigations including studies of finite size
corrections, in order to reveal the complete characteristics of
this specific ERM ensemble for not too small n. We also
compare with predictions from two self-consistent theories
[24,34], where different series of diagrams in the perturbation
expansion in 1/n [26] were resummed.

II. MODEL

In this paper we study an ERM model [22,30,32] in which
we consider N particles which are randomly placed in a box of
volume V = Ld . Here, d denotes the dimension of the system,
and L is its length. We apply periodic boundary conditions to
the system and study a uniform distribution of particles. The
set of random positions {ri} will be called inherent positions.
We consider a harmonic motion of the particles around their
inherent positions which leads us to the definition of a random
matrix M via the interaction potential U :

U (φ) = 1

4

∑
i, j

f (ri − r j )(φi − φ j )
2

= 1

2

∑
i, j

Mi jφiφ j, (1)

with

Mi j = − f (ri − r j ) + δi j

∑
k

f (ri − rk ). (2)

Here, f (r) is called the spring function and φi is a small
scalar displacement of particle i from its inherent site. The
scalar displacements mimic transverse displacements as cou-
pling to density is neglected. In this paper we consider the
simple case, where the spring function is isotropic and given
by the Gaussian

f (r) = exp(−r2/2), (3)
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with r the dimensionless distance. For positive spring func-
tions, f (r) > 0, the potential U is positive and thus the matrix
M is positive semidefinite. In the limit of large systems, a
single state parameter n = N/V determines the properties of
quantities averaged over the disorder.

In the harmonic approximation, the equations of motion of
the system are given by

φ̈i = −
N∑

j=1

Mi jφ j, for 1 � i � N. (4)

Translational invariance and hence momentum con-
servation follow immediately from the potential U (φ).
Consequently, M has the eigenvalue zero. The associ-
ated eigenvector e0 corresponds to the uniform shift e0 =
(1, 1, . . . , 1)/

√
N .

Note that we already set the length scale of our system
to 1 by the definition of the spring function in Eq. (3), and
frequency and time are also chosen dimensionless quantities
in Eq. (4).

III. METHODS

We use two methods to study the characteristics of the sys-
tem. The first one, in which we diagonalize the random matrix
Mi j , will be called normal mode analysis. The second one,
where we solve the equations of motion, will be called excited
wave analysis. While the first method provides information
in frequency space (such as the density of states), the second
provides the temporal evolution, which is more revealing on
the damping. In both cases, averages over the disorder are
finally performed by sampling different inherent positions.

A. Normal mode analysis

In the normal mode analysis [3,8,10–14], we calculate the
eigenvalues λk , corresponding to the eigenfrequencies ωk =√

λk , and the eigenvectors ek of the random matrix M. For
this, we use the standard diagonalization routine of MATLAB

and a routine called lobpcg [35] which can handle sparse ma-
trices efficiently. Note, that the symmetry and semipositivity
of M assure λk � 0 and that the ek form an orthonormal basis.

The density of states per particle in the energy domain is
calculated by [36]

gλ(λ) = 1

N

∑
k

δ(λ − λk ) (5)

and can be transformed into the frequency domain with
λ = ω2 leading to

g(ω) = 2ω gλ[λ(ω)]. (6)

Here, the overbar denotes the average over disorder. As we
expect discrete eigenfrequencies in finite systems, the density
of states g(ω) can be subject to inaccuracies occurring due
to the binning process if the bin size is chosen incorrectly. A
quantity which resolves this issue is called integrated density
of states [37–39] and can be calculated by

I (ω) =
∫ ω

0
g(ω′) dω′. (7)

The integrated density of states counts the number of eigen-
frequencies up to a frequency ω.

We calculate the dynamical structure factor by
S(q, ω) = 2ω Sλ(p, λ), where

Sλ(q, λ) =
∑

k

Qk (q)δ(λ − λk ), (8)

Qk (q) = 1

N

∣∣∣∣∣∣
∑

j

ek
j exp(i qx j )

∣∣∣∣∣∣
2

. (9)

Here, we have assumed an excitation along the x axis
with q = q êx. Note that throughout all analyses we only al-
low discrete wave vectors ql = l 2π/L with l = ±1,±2, . . .,
satisfying the periodic boundary conditions. The dynamic
structure factor can be used to extract the dispersion relation
�(q) and the damping �(q) by fitting S(q, ω) to a damped
harmonic oscillator model [40,41]:

S(q, ω) ∝ �2(q)�(q)

[ω2 − �2(q)]2 + ω2�2(q)
. (10)

Another quantity, which is used to characterize the eigen-
modes of the systems, is the participation ratio [10,11,13,15]

Pk = 1

N

1∑
i

(
ek

i ek
i

)2 . (11)

The participation ratio Pk = 1/N � 1 is small for an ideal
localized mode involving only one particle, while Pk = 2/3
for an ideal plane wave [40], and Pk = 0.3 if the eigenvectors
are isotropically oriented [42].

The level statistics p(s) provides insight into the coupling
of eigenmodes. It describes the distribution of the distances
between neighboring eigenvalues. The levels are randomly
distributed according to the Poisson distribution p(s) =
exp(−s) in the case of localized modes. For delocalized states
in the Gaussian orthogonal random matrix ensemble (GOE),
Wigner’s surmise should hold: p(s) = 1

2π s exp(−π s2/4)
[31]. To numerically evaluate p(s), we first have to compute
the normalized distance sk between neighboring eigenfre-
quencies. For this, we calculate the difference between
successive eigenfrequencies rk = |ωk − ωk+1| and divide it by
the mean distance between levels rk [43], which gives

sk = rk

rk
. (12)

We can then calculate p(s) in the vicinity of a specific
eigenfrequency ω0 by computing a histogram of the distances
sk in an interval of width 	ω around ω0. In the following 	ω

is fixed to a value of 	ω = 0.1.

B. Excited wave analysis

If the eigenvectors ek of the system are known, we can also
easily solve the equations of motion by

φi(t ) =
∑

k

uk (t )ek
i , (13)

where

uk (t ) = ek · φ(0) cos(ωkt ) + ek · φ̇(0)
sin(ωkt )

ωk
. (14)
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The scalar product abbreviates the sum over particles,
ek · a = ∑

i ek
i ai. We can excite a standing wave with wave

number q in our inherent structure by choosing for exam-
ple φi(0) = 0 and φ̇i(0) = sin(qxi + 
) as initial conditions
[9,12,14,44], with 
 = 0, π/2. Equivalent to fitting the
damped harmonic oscillator model to the dynamic structure
factor in the frequency domain, we can calculate the correla-
tion function

C(q, t ) = R(q, t ), (15)

R(q, t ) =
∑

i φ̇i(0) φ̇i(t )∑
i φ̇i(0) φ̇i(0)

(16)

and fit it with

C(q, t ) = exp[−�(q) t/2] cos[�(q)t]. (17)

Note that the average now also includes both phases

= 0, π/2 for each set of inherent positions. This again
allows us to extract the dispersion relation �(q) and the at-
tenuation �(q). While the dynamic structure factor includes
a binning process in its calculation, the correlation function
does not, yielding better results for small wave vectors q.

We can rewrite the correlation function in terms of “hy-
bridization” coefficients

ξ k (q) = ek · φ̇(0)√
φ̇(0) · φ̇(0)

(18)

by

R(q, t ) =
∑

k ek · φ̇(0) cos(ωkt )ek · φ̇(0)

φ̇(0) · φ̇(0)
(19)

=
∑

k

[ξ k (q)]2 cos(ωkt ), (20)

where
∑

k[ξ k (q)]2 = 1 must hold.

IV. NUMERICAL DETAILS

We study systems with periodic boundary conditions. In
our case this means that the periodic boundaries influence
the calculation of the dynamical matrix M. A particle at the
boundary of the simulation box also interacts with the parti-
cles of the periodic copies of the simulation box. This enforces
the selection of wave vectors ql introduced above.

In order to use sparse matrices (storing less then N2 entries)
for the large systems, we introduce a cutoff radius σ at which
the spring function f (r) is truncated. We choose σ = 4. See
below for a discussion of the accruing errors.

In order to obtain the randomly generated inherent struc-
tures we use the standard random number generator of
MATLAB which is the Mersenne Twister algorithm [45].

The main simulation parameter we will vary is the di-
mensionless density n. At a given number of particles N the
density determines the size of the periodic simulation box via
L = (N/n)1/d . Hence, if we increase the number of particles
N we also increase the size of the simulation box L. At the
same time we also get access to smaller wave vectors q.

We calculate the full set of eigenvalues for system sizes
up to N = 4×104 particles and the smallest 2000 eigenvalues
for larger systems. This drastically reduces the computation

FIG. 1. (a) Density of states g(ω) and (b) integrated density of
states I (ω) divided by the Debye behavior for different densities n
(see legend) and as function of the rescaled frequency. The dashed
lines indicate the Debye levels nAD/3. From top to bottom the density
increases.

time and especially the storage consumption. See below for a
discussion of the accruing errors.

For each density n and system size N we perform calcula-
tions in 250 realizations of the random inherent positions and
present the averages. When calculating the three-dimensional
(3D) participation ratios, we tested an ensemble size of 5×105

simulations and found qualitatively the same result.

V. RESULTS AND DISCUSSIONS

First, we show the results obtained via the normal mode
analysis and afterwards we show the excited wave analysis.
Then we increase the ensemble size to analyze the structure
of the eigenmodes.

A. Density of states

Figure 1(a) shows the density of states for systems of size
N = 4×104 for varying densities n. As is often done, we look
at the reduced vDOS, g(ω)/ω2. This anticipates the Debye
law at low frequency, gD(ω) = AD ω2 = ω2/ω3

D, where AD is
the Debye level and ωD the Debye frequency. Both of these
quantities are calculated here from the vDOS in the small ω

limit. We can observe a Debye spectrum for ω → 0. It is
expected because of the breaking of translational invariance
in the solid inherent structures which leads to the existence
of sound waves for small wave vector [24]. For lowering n,
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FIG. 2. Density of states g(ω) for different densities n (see leg-
end) plotted as function of ω − ωBP. The dashed line shows the
predicted Wigner semicircle law [34]. The height of the peak in-
creases for increasing density.

viz., increasing average separation of the inherent positions,
the elastic restoring forces become weaker and the Debye-
frequency decreases. We observe an excess in the vDOS above
the Debye law for larger frequencies ω, which we call the
boson peak of the ERM. This interpretation will be discussed
in Sec. VI. The location of the boson peak ωBP scales with√

n. Figure 1(b) shows the integrated density of states I (ω)
divided by the Debye behavior for the same densities n. The
dashed lines indicate the Debye levels AD/3, which can most
directly be extracted from these rescaled I (ω) data.

Figure 2 shows the vDOS presented as function of ω −
ωBP. In this plot the curves coincide quite well [46], highlight-
ing that the majority of eigenfrequencies is accumulated in the
boson peak. The overall shape of the vDOS is well described
by Wigner’s semicircle law, which would hold if the entries
of M were independent and identically distributed zero-mean
Gaussian entries [32]. The semicircle law is shown by the
dashed lines in Fig. 2; note that for simplicity its normalization
to unity is not adjusted to fit the data best. The semicircle is
(in energy space) located around ω2

BP and has a radius of R. In
frequency space the explicit form is given by

gwigner (ω) = 4 ω

πR2

√
R2 − (

ω2 − ω2
BP

)2
, (21)

for ω− � ω � ω+ with ω± =
√

ω2
BP ± R. We find good

agreement with the theory by taking the values R = n
√

2a
with a = f̂ (0)/(

√
8n) from Ref. [34].

Note that gwigner (ωBP) = 4 ωBP/(πR) = 4/π 21/4 ∝ n0, for
large n. A shift of the boson peak frequency is the dominant
effect when changing the disorder via changing n. The plot
hides the n dependence of the vDOS for small frequencies,
as the Debye level is very low compared to the boson peak
amplitude for the considered n.

From g(ω) and I (ω) we extract the density dependence of
the relevant frequencies, ωD and ωBP shown in Fig. 3. The
uncertainty of ωD is calculated from the confidence interval
of the fit of the Debye level AD and the uncertainty of ωBP

is estimated by evaluating the frequencies of the bins left and
right of the maximum of the vDOS. Since the uncertainties
in ωBP are very small they are omitted throughout this paper.
The energy scale of the boson peak arises from the pairwise

FIG. 3. Rescaled Debye frequency ω̂D = ωD n−5/6 (black circles)
and boson peak frequency ω̂BP = ωBP n−1/2 (black crosses) as func-
tions of the density n. The ω̂D and ω̂BP are n independent in stable
states. Additionally, the ratio ω̂BP/ω̂D extracted from the simulation
data (red diamonds, right axis) is shown and compared to theory
(line) from Ref. [34].

interaction among all particles [34]. This explains the scaling
ωBP ∝ n1/2. For high enough n, the boson peak position is
the square root of the mean value of the diagonal entries
ω2

BP = Mii = n f̂ (0) [34]. Considering the amplitude of the
Debye law, AD = 1/ω3

D, we observe that AD ∝ n−5/2 and thus
ωD scales with n5/6. The increase of the Debye frequency with
decreasing n is a nontrivial effect of the increasing disorder,
which will be explained based on the dispersion relations
shown in Fig. 5 below. While the obtained boson peak po-
sitions ωBP perfectly match with the values from the theory
of Ref. [34], we find small deviations in the Debye frequency
ωD and therefore also in the ratios ωBP/ωD. Still, the scaling
of ωD and ωBP/ωD with the density n matches well with the
theory.

B. Dynamic structure factor and dispersion relation

Figure 4 shows the dynamic structure factors S(q, ω) at
n = 1.0 for four different q values. The structure factors are
characterized by a pronounced peak which shifts to higher
frequencies ω with increasing wave vector q. At the same
time the peak broadens and its height decreases. In the limit

FIG. 4. Dynamic structure factor S(q, ω) for q4, q6, q8, and q25

(marked in Fig. 5; q increases from left to right) at n = 1.0. The
density of states g(ω) is shown by the black dashed line, which agrees
with S(q25, ω).
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FIG. 5. (a) Dispersion relation �(q) for varying densities n (see
legend in Fig. 2). The density increases from bottom to top. The black
arrows at n = 1.0 mark the q values at which the dynamic structure
factors in Fig. 4 are shown. The black circles at n = 0.5 indicate
the bare dispersion

√
ε0(q)n = √

[ f̂ (0) − f̂ (q)]n and the green dia-
monds show the dispersion relation obtained from the excited wave
analysis. (b) Rescaled dispersion relation �(q) ω−1

BP in dependency of
the rescaled wave vector q cT/ωBP. Additionally, the prediction from
Ref. [34] (black dashed line) and from Ref. [24] (green dotted line)
both at n = 1.0 are shown.

of q → ∞, S(q, ω) approaches the vDOS g(ω) shown by the
dashed line in Fig. 4 [23].

We use Eq. (10) to extract the dispersion relation �(q)
from the structure factor. The results are shown in Fig. 5(a).
We observe a linear dispersion relation �(q) = cTq for small
wave vectors and that �(q) → ωBP saturates for q → ∞.
Here, cT denotes the speed of sound; it inherits the scaling
cT ∝ √

n from the dispersion relation. For increasing den-
sity n the slope of the dispersion relation, and therefore, the
speed of sound cT gets larger; the system gets stiffer with the
average separation of particles getting smaller. The scaling
�(q) ∝ √

n arises from the pairwise interactions [34]. The
dispersion relation obtained via the excited wave analysis
is shown exemplarily for n = 1.0 by the purple circles and
agrees perfectly with the dispersion relation from the structure
factor.

We compare the dispersion relation with the bare dis-
persion, �0(q) = √

ε0(q)n =
√

[ f̂ (0) − f̂ (q)]n, at a small
density n = 0.5. The largest deviations from the bare dis-
persion should be observed at the biggest disorder, i.e., the
smallest density. Yet, at this large disorder we still observe a
good agreement between the bare dispersion and �(q). Com-

FIG. 6. Velocity correlation function C(q, t ) of N = 4×105 sys-
tems at n = 1.0 for q4 (a) and q7 (b). The black dashed lines
correspond to a fitted damped oscillation.

paring with the self-consistent theories [25,34], one notices
that both overestimate the effects of disorder; see Fig. 1 in
Ref. [34], where dressed and bare dispersion relations are
shown. Both predict a stronger change of �(q) than observed,
yet the more elaborate resummation including nonplanar dia-
grams lies closer to the data.

In Fig. 5(b) we show the rescaled dispersion relation
�(q) ω−1

BP as function of the rescaled wave vector q/qBP with
qBP = ωBP/ cT. The rescaled data collapse very well indi-
cating that the boson peak frequency ωBP is the relevant
frequency for the rescaling. Using the Debye-frequency does
not lead to a comparable rescaling (not shown).

The scaling of the sound velocity with density, cT ∝ √
n,

also explains the scaling of the Debye frequency, as AD ≈
1/(2nπ2c3

T ) approximately holds for high enough densities
[23,34]. The Debye amplitude AD grows for increasing dis-
order because the sound velocity softens. Additionally, AD is
inversely proportional to the number of degrees of freedom,
which become fewer with lowering n at fixed volume. Both
effects together cause the dependence ωD ∝ n5/6 in d = 3
which is appreciably stronger than the dependence of the
boson peak frequency on disorder.

C. Sound damping

In order to study the dissipation, we turn to the excited
wave analysis. Figure 6 shows the velocity correlation func-
tion C(q, t ) for q4 and q7. One can estimate the uncertainties
of C(q, t ) by the standard deviation. For better visibility we
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FIG. 7. Envelope of the velocity correlation functions shown in
Fig. 6 for q4 (a) and q7 at n = 1.0 (b). An exponential decay is fitted
and is drawn by the black dashed line. (c) Envelope Cenv(q, t ) of three
different system sizes at a similar wave vector.

do not show them in Fig. 6 because they are smaller than the
symbols.

Clearly, a damped oscillation can be observed where the
damping and the frequency become larger for larger q. For
some q there are beats with large magnitude for larger times
t which can be somewhat eliminated by averaging over dif-
ferent inherent structures. However, we get a more reliable
result for the damping if we fit exp[−�(q)t] to the envelope
Cenv(q, t ) of the correlation function [12,47]. Figures 7(a) and
7(b) show the envelope Cenv(q, t ) for the wave vectors q4 and
q7 at N = 4×105. Here, the uncertainties are those of C(q, t )
evaluated at the respective maxima and minima. The initial de-
cay of the envelope is exponential (a fit is shown by the dashed
black lines) but large deviations from the exponential decay
are visible. This effect was already observed and discussed in
Refs. [12,48]. They argued that this is a finite size effect and

FIG. 8. (a) Hybridization coefficients for the seven smallest val-
ues of q in a system at n = 1.0 and for size N = 4×105. The larger
q becomes, the wider the range becomes over which nonvanishing
hybridization coefficients are spread. The corresponding values of
�(q) are indicated by the dashed gray lines. (b) The sum over the
smallest 2000 hybridization coefficients in this system drastically
drops as soon as q exceeds q7.

that the deviations start at a system size dependent time and
are stronger for smaller wave vector. Our results confirm this
observation as can be seen in Fig. 7(c) where the envelopes
of the correlation functions for three different systems sizes
at a similar wave vector q are shown. The uncertainty of the
damping �(q) therefore is due to the uncertainty of the range
in which the envelope can by fitted by an exponential. So far,
we neglected the fact that only the 2000 smallest eigenvectors
are calculated for systems with N > 4×104. We will now
argue that the 2000 smallest eigenvectors are sufficient to cap-
ture the small q behavior of the velocity correlation function.
For this we look at the hybridization coefficients shown in
Fig. 8.

As can be seen, for small values q we get very large hy-
bridization coefficients only for a narrow band of frequencies.
As q increases, a wider range of frequencies is involved in the
response of the system to a standing wave. At a certain value
of q the frequencies with large hybridization coefficients start
to lie outside of the smallest 2000 eigenvalues. At this point
the approximation of using only the 2000 smallest eigenvec-
tors necessarily fails. In Fig. 8(b) we show the sum over the
hybridization coefficients for different values of q. As long
as this sum is 1 our approximation for C(q, t ) is valid. If the
sum distinctively differs from 1 we have not included enough
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FIG. 9. Sound attenuation �(q) in dependency of the wave vector
q at n = 1.0. The data obtained from different systems sizes are
combined. Note that the small systems are used to obtain the large
q behavior, while the large systems are used to obtain the small q
behavior. The dashed magenta line corresponds to Rayleigh damping
�(q) = BRq4 where the strength BR is taken form the theory [34].
The blue line shows the attenuation as calculated from the dynamic
structure factor S(q, ω).

frequencies and the approximation fails. For the shown system
this is the case at q > q7.

Finally, we show the obtained damping �(q) in Fig. 9.
We observe that the attenuation becomes larger for increas-
ing wave vectors q. The damping saturates for large q. For
very small q we observe a weak quartic (Rayleigh) damping
which can be fitted by �(q → 0) → Brq4. The theoretically
predicted prefactor BR [34] lies within a factor of 2 relative to
the exact prefactor. The theory prediction Brq4 is included in

Fig. 9. In the high density regime BR ≈ 7
48π

ω4
BP

nc3
T

holds around
the sound pole.

The relation BR ∝ ω4
BP/(nc3

T ) ∝ n−1/2 also predicts the
density dependence of the sound attenuation. Figure 10 shows
the rescaled sound attenuation �(q)

√
n obtained from the

excited wave analysis for the system sizes N = 4×104 and
4×105 at increasing densities. The rescaling with

√
n results

in a rather good collapse to a universal quartic scaling law in
the small wave number regime. The damping saturates at large
wave numbers to a density dependent value that increases with

FIG. 10. Rescaled sound attenuation �(q)
√

n for different den-
sities n. The colored squares depict the results at system size
N = 4×105 and the colored circles depict the results at N = 4×104.
The dashed black line depicts a q4 fit.

FIG. 11. Participation ratio Pk at n = 1.0 in dependency of the
eigenfrequencies ωk for system sizes N = 104 (purple diamonds),
N = 3×104 (green circles), and N = 3×105 (cyan crosses). Note
that in the last case, only the 2000 lowest participation ratios can
be calculated. The black dashed line is located at the boson peak
frequency and the dotted line is located at ω0 = 4.5. The red lines
show the average, maximum, and minimum participation ratio of an
large ensemble of N = 104 systems.

decreasing density (note that this dependency is hidden in the
rescaled plot).

D. Characterization of eigenmodes

After the study of the dynamic structure factor, we turn
to the characterization of the eigenmodes. Figure 11 shows
the participation ratios Pk for a single realization of the
inherent positions at different system sizes N at n = 1.0. We
can clearly see frequencies with large participation ratios of
magnitude close to the one of ideal plane waves at small
frequencies ωk . These frequencies have distinct gaps between
them and belong to the phonon bands which have discrete
frequencies due to the finite size of our system. The first
participation ratios are therefore located at ω = cT2π/L.

With increasing ω, the participation ratios get smaller
and at the boson peak they distinctively drop. Above the
boson peak we observe localized modes. The behavior is
qualitatively the same for different system sizes. We have
run additional simulations for an increased ensemble size of
5×105 systems each with N = 104. We calculate the aver-
age, minimum, and maximum participation ratio in distinct
frequency bins. The maximum and minimum participation
ratio per bin is shown in Fig. 11 by the red dashed dotted
lines and the average participation ratio is shown by the full
line; let P(ω) = Pk denote this disorder average. The large
ensemble confirms the overall shape of the participation ratio
distribution. Contrary to the interpretation in Ref. [34], we
do not find (quasi-) localized modes [21]. This may be a
consequence of studying scalar excitations [21,49].

In order to further characterize the eigenmodes we analyze
the level statistics p(s). It describes the distribution of the
distances between neighboring eigenvalues, and, in the case
of localized modes, leads to a Poisson distribution p(s) =
exp(−s), while for delocalized states in the GOE, it leads to
Wigner’s surmise: p(s) = 1

2π s exp(−π s2/4) [31].
Figure 12 shows p(s) around the boson peak frequency

ωBP and above it. The level statistics nicely follows the GOE
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FIG. 12. Level statistics p(s) at n = 1.0 for a frequency interval
of width 	ω centered around ω0 = ωBP and 4.5 = 1.14 ωBP and a
comparison to the GOE and Poisson statistics. The locations of the
frequencies ω0 are indicated in Fig. 11 by the vertical dashed and
dotted lines.

statistics around the boson peak, while it decays according
to the Poisson statistics at the higher frequency. As already
suggested by the participation ratios, the eigenmodes are
extended and of random matrix type in the frequency range
of the boson peak [50] and localized above it.

In Fig. 13 we show the density dependence of the mean
participation ratio P(ω) for an extended n range reaching
rather low. For all densities shown, the boson peak marks a
transition; above it all modes are localized. While for large
densities there is a sharp transition to localized modes at ex-
actly ωBP, for decreasing densities the frequency above which
the majority of the modes are localized shifts below the boson
peak. Below it, we observe a plateau region in P(ω) in a
frequency window which depends on the density n; its lower
edge shifts to smaller frequencies for smaller density, viz., for
larger disorder, and its width increases.

By calculating the level statistics for modes in these plateau
regions, we observe that they follow the GOE statistics. For
arbitrarily chosen frequencies in the plateau regions, marked
by the colored crosses in Fig. 13, the corresponding GOE level

FIG. 13. Mean participation ratio P(ω) as function of the
rescaled frequency ω/ωBP for a range of densities. The inset shows
the level statistics p(s) for frequencies that are marked by the colored
crosses. The GOE level statistics is shown by the black line.

FIG. 14. Contact number z in dependency of the density n for
the 3D (red circles) and two-dimensional (purple diamonds) systems.
The dashed lines show the expected contact numbers and the dashed
dotted lines are located at the isostatic stability criterion zc = 2 d .

statistics are shown in the inset of the figure. The increasing
width of the plateaus for smaller densities indicates that the
GOE modes gain in importance for small n. The number of
oscillators equals N = 4×104 in Fig. 13, but we observed no
system-size dependence comparing with other N .

Figure 14 shows the contact number z = M/N − 1 where
M is the number of nonzero entries of M. Recall from Sec. IV,
that a finite cutoff σ was chosen in order to speed up the matrix
diagonalizations. Thus the contact number, which would be
infinite for the Gaussian spring function in Eq. (3), becomes
finite.

The contact number depends linear on the density n. This
dependency becomes evident if one considers a d dimensional
sphere with the cutoff radius σ and volume Vd around a test
particle. The contact number z of the test particle is given by
the number of other particles in the sphere and thus simply
reads Vd n. In Fig. 14 the expected contact number is shown
by the dashed black lines.

At all densities n the contact number is above Maxwell’s
isostatic stability criterion zc = 2 d which is indicated by the
dashed dotted lines [51]. We also checked the distribution of
contact numbers, which also does not indicate a violation of
Maxwell’s criterion. Thus we conclude that the cutoff leads to
negligible errors only. We also confirmed this by calculations
with cutoff 2σ .

E. Two-dimensional system

We have also studied two-dimensional (2D) systems. Com-
pared to their 3D counterparts the box size L of the 2D systems
at our maximum particle number of N = 106 is larger. Hence,
smaller wave vectors q are accessible in the 2D systems. In
general, the 2D systems behave quite similar to their 3D coun-
terparts. Note that the Debye behavior becomes g(ω) = AD ω

in two dimensions with AD = 1/ω2
D.

In Fig. 15 the density of states g(ω), the dependences
of the frequencies on density ω̂(n), the damping �(q), and
the participation ratios Pk of the 2D systems are shown. We
observe a Debye spectrum for ω → 0. Lowering the density
n again increases the Debye level, i.e., decreases the Debye
frequency. The boson peak frequency ωBP again scales with√

n, while the Debye frequency scales with n1. We observe
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FIG. 15. 2D systems. (a) Density of states g(ω) for different
densities n divided by the Debye behavior. (b) Obtained and rescaled
Debye frequency ω̂D = ωD n−1 and boson peak frequency ω̂BP =
ωBP n−1/2 in dependency of the density n. Additionally, the ratio
ω̂BP/ω̂D. (c) Sound attenuation for the systems sizes N = 104 and
4×105 at n = 1. A q3 fit is shown for the small q regime. (d) Partici-
pation ratio Pk in dependency of the eigenfrequencies ωk at n = 1
for N = 3×104 (green circles) and N = 4×105 (purple crosses).
Only the 2000 lowest participation ratios can be calculated for
N = 4×105. The black dashed line is located at ωBP. The red lines
show the average, maximum, and minimum participation ratio of an
ensemble of systems with N = 3×104.

Rayleigh damping for small wave vectors q. Note that in two
dimensions the Rayleigh damping becomes �(q) ∝ q3 [44],
as the fit in Fig. 15(c) shows.

In Fig. 15(d) the corresponding participation ratios are
shown. Again as in three dimensions, a crossover from ex-
tended to localized modes can be observed, which happens
already at lower frequencies than ωBP in two dimensions. An
ensemble of 500 systems allows us to characterize the distri-
bution of Pk , which lies lower at the boson peak frequency
in two dimensions than in three dimensions; compare with
Fig. 15(d).

VI. CONCLUSIONS AND OUTLOOK

The aim of the present paper is to argue that the ERM sys-
tem at large contact numbers captures pertinent phenomena of
transverse vibrations in stable glass at vanishing temperature
[3,12,13,44]. It is thus a simple model which can be studied
independently, e.g., on quenching protocols. Two spatial di-
mensions, d = 3 and 2, were studied. We used dimensionless
frequencies and wave vectors, which can be mapped onto
experimental systems in the following way: The frequency
or time scale of the ERM model is given by the boson
peak frequency which was denoted ωBP. The corresponding
length scale is obtained using the (transverse) sound velocity,
qBP = ωBP/cT . Both scales allow us to map the vDOS and the
dynamical structure factor onto measured data. The strength
of the disorder then is the only free parameter. Within the
ERM model with a Gaussian spring function it is quantified by
the dimensionless density n. When comparing to real systems,

the amplitude of the Debye level at the position of the boson
peak, viz., gD(ωBP) = AD ω2

BP relative to the amplitude of
the boson peak, viz., g(ωBP), can be used to match n. This
gives the dominant variation with disorder in the ERM sys-
tem, when rescaled variables ω/ωBP and q/qBP are employed.
Importantly, all parameters of the ERM model are thus ac-
cessible by experiment easily and by well defined procedures.
As stated, the scalar ERM model should be applied only to
transverse modes, and, considering the differences to parti-
cle simulations [12,44], only to frequencies below the boson
peak.

Our numerical results should be compared to earlier nu-
merical work on the same ERM system using diagonalizations
and approximate calculations with the method of moments
[23,25]. We extend the range of accessible wave vectors so
that a clear statement on the damping of sound modes be-
comes possible. Considering the slow crossover to �(q) ∝
qd+1 exhibited in Figs. 9 and 15(c) for q → 0, we con-
clude that previously no statements on Rayleigh damping had
been possible in the numerical ERM solutions. Our results
prove Rayleigh damping over a large window in disorder.
Additionally, we established the frequency windows where
the eigenmodes are extended or localized. We observed that
the frequency window, where GOE modes dominate, moves
strongly with n, viz., with the strength of the disorder. For
large density reaching down to n � 1/4, they form the boson
peak of the vDOS which is given by Wigner’s semicircle law.

We also compared our numerical results to predictions
obtained from two self-consistent theories, one where all
diagrams of first order in a diagrammatic perturbative expan-
sion in 1/n were resummed [24,25], and a more recent one,
where all diagrams of second order in 1/n were resummed
[34]. Both theories qualitatively agree in the predictions of a
Wigner-semicircle law for the boson peak and of a Debye law
at low frequencies, with the crucial difference of the sound
damping. Nonplanar diagrams in the diagrammatic pertur-
bation expansion are required to correctly predict Rayleigh
damping of sound. The nonplanar diagrams capture nonlocal
correlations of elastic fluctuations and arise first in second
order in 1/n. Thus, they were missed in the older approach
which consequently predicts hydrodynamic damping �(q) ∝
q2. See Ref. [34] for more details on the comparison of both
theories.

Finally, let us address the interpretation of the main peak in
the vDOS of the ERM model. When discussing Figs. 1 and 2,
we called this peak the boson peak and suggested to consider
it as simple model of the (transverse contribution to the) boson
peak in the vDOS of real glasses of simple particle systems.
This interpretation, which differs from the older literature on
the ERM system [24,25,30], rests on the following arguments.

(i) The boson peak in the vDOS of real glasses survives
in the zero temperature limit and thus arguably should be
contained in a harmonic approach such as the ERM model.

(ii) The reported universality of the boson peak [49,52]
is mirrored in its origin in the disorder, which is the single
conceptual extension of the harmonic approach to disordered
solids beyond the classical Born-Debye theory of crystals:
The nature of the dominant normal modes changes in the
frequency region of the boson peak. While the vibrational
modes are mainly extended below ωBP, they are localized
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above of the peak [50,53,54], which can be clearly seen in
Fig. 11.

(iii) It was argued in Refs. [50,54] that the normal modes
in the region of the boson peak follow the statistics of a GOE.
This is why the shape of the boson peak resembles Wigner’s
semicircle law which is one of the hallmarks of a GOE matrix
[55]. Clearly, our peak shown and analyzed in Figs. 1, 2,
11, and 15 is in accordance with this characterization of the
boson peak. This also hints at why the planar ERM model
[24,25] describes this part of the spectrum rather well, both
quantitatively and qualitatively. It is known that only the pla-
nar diagrams survive in the thermodynamic limit for GOE
matrices [55]. Again, see Ref. [34] for a detailed comparison
of the planar and nonplanar self-consistent model.

(iv) The density of states of a stable ERM system exhibits
only a single peak as seen in simulations of stable glasses
[13,44].

(v) An alternative explanation for the origin of the promi-
nent peak in the ERM model is that it is a smeared out
van Hove singularity [56]. But this cannot rationalize the
observed transition from extended to localized eigenmodes at
ωBP. Almost all eigenmodes above ωBP are localized (for the
considered simple ERM spring function and the discussed n
range) and while the dispersion relation approaches ωBP in the

limit of q → ∞ the number of extended modes in the boson
peak region is far too small in order to justify its interpretation
as smeared van Hove singularity.

This is further supported by the analytic derivation of
Wigner’s semicircle law. It rests on the solution of the self-
consistency equation for g(ω) neglecting the coupling to other
modes [24,34]. Again, this is in accordance with the observed
transition in the nature of the normal modes.

The present paper considered the simplest ERM system of
a Gaussian spring function at small disorder. Work is under
way to extend it to stronger disorder and richer spring func-
tions. Additionally, recent works have shown that the vectorial
character of the displacement field in glass is important as
vortexlike eigenmodes become possible [11,21,49,57,58]. We
expect that these structures can be studied in appropriately
generalized ERM systems.
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