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Phase transitions in self-gravitating systems and bacterial populations surrounding a central body
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We study the nature of phase transitions in a self-gravitating classical gas in the presence of a central body.
The central body can mimic a black hole at the center of a galaxy or a rocky core (protoplanet) in the context of
planetary formation. In the chemotaxis of bacterial populations, sharing formal analogies with self-gravitating
systems, the central body can be a supply of “food” that attracts the bacteria (chemoattractant). We consider
both microcanonical (fixed energy) and canonical (fixed temperature) descriptions and study the inequivalence
of statistical ensembles. At high energies (respectively, high temperatures), the system is in a “gaseous” phase
and at low energies (respectively, low temperatures) it is in a condensed phase with a “cusp-halo” structure,
where the cusp corresponds to the rapid increase of the density of the gas at the contact with the central body.
For a fixed density ρ∗ of the central body, we show the existence of two critical points in the phase diagram, one
in each ensemble, depending on the core radius R∗: for small radii R∗ < RMCP

∗ , there exist both microcanonical
and canonical phase transitions (that are zeroth and first order); for intermediate radii RMCP

∗ < R∗ < RCCP
∗ , only

canonical phase transitions are present; and for large radii R∗ > RCCP
∗ , there is no phase transition at all. We study

how the nature of these phase transitions changes as a function of the dimension of space. We also discuss the
analogies and the differences with phase transitions in the self-gravitating Fermi gas [P. H. Chavanis, Phys. Rev.
E 65, 056123 (2002)].
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I. INTRODUCTION

Self-gravitating systems have a very peculiar thermody-
namics due to the unshielded long-range attractive nature of
the gravitational interaction [1–5]. Their study is interesting
both from the viewpoint of astrophysics and statistical me-
chanics since a collection of N stars (composing globular
clusters, galaxies...) constitutes a fundamental physical sys-
tem with long-range interactions [6–8]. The subject started
with the seminal paper of Antonov [9] who considered the
thermodynamics of a self-gravitating classical gas confined
within a spherical box of radius R. Since the system is isolated,
it must be studied in the microcanonical ensemble. The box
is necessary to prevent the evaporation of the gas and make
the problem well-posed mathematically.1 Following Ogorod-
nikov [13,14], Antonov studied the problem of maximizing
the Boltzmann entropy at fixed mass and energy, and dis-
covered that there is no global entropy maximum. There is

1There is no statistical equilibrium state for a self-gravitating sys-
tem in an infinite domain because the gas has the tendency to
evaporate [10–12] (this is already the case for an ordinary gas if it
is not confined within a container). In this sense, the strict statistical
equilibrium state of a stellar system is made of two stars in Keplerian
motion with all the other stars dispersed at infinity. Antonov [9]
argued that the evaporation of stellar systems is a slow process so
that, on intermediate timescales, everything happens as if the system
were confined within a bounded container. In another interpretation,
the box can mimic the effect of a tidal radius beyond which the
particles are captured by a neighboring object (e.g., a galaxy in the
vicinity of a globular cluster).

not even an extremum of entropy (canceling the first-order
variations of entropy at fixed mass and energy) if the energy is
below a critical value Ec = −0.335GM2/R [9]. Lynden-Bell
and Wood [15] (see also Lynden-Bell [16]) interpreted this
mathematical result in terms of a gravitational collapse that
they called gravothermal catastrophe. Below the Antonov
threshold E < Ec, the system takes a “core-halo” structure.
The core, which has a negative specific heat, becomes hotter
as it loses energy to the profit of the halo. Therefore, it con-
tinues to lose energy and evolves away from equilibrium. By
this process, the system becomes hotter and hotter and more
and more centrally condensed (as a consequence of the virial
theorem). From thermodynamical arguments, the end-product
of the gravothermal catastrophe is expected to be a binary star
having a small mass (2m � M) but a huge binding energy
[17]. The potential energy released by the binary star is redis-
tributed in the halo in the form of kinetic energy (the system
heats up) leading to an infinite (very large) entropy. Cohn
[18] studied the dynamical evolution of the gravothermal
catastrophe in the microcanonical ensemble (fixed energy) by
numerically solving the orbit-averaged-Fokker-Planck equa-
tion [17,19]. He found that the collapse is self-similar and
that the density profile develops a finite time singularity (core
collapse). The central density becomes infinite in a finite time,
scaling as ρ ∼ r−2.23, but the core mass M0(t ) ∼ (tcoll − t )0.41

tends to zero at the collapse time.2 Therefore, the divergence
of the central density is simply due to a few stars approaching

2Previously, Larson [20], Hachisu et al. [21], and Lynden-Bell and
Eggleton [22] studied the same problem by using fluid equations and
obtained similar results.
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each other. In fact, a binary star is formed in the post-collapse
regime and releases so much energy that the halo re-expands
in a self-similar manner [23].3 Finally, a series of gravother-
mal oscillations follows [25]. On the other hand, at sufficiently
high energies E > Ec, there exist statistical equilibrium states
in the form of local entropy maxima at fixed mass and energy
(there may also be saddle points of entropy but they are un-
stable) [9]. These states are metastable but they are very long
lived because their lifetime scales like eN (with N ∼ 106 in a
globular cluster) [26]. Therefore, these gaseous states can play
an important role in the dynamics [27]. Indeed, most stellar
systems like globular clusters are in the form of metastable
gaseous states. They are described by the Michie-King model
[28,29] which is a truncated Boltzmann distribution taking
into account the evaporation of high energy stars. The ther-
modynamics of tidally truncated self-gravitating systems was
studied by Katz [30] and Chavanis et al. [31]. In practice,
a globular cluster relaxes through gravitational encounters
toward a truncated equilibrium state. As it slowly evaporates,
its central density increases (as a consequence of the virial
theorem) and the cluster follows the King sequence with
higher and higher central densities until a point at which it
becomes unstable and undergoes core collapse as described
above.

Since the statistical ensembles are not equivalent for self-
gravitating systems (see Refs. [32,33] for early works on the
subject and Refs. [1–5] for reviews), it can be of interest
to study what happens when the system is in contact with
a thermal bath imposing the temperature. In that case, the
evolution of the system is dissipative and it must be studied
in the canonical ensemble (CE). If one considers the problem
of minimizing the free energy at fixed mass, then one finds
that there is no global minimum of free energy. There is not
even an extremum of free energy (canceling the first variations
of free energy at fixed mass) below a critical temperature Tc =
GMm/2.52kBR discovered by Emden [34]. The absence of a
minimum of free energy leads to an isothermal collapse [35].
From statistical mechanics arguments, the end-product of this
gravitational collapse is expected to be a Dirac peak contain-
ing all the mass since this structure has an infinite free energy.
This has actually been proven rigorously by Kiessling [36].
Chavanis et al. [37,38] studied the dynamical evolution of
the isothermal collapse for T < Tc in the canonical ensemble
(fixed temperature) by solving numerically and analytically
the Smoluchowski-Poisson system describing a gas of self-
gravitating Brownian particles in an overdamped limit. They
found that the pre-collapse is self-similar and that the density
profile develops a finite time singularity. The central density
becomes infinite in a finite time, scaling as ρ ∼ r−2, but the
core mass M0(t ) ∼ (tcoll − t )1/2 tends to zero at the collapse
time. Therefore, “the central singularity contains no mass” in
apparent contradiction with the thermodynamical expectation.
In fact, the collapse continues after the singularity and a
Dirac peak containing all the mass is finally formed in the
post-collapse regime [39]. On the other hand, at sufficiently

3Heggie and Stevenson [24] confirmed these results by constructing
self-similar solutions of the orbit-averaged-Fokker-Planck equa-
tion in the pre-collapse and post-collapse regimes.

high temperatures T > Tc, there exist statistical equilibrium
states in the form of local free-energy minima at fixed mass
(there may also be saddle points of free energy but they are
unstable) [35]. These states are metastable but they are very
long lived since their lifetime scales like eN [26]. Therefore,
these gaseous states can, again, play an important role in the
dynamics. The self-gravitating Brownian gas may describe the
evolution of planetesimals in the solar nebula in the context
of planet formation. In that case, the particles experience a
friction with the gas and a stochastic force due to Brownian
motion or turbulence [40]. If the gas of particles is sufficiently
dense (e.g., at special locations such as large-scale vortices),
then self-gravity becomes important leading to gravitational
collapse and planet formation.

The caloric curve of classical self-gravitating systems has
the form of a spiral and the stability of the equilibrium states
can be determined by using the Poincaré turning point crite-
rion [15,41,42]. It is then found that the equilibrium states in
the canonical ensemble become unstable after the first turning
point of temperature Tc (corresponding to a density contrast
of 32.1) while the equilibrium states in the microcanonical
ensemble become unstable later, after the first turning point of
energy Ec (corresponding to a density contrast of 709). There-
fore, the statistical ensembles are inequivalent [15,32,33],
which is a fundamental feature of systems with long-range
interactions [8]. For classical self-gravitating systems, the re-
gion of ensemble inequivalence corresponds to a region of
negative specific heats which is allowed (stable) in the micro-
canonical ensemble but forbidden (unstable) in the canonical
ensemble.

Since the core collapse of classical point masses leads to
a singularity (a binary star in the microcanonical ensemble
or a Dirac peak in the canonical ensemble), some authors
have studied what happens when a physical short-range reg-
ularization is introduced in the problem. In that case, we
expect a phase transition between a gaseous (dilute) phase
which is independent of the small-scale regularization and
a condensed phase in which the small-scale regularization
plays a prevalent role. Aronson and Hansen [43] considered
the case of a self-gravitating hard-sphere gas in the canonical
ensemble, modeled by a van der Waals equation of state,
and evidenced a first-order canonical phase transition when
the filling factor μ = R/R∗ (where R is the system size and
R∗ ∼ N1/3a is the radius of a compact object in which all
the particles of size a are packed together) is sufficiently
large. In the condensed phase, the equilibrium state has a
“core-halo” structure with a dense solid core surrounded by
a dilute atmosphere. Their study was followed by Stahl et al.
[44] who used a more accurate equation of state and discussed
interesting applications to planet formation. These authors
considered both canonical and microcanonical ensembles and
evidenced a first-order microcanonical phase transition in the
case of very large filling factors. Instead of considering a
classical hard-sphere gas, one can also consider a gas of self-
gravitating fermions described by the Fermi-Dirac statistics.
This system can have application in the context of white dwarf
stars [45], neutron stars [46,47], and dark matter halos made
of massive neutrinos [48–54]. In that case, the Pauli exclusion
principle creates an “effective” repulsion between the particles
and plays a role similar to that played by the core radius of
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classical particles in a hard sphere gas.4 For self-gravitating
fermions, the end-product of the collapse is a “core-halo”
structure with a degenerate core (equivalent to a polytrope
of index n = 3/2) surrounded by a dilute atmosphere. In the
context of dark matter halos, the quantum core is called a
“fermion ball.” The statistical mechanics of self-gravitating
fermions was first considered by Hertel and Thirring [57]
who showed rigorously (in a mathematical sense) that the
mean-field approximation is exact in a proper thermodynamic
limit. In another paper, Hertel and Thirring [58], and later
Bilic and Viollier [59], discussed first-order canonical phase
transitions in the self-gravitating Fermi gas but did not ev-
idence first-order microcanonical phase transitions in their
study. Chavanis [60] performed an exhaustive study of phase
transitions in the self-gravitating Fermi gas in both canon-
ical and microcanonical ensembles and explored the whole
range of parameters. He showed the existence of two criti-
cal points, one in each ensemble. The control parameter can
be written as μ = 17.2587(R/R∗)3/2, where R is the system
size and R∗ = 0.181433 h2/(Gm8/3g2/3M1/3) is the radius of
a completely degenerate object of mass M at T = 0 (“white
dwarf”) determined by the Planck constant h̄ [5]. Since R∗
is fixed by quantum mechanics (for a given mass M), the
control parameter measures the size of the system R. For
large systems (μ > μMCP � 2670), there exist both micro-
canonical and canonical phase transitions (of zeroth and first
order), for systems of intermediate size (μCCP < μ < μMCP)
only canonical phase transitions exist, and for small systems
(μ < μCCP � 83) there is no phase transition at all. Other
types of small-scale regularization have been introduced and
lead to a similar phenomenology [61–65]. A review of phase
transitions in self-gravitating systems is given in Ref. [5].
These results have been extended to self-gravitating fermions
in general relativity [66–69]. They have also been discussed
in the context of the fermionic King model (avoiding the
artificial box) in Newtonian gravity [70] and general relativity
[71].

In the present work, we study the nature of phase transi-
tions in a self-gravitating classical gas of pointlike particles
in the presence of a central body. The central body could
mimic the effect of a black hole at the center of a galaxy
or at the center of a globular cluster. It could also represent
a rocky core (protoplanet) at the center of a giant gaseous
planet like Jupiter or Saturn. The central body prevents the
formation of singularities resulting from gravitational collapse
and plays a role similar to that of a short-range regularization.
There exists an equilibrium state for all accessible values
of energy and temperature but canonical and microcanonical
phase transitions can take place between a gaseous phase and
a condensed phase. The condensed phase has the structure of a
giant gaseous planet with a solid core surrounded by an atmo-
sphere.5 The atmosphere has a “cusp-halo” structure, where
the cusp corresponds to the rapid increase of the density of
the gas at the contact with the central body. For a fixed density

4One can also consider a Fermi-Dirac distribution in configuration
space leading to qualitatively similar results [55,56].

5It can also describe the structure of a star cluster (galactic nucleus,
globular cluster...) harboring a central black hole.

ρ∗ of the central body (and a fixed system size R), we show
the existence of two critical points in the phase diagram, one
in each ensemble, depending on the core radius R∗. For small
radii R∗ < RMCP

∗ , there exist both microcanonical and canon-
ical phase transitions (that are zeroth and first order). For
intermediate radii RMCP

∗ < R∗ < RCCP
∗ , only canonical phase

transitions are present. Finally, for large radii R∗ > RCCP
∗ ,

there is no phase transition at all.6 This is qualitatively similar
to the results previously obtained for self-gravitating fermions
[5]. We also study how the canonical and microcanonical
critical points RCCP

∗ and RMCP
∗ depend on the density of the

central body ρ∗.
Our results can have applications for the problem of

chemotaxis in biology [72,73]. Indeed, there exists a remark-
able analogy between self-gravitating systems and bacterial
populations [74]. In this analogy, the density of the gas ρ(r, t )
is the counterpart of the density of bacteria ρ(r, t ), and minus
the gravitational potential −�(r, t ) is the counterpart of the
concentration c(r, t ) of the chemical (“pheromone”) produced
by the bacteria (see Appendix A). As a result, the counterpart
of a central mass M∗ (black hole, protoplanet,...) giving rise to
an external gravitational force −∇�ext is a supply of “food”
(chemoattractant) giving rise to a chemical drift ∇cext (r).
Therefore, our study can have applications in biology up to
a straightforward change of notations.

In this article, we will use the notations of astrophysics
to make the connection with previous studies. We will es-
sentially consider the spatial dimension d = 3 which is the
most relevant dimension in astrophysics, and which leads
to the richest variety of phase transitions. It corresponds
to spherical halos and stars [45]. However, the dimension
d = 2 corresponding to cosmic filaments [75,76] and the di-
mension d = 1 corresponding to sheets or pancakes [77,78]
have also been considered in astrophysics and thermodynam-
ics [1,38,79–84]. On the other hand, the dimension d = 2
is particularly relevant in biology [85] since cells of bac-
teria can be cultured on a petri dish. We will therefore
study how the nature of phase transitions changes as a
function of the dimension of space. A similar study of the
effect of the dimension of space on the nature of gravi-
tational phase transitions has been performed in Ref. [38]
for classical self-gravitating systems, in Refs. [86–89] for
self-gravitating fermions and bosons, and in Refs. [55,56]
for particles with an exclusion constraint in position
space.

The paper is organized as follows. In Sec. II we derive
the basic equations determining the equilibrium structure of
a self-gravitating isothermal gas around a central body. In
Sec. III we plot the caloric curves of this self-gravitating
gas in d = 3 dimensions and study the corresponding phase
transitions. In Sec. IV we briefly consider the case of the
dimensions d = 1 and d = 2. The Appendices regroup use-
ful formulas that are needed in the theoretical part of the
paper.

6One could equivalently fix the radius of the central body and
increase the system size.
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II. EQUILIBRIUM STRUCTURE OF A
SELF-GRAVITATING ISOTHERMAL GAS

AROUND A CENTRAL BODY

A. The maximum entropy principle

We consider a system of N pointlike particles of mass m
interacting via Newtonian gravity in a space of dimension d .
We allow for the presence of a spherically symmetric central
body of mass M∗ and radius R∗. This central body may mimic
a black hole at the center of a galaxy or at the center of a
globular cluster. It may also describe a rocky core surrounded
by a gas (atmosphere) in the context of planet formation.
The particles are enclosed within a spherical box of radius
R to prevent the evaporation of the gas and make a statisti-
cal equilibrium state well-defined.7 Physically, a gas is never
completely isolated from the surrounding. Therefore, the box
can play the role of a tidal radius in the case of globular
clusters and dark matter halos8 or represent the Hill sphere
in the context of planet formation. The Hamiltonian of the
self-gravitating system is

H =
∑

i

1

2
mv2

i + m2
∑
i< j

u(|ri − r j |) + m
∑

i

�ext (ri ), (1)

where i = 1, . . . , N runs over the particles of the gas. The
first term is the kinetic energy, the second term represents
the interaction energy of the particles of the gas and the third
term takes into account the interaction between the gas and
the central body. The gravitational potential of interaction in
d dimensions is given by

u(|r − r′|) = − 1

d − 2

G

|r − r′|d−2
(d �= 2), (2)

u(|r − r′|) = G ln
|r − r′|

R
(d = 2). (3)

We treat the influence of the central body as an external
potential (see Appendix B):

�ext (r) = − 1

d − 2

GM∗
rd−2

(d �= 2), (4)

�ext (r) = GM∗ ln
( r

R

)
(d = 2). (5)

Let f (r, v) denote the distribution function of the system,
i.e., f (r, v)drdv gives the mass of the particles of the gas
whose position and velocity are in the cell (r, v; r + dr, v +
dv). The integral of f over the velocity determines the spatial
density ρ = ∫

f dv. The total mass of the gas is

M =
∫

ρ dr. (6)

7In d = 3 dimensions, there is no statistical equilibrium state in
an infinite domain (there are not even extrema of entropy at fixed
mass and energy with a finite mass). In d = 1 and d = 2 dimensions,
there exist statistical equilibrium states in an infinite domain that are
studied analytically in a companion paper [90]. In the present paper,
we shall only consider systems enclosed within a box of size R.

8An alternative to the box would be to consider a truncated Michie-
King model [28,29] like in Refs. [30,31,70].

The spatial integral extends only in the region surrounding the
central body, i.e., in the region R∗ < r < R covered by the
gas. We consider a proper thermodynamic limit N → +∞ for
self-gravitating systems in such a way that the rescaled energy
and the rescaled temperature

� = −ERd−2

GM2
, η = βGMm

Rd−2
, (7)

are independent on N . We also introduce the parameters

μ = M∗
M

, ζ = R∗
R

, (8)

which represent the normalized mass and the normalized
radius of the central body. In the N → +∞ limit,9 the mean-
field approximation is exact, except close to a critical point
[1–8]. Therefore, ignoring the correlations between the parti-
cles of the gas, the total energy of the system can be expressed
as

E = 1

2

∫
f v2 drdv + 1

2

∫
ρ� dr +

∫
ρ�ext dr, (9)

where �ext (r) is the potential created by the central body
and �(r) is the gravitational potential created by the gas
(see Appendix B). For R∗ � r � R, they are respectively the
solutions of the Laplace equation

��ext = 0, (10)

and the Poisson equation

�� = Sd Gρ, (11)

where Sd = 2πd/2/
(d/2) is the surface of a unit sphere in
d dimensions. The energy E = Ekin + Wtot of the gas is the
sum of its kinetic energy Ekin = (1/2)

∫
f v2 drdv and its total

potential energy Wtot = W + Wext, where W = (1/2)
∫

ρ� dr
is the self-gravitating energy of the gas and Wext = ∫

ρ�ext dr
is the gravitational energy of the gas in the potential created
by the central body (see Appendix B).

For isolated Hamiltonian systems, the mass and the energy
are conserved and the thermodynamical potential is the Boltz-
mann entropy10

SB = −kB

∫
f

m
ln

f

m
drdv. (12)

The Boltzmann entropy SB = kB lnW measures the “disor-
der” of the system. It is proportional to the logarithm of
the number W ({ni}) of microstates corresponding to a given
macrostate [92]. At statistical equilibrium, the system is in
the most mixed state consistent with all the constraints of the
dynamics. Therefore, if the system is isolated, then the equi-
librium state maximizes the Boltzmann entropy SB at fixed
mass M and energy E (microcanonical description). We thus

9A relevant scaling is N → +∞ with m ∼ 1/N , R ∼ 1, G ∼ 1,
E ∼ 1 and T ∼ 1/N (see Appendix A in Ref. [91]).

10The entropy is defined up to an additive constant (not important
in our case), which explains why the argument of the logarithm is not
dimensionless.
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have to solve the maximization problem

max
f

{SB[ f ] | E [ f ] = E , M[ f ] = M}. (13)

Alternatively, if the system is in contact with a heat bath im-
posing the temperature T , then only the mass is conserved and
the thermodynamical potential is the Boltzmann free energy
FB = E − T SB. It is often more convenient to work with the
Massieu function

JB = SB

kB
− βE , (14)

where β = 1/(kBT ) is the inverse temperature. The Massieu
function is the Legendre transform of the entropy with respect
to the energy. If the system is in contact with a heat bath,
then the equilibrium state maximizes the Massieu function J
at fixed mass M (canonical description). We thus have to solve
the maximization problem

max
f

{JB[ f ] | M[ f ] = M}. (15)

The microcanonical ensemble is the proper description for
(isolated) Hamiltonian systems and the canonical ensemble is
the proper description for (dissipative) Brownian systems [5].

The extrema of entropy at fixed mass and energy (canceling
the first-order variations of entropy under constraints) are
determined by the variational principle

δSB

kB
− βδE − α0δM = 0, (16)

where β and α0 are Lagrange multipliers associated with the
conservation of E and M. The extrema of Massieu function
at fixed mass (canceling the first-order variations of Massieu
function under constraints) are determined by the variational
principle

δJB − α0δM = 0, (17)

where α0 is a Lagrange multiplier associated with the conser-
vation of M. Using the identities

δSB = −kB

∫
δ f

m

(
ln

f

m
+ 1

)
drdv, (18)

δE = 1

2

∫
δ f v2 drdv +

∫
�δρ dr +

∫
�extδρ dr, (19)

δM =
∫

δ f drdv, (20)

we find that the variational principles (16) and (17) lead to the
mean-field Maxwell-Boltzmann distribution

f = A′e−βm[v2/2+�(r)+�ext (r)], (21)

where A′ = me−α0m−1. Introducing the local (kinetic) pres-
sure P(r) = 1

d

∫
f v2 dv (see Appendix C), we find that the

barotropic equation of state corresponding to the distribution
(21) is that of an isothermal gas

P(r) = ρ(r)
kBT

m
. (22)

As a result, the velocity dispersion 〈v2〉 = dP/ρ = dkBT/m
is constant. Integrating Eq. (21) over the velocity, we find that

the spatial density is the mean-field Boltzmann distribution

ρ = Ae−βm[�(r)+�ext (r)], (23)

where A = (2π/βm)d/2A′. Therefore, combining Eqs. (11)
and (23), the structure of the gas around the central body is
obtained by solving the Boltzmann-Poisson equation

�� = Sd GAe−βm(�+�ext ), (24)

with appropriate boundary conditions (see below), and by
relating the Lagrange multipliers to the constraints. We can
then plot the series of equilibria β(E ) for given values of M∗
and R∗ (or in dimensionless form η(�) for given μ and ζ ).
The control parameter is E in the microcanonical ensemble
and β in the canonical ensemble. The stable region of the
series of equilibria defines the caloric curve in the considered
ensemble. Note that the extrema (regarding the first variations)
of the entropy SB at fixed E and M, and the extrema of the
Massieu function JB at fixed T and M are the same, and
both determine a self-gravitating isothermal gas. However, the
stability of the gas (regarding the second variations of SB or JB

with appropriate constraints) may differ in the microcanonical
(fixed E ) and canonical (fixed T ) ensembles. When this hap-
pens, this is referred to a situation of ensemble inequivalence.
It can be shown that canonical stability [Eq. (15)] implies
microcanonical stability [Eq. (13)], but the converse is in
general false for systems with long-range interactions [93,94].
For example, negative specific heats are forbidden in the
canonical ensemble while they are allowed in the microcanon-
ical ensemble. Therefore, canonical stability only provides
a sufficient condition of microcanonical stability. Ensemble
inequivalence and phase transitions in self-gravitating systems
is well-documented in the absence of a central body [1–5]. We
shall study how the presence of a central body affects these
results.

B. The Emden equation

Introducing the total gravitational potential

�tot = � + �ext, (25)

and using Eq. (10), we can rewrite the Boltzmann-Poisson
equation (24) as

��tot = Sd GAe−βm�tot . (26)

It can be shown that the maximum entropy state of a nonrotat-
ing self-gravitating system is spherically symmetric [9].11 In
that case, we can rewrite the foregoing equation as

1

rd−1

d

dr

(
rd−1 d�tot

dr

)
= Sd GAe−βm�tot . (27)

11This result is valid for a self-gravitating system without central
body. In the presence of a central body that creates an excluded
region for the self-gravitating system, we can wonder if there can be a
symmetry-breaking phase transition toward an equilibrium state that
is not spherically symmetric and if this state can be (meta)stable. This
interesting possibility will not be considered in the present paper.
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It has to be solved with the boundary condition

d�tot

dr
(R∗) = d�ext

dr
(R∗) = GM∗

Rd−1∗
, (28)

resulting from Eq. (B2) and the fact that d�/dr(R∗) =
0, since ρ = 0 for r � R∗ (see Appendix D). Multiplying
Eq. (27) by rd−1, integrating between R∗ and r, and using
the boundary condition (28), we obtain the integrodifferential
equation

rd−1 d�tot

dr
= GM∗ + GA

∫ r

R∗
e−βm�tot (r′ )Sd r′d−1 dr′. (29)

This equation can also be written as

d�tot

dr
= GMtot (r)

rd−1
, (30)

where

Mtot (r) = M∗ + M(r) = M∗ +
∫ r

R∗
ρ(r′)Sd r′d−1 dr′ (31)

is the total mass contained within the sphere of radius r. This
is Newton’s law in d dimensions (see Appendix D).

To determine the structure of the isothermal gas, we intro-
duce the function

ψ = βm(�tot − �tot,0), (32)

where �tot,0 = �tot (R∗) is the total gravitational potential at
r = R∗. Then, the density can be written as

ρ = ρ0e−ψ, (33)

where ρ0 = ρ(R∗) is the density of the gas at the contact with
the central body. By an abuse of language, ρ0 will be called
the central density and �tot,0 will be called the central total
gravitational potential. Introducing the dimensionless radius

ξ = (Sd Gβmρ0)1/2r, (34)

the Boltzmann-Poisson equation (27) reduces to the form

1

ξ d−1

d

dξ

(
ξ d−1 dψ

dξ

)
= e−ψ, (35)

which is called the Emden equation [34,45]. In the presence
of a central body, this equation has to be solved with the
boundary conditions [see Eq. (28)]

ψ (ξ0) = 0, ψ ′(ξ0) = η0

ξ0
, (36)

where we have defined

ξ0 = (Sd Gβmρ0)1/2R∗, η0 = βGM∗m/Rd−2
∗ . (37)

In the absence of a central body, the boundary conditions are
replaced by ψ (0) = ψ ′(0) = 0 [34,45]. The Emden equation
(35) can also be written in the form of an integrodifferential
equation [see Eq. (29)]

ξ d−1 dψ

dξ
= η0ξ

d−2
0 +

∫ ξ

ξ0

e−ψ (ξ ′ )ξ ′d−1 dξ ′. (38)

The Emden equation (35) must be solved numerically (see
Fig. 1). We can however easily determine the asymptotic

10-2 100 102 104

ξ

10-8

10-6

10-4

10-2

100

e-ψ

ξ0 = 10

ξ0 = 0.1ξ0 = 0.01 ξ0 = 1

d = 3
η0 = 5

ξ0 = 5

10-2 100 102 104

ξ

10-8

10-6

10-4

10-2

100

e-ψ

d = 3
η0 = 0

ξ0 = 10

ξ0 = 5

ξ0 = 0.01
ξ0 = 1

(a)

(b)

FIG. 1. Dimensionless density profile e−ψ that is the solution of
the Emden equation with a central body in d = 3 dimensions. We
have selected η0 = 5 and η0 = 0 (hole) for illustration.

behaviors of the solutions. For ξ → ξ0, we can expand the
solution in Taylor series and we find that

ψ (ξ ) = η0

ξ0
(ξ − ξ0) + 1

2

[
1 − (d − 1)η0

ξ 2
0

]
(ξ − ξ0)2

+ 1

6

[
1 − d − η0

ξ0
+ d (d − 1)η0

ξ 3
0

]
(ξ − ξ0)3

− 1

24

[
1 + 1 − d2 − 2(d − 1)η0 − η2

0

ξ 2
0

+ (d − 2)(d − 1)2η0

ξ 4
0

]
(ξ − ξ0)4 + O[(ξ − ξ0)5].

(39)

Therefore, when η0 �= 0 and ξ0 �= 0, the density profile of the
gas close to the central body behaves as

ρ ∼ ρ0e− η0
ξ0

(ξ−ξ0 ) (ξ → ξ0). (40)

It presents a spike which is clearly visible in Fig. 1(a). By
contrast, when η0 = 0 and ξ0 �= 0 (hole), the density profile
of the gas close to the central body behaves as

ρ ∼ ρ0e− 1
2 (ξ−ξ0 )2

(ξ → ξ0). (41)
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In that case, it presents a core [see Fig. 1(b)]. Moreover, for
d > 2, the asymptotic behavior of the solution for ξ → +∞
is the same as for the isothermal self-gravitating gas without a
central body [38]. The reason is that an unbounded isothermal
self-gravitating gas carries out an infinite mass so the effect
of the central body becomes negligible at sufficiently large
distances. As a result, the solution behaves as [38]

e−ψ ∼ 2(d − 2)

ξ 2
for ξ → +∞. (42)

The particular dimensions d = 1 and d = 2 are treated specif-
ically in a companion paper [90].

C. The fundamental equation of hydrostatic equilibrium

We can obtain the spatial structure of a self-gravitating
gas surrounding a central body in a different (but equivalent)
manner by starting directly from the condition of hydrostatic
equilibrium (for R∗ < r < R):

∇P + ρ∇�tot = 0. (43)

Dividing Eq. (43) by ρ, taking its divergence, and using the
Poisson equation

��tot = Sd Gρ, (44)

we obtain

∇ ·
(∇P

ρ

)
= −Sd Gρ, (45)

which is the fundamental equation of hydrostatic equilibrium.
For the isothermal equation of state (22), it takes the form

kBT

m
� ln ρ = −Sd Gρ. (46)

For a spherically symmetric distribution, we get

1

rd−1

d

dr

(
rd−1 d ln ρ

dr

)
= −SdβGmρ, (47)

with the boundary condition(
d ln ρ

dr

)
(R∗) = −βm

GM∗
Rd−1∗

(48)

obtained from Eqs. (22), (28), and (43). Writing ρ(r) =
ρ0e−ψ (ξ ) with the variables ψ and ξ defined previously, we
recover the Emden equation (35) with the boundary condition
(36). The two descriptions are of course equivalent since the
condition of hydrostatic equilibrium (43) can be obtained
by taking the logarithmic derivative of Eq. (23) and using
Eq. (22). More generally, it is satisfied by any distribution
function that only depends on the individual energy of the
particles: f (r, v) = f (ε) where ε = v2/2 + �(r) (see Ap-
pendix C).

D. The Milne variables

Let us introduce the analog of the Milne variables

u = d ln Mtot (r)

d ln r
, v = −d ln P(r)

d ln r
, (49)

where Mtot (r) = M(r) + M∗ is the total mass enclosed within
the sphere of radius r and P(r) = ρ(r)kBT/m is the local

0 0.5 1 1.5 2 2.5 3
u

0

1

2

3

4

5

v

d = 3
η0 = 5

ξ0 = 0.01ξ0 = 1

ξ0 = 0.1

FIG. 2. Solution of the Emden equation with a central body in
the (u, v) plane in d = 3 dimensions (we have selected η0 = 5 for
illustration).

pressure. Using the equalities GMtot (r) = rd−1d�tot/dr and
dMtot/dr = Sd rd−1ρ(r) (see Appendix D), we easily find
that

u = ξe−ψ

ψ ′ , v = ξψ ′. (50)

Therefore, the Milne variables keep the same form as in the
absence of central body [38,45]. They satisfy the first-order
differential equation

u

v

dv

du
= 2 − d + u

d − u − v
. (51)

The (u, v) curves are parameterized by ξ . They start from
(ξ 2

0 /η0, η0) for ξ = ξ0 and end at (d − 2, 2) for ξ → +∞ (if
d > 2). An example of (u, v) curve is shown in Fig. 2.

E. The thermodynamical parameters

For d > 2, there is no global entropy maximum at fixed
mass and energy in an unbounded domain. The isothermal gas
surrounding the central body has the tendency to evaporate,
leading to higher and higher values of entropy as the volume
that it occupies increases. There are not even extrema of
entropy at fixed mass and energy in an unbounded domain
because the solutions of the Boltzmann-Poisson equation (24)
have infinite mass. As in the case without central body, we
shall confine the gas within a box of radius R. The box de-
limitates the region where the system is isolated from the sur-
rounding so that thermodynamical arguments can be applied.
It can mimic the effect of a tidal radius for globular clusters
and dark matter halos, or represent the Hill sphere in the
context of planet formation. In the context of the chemotaxis
of bacterial populations, the box has a physical justification as
it represents the domain containing the bacteria.

In a bounded domain, the solutions of the Emden equation
(35) are terminated by the box at a normalized radius given by

α = (Sd Gβmρ0)1/2R. (52)
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Using Eqs. (8) and (52), we can rewrite Eq. (37) as

ξ0 = αζ , η0 = ημ

ζ d−2
. (53)

We shall now relate α to the dimensionless temperature η and
to the dimensionless energy �.

1. The temperature

According to the Newton law (30) applied at r = R, we
have

d�tot

dr
(R) = G(M∗ + M )

Rd−1
, (54)

where M is the total mass of the gas. Introducing the variables
defined previously and using ξ = rα/R, the foregoing relation
can be rewritten as

η = αψ ′(α)

1 + μ
. (55)

This relation can also be obtained by substituting the Boltz-
mann distribution (33) into the mass constraint (6) and by
using the Emden equation (35).

2. The energy

The computation of the energy is a little more intri-
cate. Using the Maxwell-Boltzmann distribution (21), or the
isothermal equation of state (22), the kinetic energy

Ekin =
∫

f
v2

2
drdv = d

2

∫
P dr (56)

is given by

Ekin = d

2
NkBT, (57)

just like for a noninteracting (perfect) gas. Therefore, the
dimensionless kinetic energy is

−EkinRd−2

GM2
= − d

2η
. (58)

The potential energy Wtot = W + Wext is given by

Wtot = 1

2

∫
ρ� dr +

∫
ρ�ext dr. (59)

Using Eq. (25) it can be rewritten as

Wtot = 1

2

∫
ρ�tot dr + 1

2

∫
ρ�ext dr. (60)

We shall compute the potential energy in two different
manners, either by using the virial theorem or by directly eval-
uating the integral (60). The first approach based on the virial
theorem is only valid for d �= 2 while the second approach is
general.

For d �= 2, it is shown in Appendix B that the virial
theorem for a self-gravitating gas in hydrostatic equilibrium
surrounding a central body can be written as

2Ekin + (d − 2)Wtot = dP(R)V − dP(R∗)V∗, (61)

where V = Sd Rd/d is the volume of the box enclosing the gas
and V∗ = Sd Rd

∗/d is the volume of the central body. This rela-
tion is valid for a general equation of state. For the isothermal

equation of state (22), we obtain

2Ekin + (d − 2)Wtot = Sd (ρ(R)Rd − ρ0Rd
∗ )

kBT

m
, (62)

where the first term (kinetic energy) is given by Eq. (57). This
equation then determines the potential energy Wtot. Introduc-
ing the dimensionless variables defined previously, we get

−WtotRd−2

GM2
= α2

(d − 2)η2
(ζ d − e−ψ (α) ) + d

d − 2

1

η
. (63)

The total energy is E = Ekin + Wtot. Adding Eqs. (58) and
(63), we find that the total dimensionless energy is given by

� = 4 − d

d − 2

d

2η
+ α2

(d − 2)η2
(ζ d − e−ψ (α) ) (d �= 2). (64)

It can be useful to obtain another expression of the energy.
Introducing the dimensionless variables defined previously in
the expression of the potential energy (60), and using Eq. (B3)
for d �= 2, we find that the dimensionless potential energy can
be written as

−WtotRd−2

GM2
= − 1

2η2αd−2

∫ α

αζ

(ψ + ψ∗)e−ψξ d−1 dξ

+ μ

2(d − 2)η

∫ α

αζ

e−ψξ dξ . (65)

The quantity ψ∗ ≡ βm�tot (R∗) is obtained by evaluat-
ing ψ (ξ ) = βm�tot (r) − ψ∗ at ξ = α, using �tot (R) =
−[1/(d − 2)]GMtot/Rd−2 (see Appendix D) for d �= 2. This
yields

ψ∗ = −η(1 + μ)

d − 2
− ψ (α). (66)

Adding Eqs. (58) and (65), we find that the total dimensionless
energy is given by

� = − d

2η
− 1

2η2αd−2

∫ α

αζ

(ψ + ψ∗)e−ψξ d−1 dξ

+ μ

2(d − 2)η

∫ α

αζ

e−ψξ dξ (d �= 2). (67)

This expression is equivalent to Eq. (64), but it is more com-
plicated since it involves new integrals. However, the present
method can be generalized in d = 2 dimensions.

Using Eq. (B4) for d = 2, the dimensionless potential en-
ergy (60) can be written as

− Wtot

GM2
= − 1

2η2

∫ α

αζ

(ψ + ψ∗)e−ψξ dξ

− μ

2η

∫ α

αζ

e−ψ ln(ξ/α)ξ dξ . (68)

The quantity ψ∗ ≡ βm�tot (R∗) is obtained by evaluating
ψ (ξ ) = βm�tot (r) − ψ∗ at ξ = α, using �tot (R) = 0 (see
Appendix D). This yields

ψ∗ = −ψ (α). (69)
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Adding Eqs. (58) and (68), we find that the total dimensionless
energy is given by

� = −1

η
− 1

2η2

∫ α

αζ

(ψ + ψ∗)e−ψξ dξ + 1

2
μ ln α

− μ

2η

∫ α

αζ

e−ψξ ln ξ dξ (d = 2). (70)

The virial theorem in d = 2 is discussed in Ref. [90].

F. Entropy and free energy

The entropy and the free energy (or Massieu function)
of the equilibrium state can be calculated as follows. From
Eqs. (12) and (21) we get

SB/kB = α0M +
(

d

2
+ 1

)
N + 2βW + βWext, (71)

where we have used Eqs. (56) and (57). Applying Eq. (23) at
r = R and using Eqs. (7), (33), (52) and �(R) + �ext (R) =
−G(M + M∗)/[(d − 2)Rd−2] for d �= 2 or �(R) + �ext (R) =
0 for d = 2 [see Eqs. (B3), (B4), (D9), and (D10)], we find
that

α0m = −2 ln α −
(

d

2
− 1

)
ln η + ψ (α) + η

d − 2
(1 + μ)

+ ln[(2π )d/2Sd Gd/2M (d−2)/2mR(4−d )d/2] − 1. (72)

We also have

E = d

2
NkBT + Wtot, (73)

with Wtot = W + Wext. From Eqs. (7) and (73) we obtain

2βW + βWext = −2N�η − dN − βWext. (74)

Substituting Eqs. (72) and (74) into Eq. (71) we find that

SB/NkB = −
(

d

2
− 1

)
ln η − 2 ln α + ψ (α)

+ 1

d − 2
(1 + μ)η − 2�η − d

2
− βWext

N

+ ln[(2π )d/2Sd Gd/2M (d−2)/2mR(4−d )d/2]. (75)

The term βWext/N can be obtained from Eqs. (8), (33), (34),
(53), (B3), and (B4), yielding

βWext

N
= − 1

d − 2
μ

∫ α

αζ

e−ψξ dξ (d �= 2), (76)

βWext

N
= μ

∫ α

αζ

e−ψ ln(ξ/α)ξ dξ (d = 2). (77)

The Massieu function (14) is then given by

JB

N
= SB

NkB
+ �η. (78)

G. The structure of the gas profile close to the central body

In this section, we determine the profile of the gas in the
vicinity of the central body. The density profile of the isother-
mal gas is given by the Boltzmann distribution

ρ(r) = Ae−βm�tot (r), (79)

where �tot = � + �ext is the total gravitational potential. For
r → R∗, the gravitational potential is dominated by the con-
tribution of the central body �ext (r) so that12

�tot (r) � − 1

d − 2

GM∗
rd−2

(d �= 2), (80)

�tot (r) � GM∗ ln(r/R) (d = 2). (81)

For d = 1, we find that the density profile close to the
central body increases exponentially rapidly as

ρ(x) = ρ0e−(x−R∗ )/ε (82)

on a typical length scale

ε = 1

βGmM∗
. (83)

This corresponds to a “cusp” since the first derivative
ρ ′(R∗) = −ρ0/ε of the density profile is nonzero at x = R∗.
This solution remains valid if the central body is a Dirac mass
(R∗ = 0) in which case ρ = ρ0e−x/ε for x → 0 [90].

For d = 2, we find that the density profile close to the
central body increases like a power law:

ρ(r) = ρ0

(
R∗
r

)βGM∗m

. (84)

Again, we have a cusp since ρ ′(R∗) = −βGM∗mρ0/R∗ �= 0.
This power-law behavior remains valid if the central body
is a Dirac mass (R∗ = 0) in which case ρ(r) = Ar−βGM∗m.
The density diverges at r = 0 and the profile is normalizable
provided that βGM∗m < 2 [90].

For d = 3, we find that the density profile close to the
central body is

ρ(r) = ρ0eβGM∗m( 1
r − 1

R∗ ). (85)

We note that the density profile is not normalizable in the case
where the central body is a Dirac mass (R∗ = 0). For r → R∗,
we find that the density profile increases exponentially rapidly
as

ρ(r) = ρ0e−(r−R∗ )/ε (86)

on a typical length scale

ε = R2
∗

βGM∗m
. (87)

Therefore, at the contact with the central body, there is a
density spike (or cusp) of the gas on a typical length ε since
ρ ′(R∗) = −ρ0/ε �= 0. Then, taking r → +∞ in Eq. (85), we
find that the spike is followed by a plateau where the density
is nearly constant:

ρ = ρ0e− βGM∗m
R∗ . (88)

This plateau extends on a typical length L such that the mass
of gas contained in this region becomes comparable to the
mass of the central body. This corresponds to the condition

ρ0e− βGM∗m
R∗ 4

3π (L3 − R3
∗) = M∗. (89)

12A better approximation may consist in replacing M∗ by Mtot (r) in
the following formulas.
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If R∗ � L, then we get the estimate

L �
(

3M∗
4πρ0

)1/3

e
βGM∗m

3R∗ . (90)

For r > L, the self-gravity of the gas must be taken into
account and, at large distances, the density decreases with
a typical r−2 behavior corresponding to the standard self-
gravitating isothermal sphere [45]. This “cusp + plateau +
halo” structure (or simply “cusp-halo” structure) is clearly
visible in Fig. 1. These results are similar to those found in the
case of self-gravitating fermions [60,95] where the role of the
central body is played by the completely degenerate fermion
ball (quantum core).

From these considerations, we can distinguish four types
of configurations which are reminiscent of the morphology of
certain objects in planetology:

(i) If the mass of the central body is small (or if there is no
central body) and if the gas is not too dense, then we have a
non-self-gravitating homogeneous gas that could represent a
diffuse nebula.

(ii) If the mass of the central body is large and if the gas
is not too dense, then we have a non-self-gravitating gas ex-
periencing only the gravitational potential of the central body
(solid planetary core). The density of the gas increases rapidly
at the contact of the solid core and forms a spike. A massive
solid core surrounded by a tiny atmosphere corresponds to the
structure of telluric planets like the Earth.

(iii) If the mass of the central body is small (or if there is no
central body) and if the gas is sufficiently dense, then we have
a standard isothermal self-gravitating gas (isothermal sphere)
with a finite central density. It could represent a protoplanet.

(iv) If the mass of the central body is large and if the
gas is sufficiently dense, then we have a self-gravitating gas
experiencing the gravitational potential of the central body
(solid planetary core). The density of the gas increases rapidly
at the contact of the solid core and forms a spike. This thin
layer is then followed by an envelope held by its self-gravity.
This corresponds to the structure of giant planets like Jupiter
and Saturn.

Cases (i) and (iii) correspond to the “gaseous phase” where
the influence of the central object is weak. Cases (ii) and (iv)
correspond to the “condensed phase” where the influence of
the central object is strong. In that case, the density of the gas
is enhanced close to the solid core and forms a spike. The
gaseous phase and the condensed phase can themselves be
divided in two categories depending on whether the envelope
is self-gravitating or not.

The case of globular clusters and dark matter halos, which
are self-gravitating, corresponds to points (iii) and (iv) de-
pending whether they contain a central black hole or not.

H. The numerical procedure

To plot the series of equilibria η(�) for fixed external
parameters ζ and μ, we proceed as follows: (i) We fix ξ0

and make a guess η
guess
0 for η0; (ii) we solve the Emden

equation (35) with the boundary condition from Eq. (36) until
α = ξ0/ζ . This gives η and � according to the formulas of
Sec. II E and η0 = ημ/ζ d−2. We iterate this procedure until
the values of η

guess
0 and η0 coincide; (iii) in that case, the

chosen value of ξ0 determines α, η and �. By varying ξ0, we
can obtain the whole series of equilibria η(�) for given values
of ζ and μ.

III. CALORIC CURVES AND PHASE TRANSITIONS
IN THE PRESENCE OF A CENTRAL BODY

IN d = 3 DIMENSIONS

In this section, we describe phase transitions which take
place in a self-gravitating system with a central body in d = 3
dimensions. We fix the typical density of the central body,
ρ∗ = M∗/R3

∗, and plot the series of equilibria β(E ) for dif-
ferent values of the radius R∗ of the central body. We could
also fix the mass M∗ of the central body instead of its average
density, but we think that fixing the average density is more
relevant if we want to apply our results, for example, to
the problem of planet formation.13 Furthermore, the classical
isothermal gas without central body [9,15] is recovered for
R∗ → 0 with fixed ρ∗ while the limit R∗ → 0 with fixed M∗
corresponds to a central Dirac mass. This corresponds to a
very different situation.

The dimensionless density of the central body is

κ ≡ M∗R3

MR3∗
= μ

ζ 3
. (91)

We shall work with the dimensionless variables defined pre-
viously. However, it may be useful in the discussion to take
M = R = G = m = 1 (we can always introduce appropriate
scales to be in this situation). In that case, ζ = R∗ represents
the radius of the central body, κ = ρ∗ the density of the central
body, η = β the inverse temperature of the gas and � = −E
the energy of the gas (with the opposite sign). In the discus-
sion, we shall use the physical variables R∗, ρ∗, β, and E , and
in the figures, we shall use the dimensionless variables ζ , κ ,
η, and �.

In Figs. 3 and 4, we plot the curve β(E ) for a fixed central
body density ρ∗ and for different values of the central body
radius R∗. This curve contains all the extrema of entropy (re-
spectively, free energy) at fixed mass and energy (respectively,
temperature). For that reason, it is called the series of equilib-
ria. The series of equilibria is parameterized by the density
contrast R = ρ0/ρ(R) = eψ (α) between the central body and
the box. The stable part of this curve in each ensemble defines
the caloric curve. The series of equilibria (extremal states)
is the same in the canonical and microcanonical ensembles
while the caloric curve (stable states) can be different in case
of ensemble inequivalence. For R∗ → 0, we recover the clas-
sical spiral of a self-gravitating isothermal gas without central
body [1–5]. For finite R∗, the spiral unwinds and different
shapes are possible depending on the value of R∗. For R∗ <

RMCP
∗ , the curve has a Z-shape structure leading to zeroth and

first-order microcanonical and canonical phase transitions. At
the microcanonical critical point R∗ = RMCP

∗ , the microcanon-
ical phase transitions disappear. For RMCP

∗ < R∗ < RCCP
∗ , the

13Rocky cores have a given typical density ρ∗ = M∗/R3
∗ deter-

mined by their composition. By contrast, a central black hole has
a constant mass to radius ratio M∗/R∗ = c2/2G determined by the
Schwarzschild relation.
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FIG. 3. Series of equilibria at fixed central body density κ (we
have taken κ = 10 for illustration) for several values of the central
body radius ζ . As ζ increases, the series of equilibria unwinds. There
exists a microcanonical critical point (MCP) and a canonical critical
point (CCP) above which the microcanonical and the canonical phase
transitions respectively disappear.

curve has an N-shape structure leading to zeroth and first-
order canonical phase transitions. At the canonical critical
point R∗ = RCCP

∗ , the canonical phase transitions disappear.
Finally, for R∗ > RCCP

∗ , the curve is monotonic so that there
is no phase transition anymore. In that case, the statistical
ensembles are equivalent.

We see that the description of phase transitions in a
self-gravitating classical gas with a central body is very sim-
ilar to that already given for self-gravitating fermions [5].
The central body provides a small scale regularization of
the gravitational force that prevents complete collapse and
the formation of singularities. In that sense, it has an effect
similar to the Pauli exclusion principle in quantum mechanics
or to the core radius of the particles in a hard spheres gas.
Since the phenomenology is the same in all these situations,
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FIG. 4. Same as Fig. 3 for κ = 0 and ζ �= 0 (hole). This corre-
sponds to a system of self-gravitating particles contained in a volume
delimited by two shells at radii r = R∗ and r = R.
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FIG. 5. Series of equilibria for κ = 10 and ζ = 5 × 10−3 <

ζMCP. It has a characteristic Z-shape structure (“dinosaur’s neck”
[5]). There exists an equilibrium state for all accessible values of the
energy � � �max(ζ , κ ) in the microcanonical ensemble, and for all
values of temperature η � 0 in the canonical ensemble. However, in-
teresting phase transitions, described in the text, appear for energies
around �c and temperatures around ηc (see the following figures).

we shall be relatively brief and refer to the review [5] for
more details about phase transitions in self-gravitating sys-
tems. We note, however, that in the present case, the structure
of the series equilibria β(E ) depends on two parameters ρ∗
and R∗ characterizing the central body while in the case of
self-gravitating fermions there is only one parameter μ =
(gm4/h3)

√
512π4G3MR3 related to the inverse of the Planck

constant (μ ∼ 1/h̄3) or to the ratio μ ∼ (R/R∗)3/2 between
the system size R and the size R∗ of a fermion ball (a self-
gravitating Fermi gas at T = 0) with mass M. Furthermore,
in the present case, the central body is an external object
distinct from the gas while the fermion ball (or the solid core)
is created by the system itself. What plays the role of the
condensed object in the present context is the cusp at the
contact with the central body (there is also a cusp in the case
of self-gravitating fermions [95]).

A. The case of a small central body R∗ < RMCP
∗ in the

microcanonical ensemble: Z-shape structure

We first consider the case of a small central body R∗ <

RMCP
∗ so that the series of equilibria has a Z-shape structure

resembling a “dinosaur’s neck” [5] (see Figs. 5 and 6).
In this section, we consider the case of an isolated system

so that the control parameter is the energy and the relevant
statistical ensemble is the microcanonical ensemble. As ex-
plained previously, the series of equilibria contains all the
extrema of entropy at fixed mass and energy. The thermo-
dynamically stable states in the microcanonical ensemble
correspond to entropy maxima at fixed mass and energy (min-
ima or saddle points of entropy must be discarded). They
can be determined by applying the turning point method of
Poincaré (see, e.g., Refs. [4,5]). At very high energies, self-
gravity is negligible with respect to thermal motion (velocity
dispersion) and the system is equivalent to a noninteracting
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FIG. 6. Physical caloric curve in the microcanonical ensem-
ble (solid lines) containing stable (global entropy maxima) and
metastable (local entropy maxima) equilibrium states. Unstable sad-
dle points of entropy are represented by dotted lines.

gas in a box. We know from ordinary thermodynamics that
this gas is stable (entropy maximum). Therefore, using the
Poincaré criterion, we conclude that the upper branch of the
series of equilibria is stable (entropy maxima at fixed mass
and energy) until the first turning point of energy Ec where
the tangent is vertical. For sufficiently small values of R∗, this
is close to the Antonov energy −0.335 [1,9]. At that point,
the curve β(−E ) rotates clockwise so that a mode of stability
is lost.14 Therefore, the configurations in the intermediate
branch are unstable saddle points of entropy at fixed mass
and energy. However, at the second turning point of energy
E∗, the curve β(−E ) rotates anti-clockwise so that the mode
of stability is regained. Therefore, the lower branch is stable
(entropy maxima at fixed mass and energy). The energy E∗
depends on R∗ and tends to E∗(R∗) → +∞ when R∗ → 0.

Typical density profiles of the series of equilibria are
shown in Fig. 7. The states (A) on the upper branch have
an almost uniform density with a small density contrast R =
ρ(R∗)/ρ(R). They form the gaseous phase. At large distances,
their density profile decreases approximately like r−2. The
states (C) on the lower curve are highly inhomogeneous.
They present a high-density cusp at the contact with the
central body surrounded by a dilute atmosphere. Therefore,
the density contrast R = ρ(R∗)/ρ(R) is large. They form the
condensed phase. They have a “cusp-halo” structure which is
the counterpart of the “core-halo” structure of self-gravitating
fermions (in that case the core is a degenerate quantum body).
The cusp contains a lot of potential energy. By forming the
cusp, some energy is released in the form of kinetic energy in

14We note that the region of negative specific heat just before the
first turning point of energy is stable in the microcanonical ensemble.
The system becomes unstable in the microcanonical ensemble after
the first turning point of energy when the specific heat becomes
positive. The regions of negative specific heat and the situations
of ensemble inequivalence will be discussed in more detail in the
following sections.
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FIG. 7. Typical normalized density profiles ρ/〈ρ〉 with 〈ρ〉 =
3M/4πR3 corresponding to gaseous (points A), condensed (points
C) and unstable (points B) states. The condensed and unstable states
have a cusp-halo structure.

the halo which is very hot and almost uniform. This explains
the plateau following the cusp (see Sec. II G). Finally, the
states (B) on the intermediate (unstable) branch are similar to
the gaseous states (the density profile decreases approximately
like r−2 at large distances) except that they form an embryonic
cusp at the contact with the core. This is the equivalent of a
“germ” in the language of phase transitions (see below).

In Fig. 8, we have plotted the inverse temperature β and
minus the energy −E as a function of the central density
ρ0 = ρ(R∗) (more precisely the value of the density of the
gas at the contact with the central body). The central density
parameterizes the series of equilibria. We clearly see the ap-
pearance of oscillations giving rise to the spiral on the series
of equilibria. They lead to microcanonical instability at the
first turning point of energy and to canonical instability at
the first turning point of temperature (stability is regained at
the last turning points).

In principle, to obtain the caloric curve, we must determine
which states are local entropy maxima and which states are
global entropy maxima. This can be done by performing a
vertical Maxwell construction or by plotting the entropy of
the two phases as a function of the energy and determining the
transition energy Et at which they become equal [5]. The strict
caloric curve in the microcanonical ensemble is obtained by
keeping only fully stable states (global entropy maxima), as in
Fig. 9. From this curve, we would expect a first-order micro-
canonical phase transition to occur at E = Et , connecting the
gaseous phase to the condensed phase. It would be accom-
panied by a discontinuity of temperature and specific heat.
However, for self-gravitating systems, the metastable states
are long-lived because the probability of a fluctuation able to
trigger the phase transition is extremely weak. Indeed, to trig-
ger a phase transition between a gaseous state and a condensed
state, the system has to overcome the entropic barrier played
by the solution of the intermediate branch (points B) with a
“germ.” Now, the height of the entropic barrier scales like N
so that the probability of transition scales like e−N . There-
fore, metastable states (local entropy maxima) are very robust
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FIG. 8. Evolution of the energy � and the inverse temperature η

as a function of the normalized central density ρ0/〈ρ〉.

[26] because their lifetime scales like the exponential of the
number of particles, tlife ∼ eN , and it becomes infinite at the
thermodynamic limit N → +∞. In practice, the first-order
phase transition at Et does not take place and, for sufficiently
large N , the system remains “frozen” in the metastable phase.
Therefore, the physical caloric curve in the microcanonical
ensemble must take into account the metastable states (local
entropy maxima) which are as much relevant as the fully sta-
ble equilibrium states (global entropy maxima). This physical
caloric curve is multi-valued and corresponds to the solid
lines in Fig. 6. It is obtained from the series of equilibria by
discarding the unstable saddle points (dashed line).

Reducing progressively the energy from high values (for
unbounded systems, the mechanism by which energy de-
creases may be due physically to a slow evaporation), the
system remains in the gaseous phase (points A) until the
critical value Ec at which the gaseous phase ceases to exist.
At that point, called a spinodal point, the system undergoes a
gravothermal catastrophe [15]. However, in the present case,
complete collapse is prevented by the central body and the
systems ends up in the condensed phase (points C). Since
the gravitational collapse is accompanied by a discontinuous
jump of entropy this phase transition is of zeroth order. The
resulting equilibrium state has a “cusp-halo” structure. The
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FIG. 9. Caloric curve in the microcanonical ensemble. We have
indicated the fully stable states (global entropy maxima S), the
metastable states (local entropy maxima M) and the unstable states
(saddle points U). The strict caloric curve is composed by the fully
stable states and exhibits a first-order phase transition at �t . In prac-
tice, this phase transition does not take place because the metastable
states have a very long lifetime. The physical caloric curve is com-
posed of the fully stable and metastable states (see Fig. 6). The ends
of the metastable branches are called spinodal points. At these points,
the system exhibits zeroth order phase transitions associated with a
collapse and an explosion.

cusp contains a small fraction of the mass and this fraction
decreases as R∗ → 0 (in the absence of a central body, the
gravothermal catastrophe leads to a binary star with a small
mass but a large binding energy [5]). The rest of the mass is
diluted in a hot and massive envelope held by the box. In an
open system (i.e., if the box is removed) the halo would be
dispersed at infinity so that only the cusp (thin atmosphere)
would remain. If we now increase the energy of the gas (for
unbounded systems, the mechanism to supply energy could be
due to an accretion), then the system remains in the condensed
phase until the critical value E∗ at which the condensed phase
ceases to exist. At that second spinodal point, the system
undergoes an explosion, reverse to the collapse, and returns
to the gaseous phase. Since the collapse and the explosion
occur at different values of the energy (due to the presence of
metastable states), we can generate an hysteretic cycle in the
microcanonical ensemble by varying the energy between Ec

and E∗. This hysteretic cycle has been followed numerically
by Ispolatov and Karttunen [96] for particles interacting via
a softened gravitational potential (the softening regularizes
the singularity of the gravitational potential and plays a role
similar to that of the central body in our case).

B. The case of a moderate central body RMCP
∗ < R∗ < RCCP

∗
in the microcanonical ensemble: N-shape structure

We now consider the case of a central body of intermediate
core radius, RMCP

∗ < R∗ < RCCP
∗ , so that the series of equilibria

has an N-shape structure (see Fig. 10).
We first describe the structure of the caloric curve in the

microcanonical ensemble. In that case, the control parameter
is the energy E . For a moderate value of the core radius,
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FIG. 10. Caloric curve in the microcanonical ensemble for κ =
10 and ζMCP < ζ = 0.1 < ζCCP. It has a characteristic N-shape struc-
ture. All the solutions are global entropy maxima at fixed mass and
energy (fully stable). The solutions between �gas and �cond have
negative specific heats. There is no phase transition in the micro-
canonical ensemble, only a concentration of the gas near the central
body as energy is progressively decreased.

the trace of the classical spiral has almost disappeared and
the β(E ) curve is univalued. Since the solutions are entropy
maxima for E → +∞, and since there is no turning point
of energy (no vertical tangent) in the series of equilibria,
we conclude from the Poincaré criterion that all the states
are stable and correspond to global entropy maxima at fixed
mass and energy. Therefore, for sufficiently large values of the
core radius, there is no phase transition in the microcanonical
ensemble. The gravothermal catastrophe at Ec is suppressed.
However, there is a sort of condensation as the energy is
progressively decreased. At high energies, the density profiles
are almost homogeneous and they are held by the box. In that
case, the specific heat is positive. At smaller energies, the
density contrast increases and the system has a “cusp-halo”
structure. Between Egas and Econd, the influence of the central
body and of the box are weak and these states have negative
specific heats. Finally, at low energies, the cusp becomes more
and more massive and thin until the minimum energy Emin at
which all the mass is in contact with the central body (see
Appendix F). In that case, the specific heat is positive again.

C. The case of a moderate central body RMCP
∗ < R∗ < RCCP

∗
in the canonical ensemble: N-shape structure

We now describe the structure of the caloric curve in the
canonical ensemble for the same values of the parameters as in
the previous section. In that case, the control parameter is the
temperature T and the reader may find useful to rotate Fig. 10
by 90o to have the control parameter η ∼ 1/T in abscissa. The
series of equilibria E (T ) is multi-valued and this gives rise to
canonical phase transitions (see Fig. 11). In fact, we are in
a situation parallel to the one described in Sec. III A in the
microcanonical ensemble, provided that we interchange the
role of E and T . The series of equilibria contains all the
extrema of free energy at fixed mass. The thermodynamically
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FIG. 11. Physical caloric curve in the canonical ensemble (solid
lines) containing stable (global free-energy minima) as well as
metastable (local free-energy minima) equilibrium states. Unstable
saddle points of free energy at fixed mass are represented by dotted
lines and they lie in the region of negative specific heats.

stable states in the canonical ensemble correspond to free-
energy minima at fixed mass (maxima or saddle points of
free energy must be discarded). They can be determined by
applying the turning point method of Poincaré. At very high
temperatures, self-gravity is negligible with respect to thermal
motion and the system is equivalent to a noninteracting gas in
a box. We know from ordinary thermodynamics that this gas
is stable in every ensemble. Therefore, using the Poincaré cri-
terion, we conclude that the left branch is stable (free-energy
minima at fixed mass) until the first turning point of tempera-
ture Tc where the tangent is horizontal. For sufficiently small
values of R∗, this is close to the Emden inverse temperature
2.52 [34,35]. At that point, the curve −E (β ) rotates clockwise
so that a mode of stability is lost. Therefore, the configurations
in the intermediate branch are unstable saddle points of free
energy. They lie in the region of negative specific heats which
is forbidden (unstable) in the canonical ensemble.15 How-
ever, at the second turning point of temperature T∗, the curve
−E (β ) rotates anti-clockwise so that the mode of stability
is regained. Therefore, the right branch is stable (free-energy
minima at fixed mass). The temperature T∗ depends on R∗ and
tends to T∗(R∗) → +∞ when R∗ → 0.

Typical density profiles of the series of equilibria are shown
in Fig. 12. The states (A) on the left branch have almost
uniform density profiles and they form the gaseous phase. The
states (C) on the right branch are highly inhomogeneous with
a cusp-halo structure. They form the condensed phase. Finally,
the states (B) on the intermediate (unstable) branch are similar
to the gaseous states except that they contain an embryonic
cusp at the contact with the central body. This is the equivalent
of a “germ” in the language of phase transitions.

15Negative specific heat is a sufficient (but not necessary) condition
of thermodynamical instability in the canonical ensemble [94].
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FIG. 12. Typical normalized density profiles ρ/〈ρ〉 correspond-
ing to gaseous (points A), condensed (points C) and unstable (points
B) states.

In Fig. 13, we have plotted the inverse temperature β and
minus the energy −E as a a function of the central density
ρ0 = ρ(R∗) (more precisely the value of the density of the
gas at the contact with the central body). The central density
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FIG. 13. Evolution of the dimensionless energy � and inverse
temperature η as a function of the normalized central density ρ0/〈ρ〉.
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FIG. 14. Caloric curve in the canonical ensemble. We have in-
dicated the fully stable states (global free-energy minima S), the
metastable states (local free-energy minima M) and the unstable
states (saddle points U). The strict caloric curve is composed by
the fully stable states and exhibits a first-order phase transition
at ηt which replaces the region of negative specific heats allowed
in the microcanonical ensemble (see Fig. 10). In practice, this
phase transition does not take place because the metastable states
have a very long lifetime. The physical caloric curve is composed
of the fully stable and metastable states (see Fig. 11). The ends
of the metastable branches are called spinodal points. At these
points, the system exhibits zeroth order phase transitions associated
with a collapse and an explosion.

parameterizes the series of equilibria. We clearly see the oscil-
lations of T (ρ0) giving rise to canonical instability at the first
turning point of temperature (stability is regained at the last
turning point of temperature). On the other hand, the absence
of oscillations of E (ρ0) is associated to full stability in the
microcanonical ensemble (see Sec. III C).

In principle, to obtain the caloric curve, we must deter-
mine which states are local free-energy minima and which
states are global free-energy minima. This can be done by
performing a horizontal Maxwell construction or by plotting
the free energy of the two phases as a function of the temper-
ature and determining the transition temperature Tt at which
they become equal. The strict caloric curve in the canoni-
cal ensemble is obtained by keeping only fully stable states
(global free-energy minima) as in Fig. 14. From this curve, we
would expect a first-order canonical phase transition to occur
at T = Tt , connecting the gaseous phase to the condensed
phase. It would be accompanied by a discontinuity of energy
and specific heat. Therefore, the region of negative specific
heats in the microcanonical ensemble (see Fig. 10) would
be replaced by a phase transition (plateau) in the canonical
ensemble (see Fig. 14). However, for self-gravitating systems,
the metastable states are long-lived because the probability
of a fluctuation able to trigger the phase transition is ex-
tremely weak. Indeed, to trigger a phase transition between
a gaseous state and a condensed state, the system has to
overcome the barrier of free energy played by the solutions
of the intermediate branch (points B) with a “germ.” Now, the
height of the barrier of free energy scales like N so that the
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probability of transition scales like e−N . Therefore, metastable
equilibrium states (local free-energy minima) are very robust
[26] because their lifetime scales like the exponential of the
number of particles, tlife ∼ eN , and it becomes infinite at the
thermodynamic limit N → +∞. In practice, the first-order
phase transition at Tt does not take place and, for sufficiently
large N , the system remains “frozen” in the metastable phase.
Therefore, the physical caloric curve in the canonical en-
semble must take into account the metastable states (local
free-energy minima) which are as much relevant as the fully
stable equilibrium states (global free-energy minima). This
physical caloric curve is multi-valued and corresponds to the
solid lines in Fig. 11. It is obtained from the series of equilibria
by discarding the unstable saddle points (dashed line).

Reducing progressively the temperature from high values,
the system remains in the gaseous phase (points A) until the
critical value Tc at which the gaseous phase ceases to exist.
At that point, called a spinodal point, the system undergoes
an isothermal collapse [35]. However, in the present case,
complete collapse is prevented by the central body and the
systems ends up in the condensed phase (points C). Since
the gravitational collapse is accompanied by a discontinuous
jump of free energy, this phase transition is of zeroth order.
The resulting equilibrium state has a “cusp-halo” structure.
The cusp contains a large fraction of the mass and this fraction
increases as R∗ → 0 (in the absence of a central body, the
isothermal collapse leads to a Dirac peak containing all the
mass [5]). The rest of the mass is diluted in a light envelope
held by the box. In an open system (i.e., if the box is removed)
the halo would be dispersed to infinity so that only the cusp
(thin atmosphere) would remain. If we now increase the tem-
perature of the gas, then the system remains in the condensed
phase until the critical value T∗ at which the condensed phase
ceases to exist. At that second spinodal point, the system
undergoes an explosion, reverse to the collapse, and returns to
the gaseous phase. Since the collapse and the explosion occur
at different values of the temperature (due to the presence of
metastable states), one can generate an hysteretic cycle in the
canonical ensemble by varying the temperature between Tc

and T∗. This hysteretic cycle has been followed numerically
by Chavanis et al. [74] for a self-gravitating Fermi gas (as we
have already indicated, the Pauli exclusion principle plays a
role similar to that of the central body in our case).

D. The case of a large central body R∗ > RCCP
∗ :

Monotonicity and equivalence of statistical ensembles

We now consider the case of a large central body R∗ >

RCCP
∗ so that the series of equilibria is monotonic (see Fig. 15).

In that case, the system does not present any phase transition
and the ensembles are equivalent.

E. The case of a small central body R∗ < RMCP
∗

in the canonical ensemble: Multirotations

For a small central body R∗ < RMCP
∗ , the system can dis-

play both microcanonical and canonical phase transitions
(zeroth and first order). The microcanonical caloric curve has
been described in Sec. III A. Let us describe the correspond-
ing caloric curve in the canonical ensemble. The series of
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FIG. 15. Caloric curve for κ = 10 and ζ = 0.5 > ζCCP. It is
monotonic and the ensembles are equivalent.

equilibria displays several turning points of temperature (see
Fig. 16). At the first turning point Tc, the curve rotates clock-
wise so that a mode of stability is lost. At the second turning
point of temperature, another mode of stability is lost. At the
third turning point of temperature, the curve rotates anticlock-
wise so that the second mode is regained and at the fourth
turning point of temperature T∗ the first mode is regained.16

Therefore, the left branch (before Tc) and the right branch (af-
ter T∗) are canonically stable (free-energy minima) and form
the physical canonical caloric curve. Although the structure of
the series of equilibria in the unstable domain is more complex
than in Sec. III B, because it displays several rotations, the

16We note that certain equilibrium states, deep in the spiral, are
unstable in the canonical ensemble (and also in the microcanonical
ensemble) although they have a positive specific heat (see footnotes
14 and 15).
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FIG. 16. Physical canonical caloric curve for ζ = 5 × 10−3 <

ζMCP and κ = 10. The dotted lines represent the unstable states
(saddle points).
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FIG. 17. Series of equilibria at fixed κ = 10 for several small
values of ζ . As ζ → 0, the series of equilibria makes more and
more rotations around the singular sphere (�, η) = (1/4, 2) before
unwinding (see inset). When ζ = 0, we recover the classical spiral
of a spherical isothermal self-gravitating system.

caloric curve corresponding to the stable part of the series
of equilibria is simple and similar to Fig. 11 obtained for a
larger value of the core radius. The strict canonical caloric
curve containing only fully stable states (global free-energy
minima) would also be similar to Fig. 14.

F. The limit of a vanishing central body R∗ → 0

It is of interest to study the limit of a vanishing central body
R∗ → 0 to make the connection with the classical studies of
Antonov [9], Lynden-Bell and Wood [15], and Katz [41].

As the radius of the central body decreases, the series of
equilibria winds up several times before unwinding so that
more and more turning points of energy and temperature
appear. This is illustrated in Figs. 17 and 18. However, the
discussion concerning the phase transitions remains essen-
tially unchanged. In the microcanonical ensemble, the gaseous
phase (upper branch) is stable until the energy Ec and the
condensed phase (lower branch) is stable from the energy E∗.
In the canonical ensemble, the gaseous phase (left branch) is
stable until the temperature Tc and the condensed phase (right
branch) is stable from the temperature T∗. When R∗ → 0, the
energy E∗ → −∞ and the temperature T∗ → +∞. Similarly,
Et → −∞ and Tt → +∞. Therefore, the gaseous branch
only contains metastable states. The condensed branch in the
microcanonical ensemble approaches the β = 0 axis and is
formed by configurations presenting a thin cusp containing
a weak mass but a large potential energy surrounded by a
hot and massive halo (in the absence of a central body, the
gravothermal catastrophe leads to a tight binary star sur-
rounded by a very hot halo with a very large entropy). The
condensed branch in the canonical ensemble is rejected to
E → −∞ and is formed by configurations presenting a thin
cusp containing most of the mass (in the absence of a central
body, the isothermal collapse leads to a Dirac peak containing
all the mass and having a very negative free energy). The
unstable branch makes several oscillations and leads to the
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FIG. 18. Evolution of the energy � and inverse temperature η as
a function of the normalized central density ρ0/〈ρ〉.

classical spiral discussed by Antonov [9], Lynden-Bell and
Wood [15], and Katz [41].

G. Critical points

The deformation of the series of equilibria as a function of
the core radius R∗ (for a fixed density ρ∗ of the central body)
is represented in Figs. 19 and 20. There are two critical points
in the problem, one in each ensemble. When R∗ < RMCP

∗ , the
series of equilibria β(E ) presents turning points of energy
and temperature so that there exist phase transitions in the
microcanonical and canonical ensembles. We have seen that
the first-order phase transitions may not take place in practice
due to the long lifetime of the metastable states. However,
there remains zeroth order phase transitions associated with
the gravothermal catastrophe in the microcanonical ensem-
ble and the isothermal collapse in the canonical ensemble.
Since the domains of stability differ in the canonical and
microcanonical ensembles, the ensembles are not equivalent.
Indeed, some states are stable (i.e., accessible) in the micro-
canonical ensemble while they are unstable (i.e., inaccessible)
in the canonical ensemble. Since canonical stability implies
microcanonical stability [94], the microcanonical ensemble
contains more stable states than the canonical one. At the
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FIG. 19. Enlargement of the series of equilibria near the micro-
canonical critical point. When ζ = ζMCP, the curve η(�) presents an
inflexion point and the microcanonical phase transition (gravother-
mal catastrophe) is suppressed.

microcanonical critical point R∗ = RMCP
∗ , the series of equilib-

ria β(E ) presents an inflexion point so that the microcanonical
phase transition (gravothermal catastrophe) is suppressed (see
Fig. 19). When RMCP

∗ < R∗ < RCCP
∗ , the series of equilibria

β(E ) presents turning points of temperature but no turning
point of energy. Therefore, there exist phase transitions in the
canonical ensemble but not in the microcanonical ensemble.
The ensembles are not equivalent as revealed by the region of
negative specific heat in the microcanonical ensemble that is
replaced by a phase transition in the canonical ensemble. At
the canonical critical point R∗ = RCCP

∗ , the series of equilibria
E (β ) presents an inflexion point so that the canonical phase
transition (isothermal collapse) is suppressed (see Fig. 20).
When R∗ > RCCP

∗ , the series of equilibria β(E ) is monotonic
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FIG. 20. Enlargement of the series of equilibria near the canon-
ical critical point. When ζ = ζCCP, the curve �(η) presents an
inflexion point and the canonical phase transition (isothermal col-
lapse) is suppressed.

10-8 10-4 100 104 108

κ

10-3

10-2

10-1

100

ζ

ζCCP

ζMCP

d = 3

κ 
= 

10
−4

κ 
= 

10

κ 
= 

2.
10

3

κ 
= 

4.
10

5

FIG. 21. Dependence of the microcanonical and canonical criti-
cal points ζMCP and ζCCP with the density of the central body κ . We
have indicated for reference the values of κ that have been selected
to construct the phase diagrams of Sec. III H (see Figs. 22 and 23
below).

so that there is no phase transition. In that case, the statistical
ensembles are equivalent.

The values of the microcanonical and canonical critical
points RMCP

∗ (ρ∗) and RCCP
∗ (ρ∗) depend on the density ρ∗ of

the central body. This dependence is represented in Fig. 21.
At sufficiently large densities, the critical radii RMCP

∗ (ρ∗) and
RCCP

∗ (ρ∗) decrease algebraically as ρ−α
∗ with an exponent

α ∼ 0.3.

H. Canonical and microcanonical phase diagrams

Typical curves illustrating canonical and microcanonical
phase transitions are represented in Figs. 11 and 6, respec-
tively. The phase diagrams of an isothermal gas with a central
body can be directly obtained from these curves by identifying
characteristic energies and characteristic temperatures.

In the canonical ensemble (see Fig. 11), where T is the con-
trol parameter, we note Tc (collapse temperature) the terminal
point of the metastable gaseous phase (first turning point of
temperature), and T∗ (temperature of explosion) the terminal
point of the metastable condensed phase (last turning point
of temperature). These are the canonical spinodal points. The
canonical phase diagram (R∗, T ) is represented in Fig. 22 for
different values of the density ρ∗ of the central body. For
T > T∗, the system is in the gaseous phase and for T < Tc

the system is in the condensed phase. For T∗ < T < Tc it can
be in one of these two phases (as a stable or a metastable state)
depending on the way it has been prepared. This is the region
where hysteretic effects take place. The two characteristic
temperatures Tc and T∗ merge at the canonical critical point
R∗ = RCCP

∗ . The strict phase diagram should exhibit the tran-
sition temperature Tt corresponding to the first-order phase
transition (see Ref. [5] for self-gravitating fermions). How-
ever, since this phase transition does not take place in practice,
we have only represented the physical phase diagram.

In the microcanonical ensemble (see Fig. 6), where E is
the control parameter, we note Ec (collapse energy) the end
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FIG. 22. Canonical phase diagrams in the (ζ , η) plane for dif-
ferent values of the parameter κ indicated in Fig. 21 (the canonical
phase diagram for κ = 4 × 105 is similar to the one for κ = 2 × 103

so it is not represented). The region delimited by ηc and η∗ corre-
sponds to an hysteretic zone where the actual phase of the system
depends on its history. If the system is initially prepared in a gaseous
state, then it will remain gaseous until the minimum temperature
1/ηc, at which it will collapse and become condensed. Inversely,
if the system is initially prepared in a condensed state, then it will
remain condensed until the maximum temperature 1/η∗, at which it
will explode and become gaseous.

point of the metastable gaseous phase (first turning point of
energy), and E∗ (energy of explosion) the end point of the
metastable condensed phase (last turning point of energy).
These are the microcanonical spinodal points. We also note
Emin the minimum energy. The microcanonical phase diagram
(R∗, E ) is represented in Fig. 23 for different values of the
density ρ∗ of the central body. For E > E∗, the system is in
the gaseous phase and for Emin < E < Ec the system is in the
condensed phase. For E∗ < E < Ec it can be in one of these
two phases (as a stable or a metastable state) depending on the
way it has been prepared. This is the region where hysteretic
effects take place. The two characteristic energies Ec and
E∗ merge at the microcanonical critical point R∗ = RMCP

∗ . To
complete the diagram, we have also denoted Egas the energy
at which we enter in the region of negative specific heats (first
turning point of temperature) and Econd the energy at which
we leave the region of negative specific heats (last turning
point of temperature), see Fig. 10. These two characteristic
energies Egas and Econd merge at the canonical critical point
R∗ = RCCP

∗ . The strict phase diagram should exhibit the transi-
tion energy Et corresponding to the first-order phase transition
(see Ref. [5] for self-gravitating fermions). However, since
this phase transition does not take place in practice, we have
only represented the physical phase diagram.

We note that the microcanonical phase diagram is richer
than the canonical phase diagram due to the existence of a
negative specific heat region. We recall that canonical stability
implies microcanonical stability but the converse is false in
case of ensemble inequivalence [94]. Therefore, canonical
stability is a sufficient but not necessary condition of mi-
crocanonical stability. Since canonical equilibria are always
realized as microcanonical equilibria, they constitute a subdo-
main of the microcanonical phase diagram. In particular, the
states with energy between Egas and Econd, that have negative
specific heats, are not accessible in the canonical ensemble
(they are unstable saddle points of free energy) while they are
accessible in the microcanonical ensemble (they are entropy
maxima at fixed mass and energy). Therefore, this region
corresponds to a domain of ensemble inequivalence.

I. The case of a denser and denser central body
and the case of a central Dirac mass

We consider how the series of equilibria changes when the
radius of the central body R∗ is fixed and its mass M∗ is pro-
gressively increased so that the density ρ∗ of the central body
is larger and larger. The series of equilibria are represented in
Fig. 24. As the density ρ∗ increases, the collapse temperature
Tc and the collapse energy Ec increase, so that instability
occurs sooner. Typical density profiles at the verge of the
canonical instability (T = Tc) are represented in Fig. 25. The
cusp is more and more pronounced as the density of the central
body increases.

Finally, we consider the case where the mass M∗ of the
central body is fixed and its radius R∗ is progressively reduced.
The corresponding caloric curves are plotted in Fig. 26. For
R∗ → 0, the central body tends to a Dirac mass. However, we
know from Sec. II G that there is no equilibrium state in that
case in d = 3. This is why the caloric curves do not tend to a
well-defined limit for R∗ → 0.
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FIG. 23. Microcanonical phase diagrams in the (ζ ,�) plane for
different values of the parameter κ indicated in Fig. 21 (the mi-
crocanonical phase diagram for κ = 10−4 is similar to the one for
κ = 10 so it is not represented). The region delimited by �c and
�∗ corresponds to an hysteretic zone where the actual phase of the
system depends on its history. If the system is initially prepared in a
gaseous state, then it will remain gaseous until the minimum energy
−�c, at which it will collapse and become condensed. Inversely,
if the system is initially prepared in a condensed state, then it will
remain condensed until the maximum energy −�∗, at which it will
explode and become gaseous.
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IV. CALORIC CURVES IN THE PRESENCE OF A
CENTRAL BODY IN d = 2 AND d = 1 DIMENSIONS

In this section, we briefly describe the caloric curves of a
classical isothermal self-gravitating gas in the presence of a
central body in d = 2 and d = 1 dimensions. These caloric
curves and the corresponding density profiles can be obtained
analytically [90]. In the figures, we fix the mass M∗ of the
central body and decrease its radius R∗, approaching thereby
a central Dirac mass when R∗ → 0.17

We consider only box-confined systems and refer to
Ref. [90] for complementary results.

17In the biological problem, which is particularly justified in d = 1
and d = 2 dimensions (see Appendix A), it is more relevant to fix
the mass of the chemoattractant rather than its density.
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FIG. 25. Density profiles corresponding to the critical tempera-
ture η = ηc as one increases the density of the central body. As κ

increases, the self-gravitating particles are more and more condensed
around the central body.
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FIG. 26. Caloric curves at fixed central mass μ (we have taken
μ = 0.5 for illustration) for several values of the central body radius
ζ . The case ζ → 0 corresponds to a central Dirac mass for which
there is no equilibrium state.

The caloric curve of a classical self-gravitating gas without
central body in d = 2 dimensions has been discussed by Katz
and Lynden-Bell [79] and Sire and Chavanis [38]. The caloric
curve β(E ) is monotonic (which implies thermodynamical
stability) but the temperature tends to a constant kBTc =
GMm/4 when E → −∞. Stable equilibrium state exists for
all energies E in the microcanonical ensemble, but only for
temperatures T > Tc in the canonical ensemble. For T � Tc

the system collapses and ultimately forms a Dirac peak con-
taining all the mass [38]. In the presence of a central body, the
caloric curve is plotted in Fig. 27. There is a minimum energy
Emin at which the gas is concentrated on the surface of the
solid body (see Appendix F). A stable equilibrium state exists
for all energies E � Emin in the microcanonical ensemble and
for all temperatures T � 0 in the canonical ensemble. As R∗
decreases, the minimum energy Emin is pushed toward more
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FIG. 27. Caloric curves at fixed central mass μ (we have taken
μ = 0.5 for illustration) for several values of the central body radius
ζ . For small ζ (corresponding to a central Dirac mass), one observes
the appearance of the critical temperature ηc = 4/(1 + 2μ) = 2.
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FIG. 28. Caloric curves at fixed central mass μ (we have taken
μ = 0.5 for illustration) for several values of the central body radius
ζ . For small ζ (corresponding to a central Dirac mass), the minimum
energy approaches the absolute minimum value � = 0.

and more negative values and a plateau forms at a critical
temperature kBTc = (GMm/4)(1 + 2M∗/M ) modified by the
presence of the central Dirac mass M∗ [90]. These results are
similar to those obtained for a Fermi gas in d = 2 dimensions
[55,86,88].

The caloric curve of a classical self-gravitating gas with-
out central body in d = 1 dimension has been discussed by
Katz and Lecar [80] and Sire and Chavanis [38]. The caloric
curve β(E ) is monotonic (which implies thermodynamical
stability). Stable equilibrium state exists for all accessible
energies E � 0 in the microcanonical ensemble, and for all
temperatures T � 0 in the canonical ensemble. There are no
mechanical instabilities. In the presence of a central body, the
caloric curve is plotted in Fig. 28. There is a minimum energy
Emin > 0 at which the gas is concentrated on the surface of the
solid body (see Appendix F). A stable equilibrium state exists
for all energies E � Emin in the microcanonical ensemble,
and for all temperatures T � 0 in the canonical ensemble. As
R∗ decreases, the minimum energy is pushed toward E = 0.
These results are similar to those obtained for a Fermi gas in
d = 1 [55,86,88].

V. CONCLUSION

In this work, we have studied the statistical equilibrium
states of a classical self-gravitating gas around a central body.
The central body can represent a planetary core or mimic
a black hole at the center of a galaxy or at the center of
a globular cluster. The gas is described by the Boltzmann
distribution which is the fundamental distribution function
predicted by statistical mechanics. Like in previous studies,
we must enclose the system within a box to have a well-
defined equilibrium (maximum entropy state). Otherwise, the
gas evaporates and there is no statistical equilibrium state in a
strict sense.

We have studied the phase transitions of this system in both
microcanonical (fixed energy) and canonical (fixed temper-
ature) ensembles in different dimensions of space. In d = 3
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dimensions, and for sufficiently large systems, we have evi-
denced both microcanonical and canonical phase transitions.
Below a critical energy in the microcanonical ensemble the at-
mosphere experiences a gravothermal catastrophe and below
a critical temperature in the canonical ensemble it experiences
an isothermal collapse. In the presence of a central body, the
collapse stops when the gas comes into contact with the cen-
tral body and forms a thin layer (spike) around it. This leads
to a zeroth order phase transition between a dilute (gaseous)
phase and a condensed phase with a “cusp-halo” structure.
For intermediate-size systems, there are only canonical phase
transitions (of zeroth order) and for small systems there is
no phase transition at all. In d = 2 dimensions, there is no
phase transition in a strict sense (no discontinuity of any ther-
modynamical parameter) but, for sufficiently large systems, a
plateau temperature indicates a rapid change between a dilute
phase and a condensed phase. In d = 1 dimension, there is
no phase transition. In d = 3 dimensions there are regions
of ensemble inequivalence (except for small systems) associ-
ated with negative specific heats while in d = 2 and d = 1
dimensions the specific heat is positive and the ensembles
are equivalent. These results are similar to those obtained
previously for self-gravitating fermions [5]. There is, however,
a structural difference. In the case of fermions, the small-scale
regularization is intrinsic to the quantum system (it arises from
the Pauli exclusion principle contained in the Fermi-Dirac dis-
tribution) while, in the present case, the distribution function
is classical and the small-scale regularization is external to the
system (it is due to the finite radius of the central body).

Of course, the box is artificial and we can have two points
of view on this problem. If we are mainly interested in sta-
tistical mechanics, then it is relevant to use the Boltzmann
distribution (which is the fundamental distribution function
of statistical mechanics) and introduce a box to make the
problem well-defined mathematically. In this sense, our ther-
modynamic approach is rigorously justified. If we are rather
interested in astrophysical applications, then we can use a
truncated Boltzmann distribution, e.g., the King [29] distri-
bution, to take into account the evaporation of the particles
and avoid the artificial box. Although we gain in realism,
the problem becomes less well-justified from a statistical
mechanics point of view because we now have to deal with
an out-of-equilibrium problem. We can nevertheless try to
apply a thermodynamical approach as discussed by Katz [30]
and Chavanis et al. [31] for the classical King model. The
study of phase transitions in the fermionic King model [97,98]
has been performed in Refs. [70,71] both for nonrelativistic
and relativistic systems, giving results qualitatively similar
to those obtained in a box [5,68,69]. Recently, Bonsor et al.
[99] have considered the equilibrium states of a loaded King
distribution around a central body. In this study, the central
body models a black hole at the center of a globular cluster.
They report a transition between equilibria which are domi-
nated by the mass of the host stellar system or by the mass
of the central black hole. Their results are complementary to
those obtained for the classical and fermionic King models
studied in Refs. [31,70] and for the box-confined classical
isothermal gas surrounding a central body considered in the
present article. These works provide a rather complete picture
of gravitational phase transitions in these different contexts.

APPENDIX A: ANALOGY BETWEEN SELF-GRAVITATING
SYSTEMS AND BACTERIAL POPULATIONS

In this Appendix, we point out some analogies between
a gas of self-gravitating Brownian particles [37–39] and
the chemotaxis of bacterial populations [72,73] (see, e.g.,
Refs. [74,85,100–105] for more details on this analogy). The
name chemotaxis refers to the motion of organisms induced
by chemical signals. In some cases, the biological organisms
secrete a substance (chemoattractant, pheromone) that has
an attractive effect on the organisms themselves. Therefore,
in addition to their diffusive motion, they move systemat-
ically along the gradient of concentration of the chemical
they secrete (chemotactic flux). When attraction prevails over
diffusion, the chemotaxis can trigger a self-accelerating pro-
cess (chemotactic collapse) until a point at which aggregation
takes place. This is the case for the slime mold Dictyostelium
discoideum and for the bacteria Escherichia coli. The Keller-
Segel [106] model describing the chemotaxis of biological
populations can be written as

∂ρ

∂t
= ∇ · (D∇ρ − χρ∇c), (A1)

1

D′
∂c

∂t
= �c − k2c + λρ, (A2)

where ρ(r, t ) is the concentration of the biological species
(e.g., bacteria) and c(r, t ) is the concentration of the secreted
chemical. The bacteria diffuse with a diffusion coefficient D
and undergo a chemotactic drift with strength χ along the gra-
dient of chemical. The chemical is produced by the bacteria
at a rate D′λ, is degraded at a rate D′k2, and diffuses with a
diffusion coefficient D′. In the limit of large diffusivity of the
chemical D′ → +∞ and a vanishing degradation rate k2 = 0,
the reaction-diffusion equation (A2) reduces to the Poisson
equation �c = −λρ (see Appendix C of Ref. [101] for more
details). In that case, the Keller-Segel model becomes iso-
morphic to the Smoluchowski-Poisson equations describing
self-gravitating Brownian particles in a high friction limit
ξ → +∞ [37–39]:

ξ
∂ρ

∂t
= ∇ ·

(
kBT

m
∇ρ + ρ∇�

)
, (A3)

�� = Sd Gρ. (A4)

In this analogy, the concentration of chemical c(r, t ), plays
the role of minus the gravitational potential −�(r, t ). The
effective statistical ensemble associated with the Keller-Segel
model is the canonical ensemble.18 The steady states of the
Keller-Segel model are of the form ρ = Ae(χ/D)c which is
similar to the Boltzmann distribution ρ = Ae−βm� with an
effective temperature Teff = D/χ given by a form of Einstein
relation. The Lyapunov functional associated with the Keller-
Segel model is F = − 1

2

∫
ρc dr + D

χ

∫
ρ ln ρ dr. It is similar

to a free energy F = E − T S in thermodynamics, where E is
the energy and S is the Boltzmann entropy. The Keller-Segel

18The drift-diffusion equation (A1) and the Smoluchowski equa-
tion (A3) can be interpreted as Fokker-Planck equations in position
space describing an overdamped dynamics. In the Brownian picture,
the particles are in contact with a heat bath fixing the temperature.
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model conserves the mass and satisfies an H-theorem for the
free energy, i.e., Ḟ � 0 with an equality if, and only if, ρ is
the Boltzmann distribution discussed above. Furthermore, the
Boltzmann distribution is dynamically stable if, and only if,
it is a local minimum of free energy at fixed mass. In that
context, the minimization problem minρ{F [ρ]|M[ρ] = M}
determines a steady state of the Keller-Segel model that is
dynamically stable. This is similar to a condition of thermo-
dynamical stability in the canonical ensemble.

Remark. There also exist remarkable analogies between
the statistical mechanics of self-gravitating systems and two-
dimensional point vortices (see the contribution of P.H.
Chavanis in Ref. [6]). The analogy between self-gravitating
systems, bacterial populations and two-dimensional point vor-
tices (with a detailed list of references) is further discussed in
Appendix A of Ref. [90].

APPENDIX B: THE VIRIAL THEOREM

In this Appendix we derive the equilibrium scalar virial
theorem for a self-gravitating system in the presence of a
central body in d dimensions. We refer to Appendix G of
Ref. [107] and Appendix B of Ref. [108] for more details and
generalizations.

1. The virial of the gravitational force produced
by the central body

Assuming that the central body is spherically symmetric,
and using Newton’s law (see Appendix D), the gravitational
field that it creates in r � R∗ is

−∇�ext = −GM∗
rd−1

er or
d�ext

dr
= GM∗

rd−1
. (B1)

In particular, we have

d�ext

dr
(R∗) = GM∗

Rd−1∗
. (B2)

The corresponding gravitational potential in r � R∗ is

�ext = − 1

d − 2

GM∗
rd−2

(d �= 2), (B3)

�ext = GM∗ ln
( r

R

)
(d = 2). (B4)

This is the solution of the Laplace equation

��ext = 0. (B5)

The gravitational energy of the gas in the potential created by
the central body is

Wext =
∫

ρ�ext dr. (B6)

Using Eqs. (B3) and (B4) we get

Wext = − 1

d − 2

∫
ρ

GM∗
rd−2

dr (d �= 2), (B7)

Wext = GM∗
∫

ρ ln
( r

R

)
dr (d �= 2). (B8)

The virial of the external force is defined by

W ext
ii = −

∫
ρr · ∇�ext dr. (B9)

Using Eq. (B1), we get

W ext
ii = −

∫
ρ

GM∗
rd−2

dr. (B10)

For d �= 2, comparing Eqs. (B7) and (B10) we find that

W ext
ii = (d − 2)Wext. (B11)

For d = 2, Eq. (B10) yields

W ext
ii = −GM∗M. (B12)

2. The virial of the gravitational force produced by the gas

The gravitational field produced by the gas is

−∇�(r) = −G
∫

ρ(r′)
r − r′

|r − r′|d dr′. (B13)

The corresponding gravitational potential is

�(r) = − G

d − 2

∫
ρ(r′)

|r − r′|d−2
dr′ (d �= 2), (B14)

�(r) = G
∫

ρ(r′) ln
|r − r′|

R
dr′ (d = 2). (B15)

This is the solution of the Poisson equation

�� = Sd Gρ. (B16)

The gravitational energy of the gas due to the interaction of
the particles between themselves is

W = 1

2

∫
ρ� dr. (B17)

Using Eqs. (B14) and (B15) we get

W = −1

2

G

d − 2

∫
ρ(r)ρ(r′)
|r − r′|d−2

drdr′ (d �= 2), (B18)

W = 1

2
G

∫
ρ(r)ρ(r′) ln

|r − r′|
R

drdr′ (d = 2). (B19)

The virial of the gravitational force produced by the gas is

Wii = −
∫

ρr · ∇� dr. (B20)

Substituting Eq. (B13) into Eq. (B20), we get

Wii = −G
∫

ρ(r)ρ(r′)
r · (r − r′)
|r − r′|d drdr′. (B21)

Interchanging the dummy variables r and r′ and adding the
resulting expression to Eq. (B21), we obtain

Wii = −1

2
G

∫
ρ(r)ρ(r′)
|r − r′|d−2

drdr′. (B22)

For d �= 2, comparing Eqs. (B18) and (B22) we find that

Wii = (d − 2)W. (B23)

For d = 2, Eq. (B22) yields

Wii = −GM2

2
. (B24)
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These results are valid for an arbitrary distribution of the
particles of the gas. In particular, for d �= 2, we have

W = − 1

d − 2

∫
ρr · ∇� dr. (B25)

Now, for a spherically symmetric system, according to New-
ton’s law (see Appendix D), we have

−∇� = −GM(r)

rd−1
er or

d�

dr
= GM(r)

rd−1
, (B26)

where

M(r) =
∫ r

R∗
ρ(r′)Sd r′d−1 dr′ (B27)

is the mass of the gas contained within the sphere of radius
r. Using Eqs. (B26) and (B27), the virial of the gravitational
force (B20) can be written as

Wii = −Sd G
∫ R

R∗
ρ(r)M(r)r dr = −

∫ R

R∗

GM(r)

rd−2
dM(r).

(B28)

For d = 2, we immediately recover Eq. (B24). For d �= 2,
using Eq. (B23), we obtain the formula

W = − 1

d − 2

∫ R

R∗
ρ(r)

GM(r)

rd−2
Sd rd−1 dr, (B29)

which is useful to calculate the gravitational potential energy
of a spherically symmetric distribution of matter. This expres-
sion can be directly obtained by approaching from infinity a
succession of spherical shells of mass dM(r) = ρ(r)Sd rd−1dr
with potential energy −GM(r)dM(r)/[(d − 2)rd−2] in the
field of the mass M(r) already present, and integrating
over r.

Remark. Combining Eqs. (59), (B7), and (B29) we get

Wtot = − 1

d − 2

∫ R

R∗
ρ(r)

G[M∗ + M(r)]

rd−2
Sd rd−1 dr (B30)

or, equivalently,

Wtot = − Sd G

d − 2

∫ R

R∗
ρ(r)(M∗ + M(r))r dr. (B31)

3. The equilibrium virial theorem

The condition of hydrostatic equilibrium from Eq. (43) can
be rewritten as

∇P + ρ∇� + ρ∇�ext = 0. (B32)

Taking the scalar product of this relation with r and integrating
over the region containing the gas we get∫

r · ∇P dr − Wii − W ext
ii = 0, (B33)

where W ext
ii and Wii are defined by Eqs. (B9) and (B20).

Integrating by parts, we obtain the scalar virial theorem

d
∫

P dr + Wii + W ext
ii =

∮
Pr · dS. (B34)

For a nonrelativistic gas, the local pressure is given by

P = 1

d

∫
f v2 dv. (B35)

This relation is valid for an arbitrary distribution function. The
kinetic energy is

Ekin =
∫

f
v2

2
drdv. (B36)

Therefore, we have the relation

Ekin = d

2

∫
P dr. (B37)

The scalar virial theorem can then be rewritten as

2Ekin + Wii + W ext
ii =

∮
Pr · dS. (B38)

For d �= 2, using Eqs. (B11) and (B23) we obtain

2Ekin + (d − 2)Wtot =
∮

Pr · dS, (B39)

where we have introduced Wtot = W + Wext. For d = 2, using
Eqs. (B12) and (B24) we get

2Ekin − GM2

2

(
1 + 2

M∗
M

)
=

∮
Pr · dS. (B40)

To obtain these identities, we have not assumed that the gas
is spherically symmetric (only that the central body is spher-
ically symmetric). Now, for a spherically symmetric system
enclosed between the spheres of radius R∗ and R, owing to the
fact that the pressure P is uniform on these spheres, we have∮

Pr · dS = d[P(R)V − P(R∗)V∗], (B41)

where V and V∗ are the volumes of the spheres of radius R
and R∗, respectively. Since V = 1

d Sd Rd this relation can be
rewritten as∮

Pr · dS = P(R)Sd Rd − P(R∗)Sd Rd
∗ . (B42)

The scalar virial theorem is then given by Eqs. (B39) and
(B40) with Eq. (B42).

APPENDIX C: CONDITION OF HYDROSTATIC
EQUILIBRIUM FOR A SPHERICAL

AND ISOTROPIC STELLAR SYSTEM

A self-gravitating gas is described by the Euler-Poisson
equations

∂ρ

∂t
+ ∇ · (ρu) = 0, (C1)

∂u
∂t

+ (u · ∇)u = − 1

ρ
∇P − ∇�, (C2)

�� = Sd Gρ. (C3)

The condition of hydrostatic equilibrium expressing the bal-
ance between the pressure force and the gravitational force
reads

∇P + ρ∇� = 0. (C4)
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For a barotropic gas, the pressure is a function P = P(ρ) of
the density.

A collisionless self-gravitating system is described by the
Vlasov-Poisson equations

∂ f

∂t
+ v · ∂ f

∂r
− ∇� · ∂ f

∂v
= 0, (C5)

�� = Sd G
∫

f dv. (C6)

The Vlasov-Poisson equations admit an infinite number of
stationary states that are determined by the Jeans theorem
[27,109]. When “collisions” (strong collisions or gravitational
encounters) are taken into account, the right-hand side of
Eq. (C5) is replaced by a collision term C( f ) of the Boltz-
mann, Landau, or Lenard-Balescu type, which tends to select
the Boltzmann distribution among the infinite class of station-
ary solutions of the Vlasov equation (see, e.g., Ref. [91] for
a detailed discussion on the kinetic theory of self-gravitating
systems).

Let us consider a stellar system described by a distribution
function f (r, v). For a spherical and isotropic system we have
f = f (ε), where ε = v2/2 + �(r) is the individual energy of
the stars by unit of mass. We define the density

ρ(r) =
∫

f dv =
∫

f [v2/2 + �(r)] dv (C7)

and the pressure

P(r) = 1

d

∫
f v2 dv = 1

d

∫
f [v2/2 + �(r)]v2 dv. (C8)

We note that ρ(r) = ρ[�(r)] and P(r) = P[�(r)] depend
only on the gravitational potential. Eliminating formally �(r)
between these two expressions, we find that the equation of
state is barotropic in the sense that the pressure depends only
on the density: P(r) = P[ρ(r)]. We can therefore associate
to the stellar system with distribution function f (ε) a corre-
sponding barotropic gas with an equation of state P = P(ρ).
Taking the gradient of the pressure in Eq. (C8) and making
straightforward manipulations, we get

∇P = 1

d
∇�

∫
f ′(ε)v2 dv

= 1

d
∇�

∫
∂ f

∂v
· v dv

= − 1

d
∇�

∫
f ∇ · v dv

= −∇�

∫
f dv. (C9)

We therefore recover the condition of hydrostatic equilibrium
for a gas

∇P + ρ∇� = 0. (C10)

In the presence of an external potential �ext, we just have to
make the substitution � → � + �ext.

APPENDIX D: NEWTON’S LAW IN d DIMENSIONS

If we consider a spherically symmetric distribution of mat-
ter with density ρ(r), then the Poisson equation

�� = Sd Gρ (D1)

becomes

1

rd−1

d

dr

(
rd−1 d�

dr

)
= Sd Gρ. (D2)

Integrating this equation between 0 and r, we obtain

d�

dr
= GM(r)

rd−1
, (D3)

where

M(r) =
∫ r

0
ρ(r′)Sd r′d−1 dr′ (D4)

denotes the mass contained within the sphere of radius r. We
have

ρ(r) = M ′(r)

Sd rd−1
. (D5)

Equation (D3) expresses Newton’s second theorem (in d di-
mensions) saying that the gravitational force produced in r by
a spherically symmetric distribution of matter is the same as it
would be if all the mass M(r) were concentrated into a point
at its center. In vectorial form,

−∇� = −GM(r)

rd−1
er . (D6)

This equation can also be obtained by integrating Eq. (D1)
over a sphere of radius r and using the Gauss (or
Ostrogradsky) theorem.

If the density ρ(r) vanishes above a certain radius R, then
for r � R, we have

d�

dr
= GM

rd−1
, (D7)

where M = M(R) is the mass enclosed within the sphere of
radius R. In particular, on the surface of the object, we obtain

d�

dr
(R) = GM

Rd−1
. (D8)

For r � R, the gravitational potential is given by

�(r) = − 1

d − 2

GM

rd−2
(d �= 2), (D9)

�(r) = GM ln
( r

R

)
(d = 2). (D10)

In particular,

�(R) = − 1

d − 2

GM

Rd−2
(d �= 2), (D11)

�(R) = 0 (d = 2). (D12)

APPENDIX E: THE POTENTIAL IN d = 3 DIMENSIONS
FOR A SPHERICALLY SYMMETRIC SYSTEM

For a spherically symmetric system, the gravitational po-
tential in d = 3 can be written as

�(r) = −G
∫ R

R∗

∫ 2π

0

∫ π

0

ρ(r1)

|r − r1| sin θ dθdφr2
1dr1. (E1)
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Introducing the expansion

1

|r − r1| =
+∞∑
l=0

rl
<

rl+1
>

Pl (cos θ ), (E2)

where r< = min(r, r1) and r> = max(r, r1) in Eq. (E1), mak-
ing the change of variable x = cos θ and using the identity∫ +1
−1 Pl (x)dx = 2δl0, we find that

�(r) = −4πG

[
1

r

∫ r

R∗
ρ(r1)r2

1dr1 +
∫ R

r
ρ(r1)r1dr1

]
. (E3)

From this expression, we get

�(R∗) = −4πG
∫ R

R∗
ρ(r)rdr. (E4)

APPENDIX F: THE ENERGY OF THE GROUND STATE

At T = 0, all the gas is uniformly concentrated on the
surface of the central body. Therefore, the energy of the
ground state Emin = W min

tot corresponds to the potential energy

associated to this configuration. To compute this minimum
energy, we start from Eq. (59). Accounting for the fact that
the total mass of the gas M is located at r = R∗, we have

Emin = 1
2 M�(R∗) + �ext (R∗)M. (F1)

For d �= 2, using Eqs. (B3) and (D9), we obtain

Emin = − 1

d − 2
(1 + 2μ)

GM2

Rd−2∗
. (F2)

The normalized minimum energy is therefore

�max = 1 + 2μ

2(d − 2)ζ d−2
. (F3)

For d = 2, using Eqs. (B4) and (D10), we obtain

Emin = GM2

2
(1 + 2μ) ln

(
R∗
R

)
. (F4)

The normalized minimum energy is therefore

�max = − 1
2 (1 + 2μ) ln ζ . (F5)
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