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Explicit mutual information for simple networks and neurons with lognormal activities
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Networks with stochastic variables described by heavy-tailed lognormal distribution are ubiquitous in nature,
and hence they deserve an exact information-theoretic characterization. We derive analytical formulas for mutual
information between elements of different networks with correlated lognormally distributed activities. In a
special case, we find an explicit expression for mutual information between neurons when neural activities and
synaptic weights are lognormally distributed, as suggested by experimental data. Comparison of this expression
with the case when these two variables have short tails reveals that mutual information with heavy tails for
neurons and synapses is generally larger and can diverge for some finite variances in presynaptic firing rates
and synaptic weights. This result suggests that evolution might prefer brains with heterogeneous dynamics to
optimize information processing.
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I. INTRODUCTION

Lognormal distribution is arguably one of the most com-
mon continuous probability distributions describing naturally
occurring phenomena in nature [1,2]: from environment and
geology [1,3] to stock market fluctuations and finance [4,5]
to brain activity [6–8]. Some other examples are included
in Refs. [9–11]. Lognormal distribution has a skewed shape
and is characterized by a long tail [2]. This means that the
likelihood of huge size stochastic events with this distribution
is small, but still significantly higher than for those described
by short-tailed distributions, e.g., by Gaussian density.

Two or more stochastic variables can be correlated, and
one of the most useful tools describing such correlation is
mutual information (MI). MI is an information-theoretic con-
cept [12,13] that measures the average number of bits we gain
about behavior of one variable by observing the variability
of another, correlated variable. Obviously, MI has a wide
applicability in many different areas of science, from infor-
mation science [12,13] and rapidly developing machine and
deep learning [14,15] through different branches of physics
(as diverse as material science, stochastic thermodynamics,
and cosmology) [16–19] to molecular biology [20,21] and
neuroscience [22]. Despite this huge popularity in using MI, it
is important to stress that its exact analytical form for nontriv-
ial continuous distributions is known only in few cases [23],
which are, however, unexplored. It seems that in practical
applications only MI for short-tailed Gaussian distribution is
used (e.g., Refs. [12,21,22,24]). On the other hand, the exact
form of MI for heavy-tailed lognormal distribution is rarely
mentioned and virtually not used (but see a recent notable
exception in Ref. [25]). Thus, clearly, there is a need for ex-
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ploration of general properties of MI for lognormal variables
in different settings.

In this paper, we present and use the general formula for
MI between vectors of random variables with lognormal dis-
tributions to obtain explicit analytical expressions for MI in
specific networks with simple topology, which can appear in
many applications. Furthermore, we apply this formalism to
neuroscience and derive analytical MI for information transfer
between neurons in the neural networks relevant for brain
cerebral cortex, i.e., when a neuron receives many correlated
synaptic inputs with heavy tails.

II. PRELIMINARIES

A. Lognormal distribution

Let z = (z1, z2, . . . , zN ) be an N-dimensional Gaussian
random variable with the mean vector μ = (μ1, . . . , μN ) and
the covariance matrix �, which is positive definite (sym-
metric with real and positive eigenvalues). We define a new
multidimensional random variable x = (x1, x2, . . . , xN ), such
that xi = ezi for every i = 1, . . . , N . Then x is lognormally
distributed and has the following probability density ρ(x):

ρ(x) = 1√
(2π )N det (�)

∏N
i=1 xi

× exp

(
−1

2
[ln (x) − μ]T �−1[ln (x) − μ]

)
, (1)

with 〈ln(xi )〉 = μi and the covariance matrix �i j =
〈ln(xi ) ln(x j )〉 − 〈ln(xi )〉〈ln(x j )〉, where 〈...〉 denotes
averaging with respect to the density in Eq. (1). We denote
the variance of ln xi as �ii = 〈ln2(xi )〉 − 〈ln(xi )〉2 ≡ σ 2

i .
For N = 1, the density in Eq. (1) reduces to ρ(x) =
e−[ln (x)−μ]2/2σ 2

/(
√

2πσ 2x).
The major moments of the lognormal distribution,

including variance Var(xi ) = 〈x2
i 〉 − 〈xi〉2 and covariance
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Cov(xi, x j ) = 〈xix j〉 − 〈xi〉〈x j〉, are related to the parameters
μi and �i j as [2]

〈xi〉 = eμi+ 1
2 σ 2

i ,

Var(xi ) = (
eσ 2

i − 1
)〈xi〉2,

Cov(xi, x j ) = (
e�i j − 1

)〈xi〉〈x j〉. (2)

B. Definition of mutual information

Mutual information between two lognormal random vari-
ables X and Y is defined as [12]

MI(X,Y ) = h(X ) + h(Y ) − h(X,Y ), (3)

where h(X ) and h(Y ) are differential entropies for X and Y
variables, i.e.,

h(X ) = − 1

ln 2

∫
ρ(x) ln [ρ(x)]dx,

and h(X,Y ) is the joint differential entropy given by

h(X,Y ) = − 1

ln 2

∫
ρ(x, y) ln [ρ(x, y)]dxdy,

where ρ(x) is as in Eq. (1) and ρ(x, y) is the joint probability
density of x and y (see below). MI(X,Y ) quantifies the amount
of information we gain about X by observing Y , or vice versa.

C. Mutual information for lognormal stochastic vectors

In this section we present a nonstandard derivation of MI
for two random vectors with lognormal distributions.

First we determine the entropy of the N-dimensional vari-
able x. To achieve this, we need the average of the argument
of exp in Eq. (1). We have 〈[ln(x) − μ]T �−1[ln(x) − μ)]〉 =∑

i j (�
−1)i j〈[ln(xi ) − μi][ln(x j ) − μ j]〉 = ∑

i j (�
−1)i j� ji =∑

i j (�
−1�)ii = N , where we used the definition of the

covariance matrix appearing after Eq. (1). After some
additional straightforward steps, we obtain the formula for
entropy of the N-dimensional lognormal random variable x:

h(x) = − 1

ln 2
〈ln [ρ(x)]〉

= 1

ln 2

[
1

2
ln [(2πe)N det (�)] +

N∑
i=1

〈ln (xi )〉
]
. (4)

Now, we partition our dimensionality N into two parts,
N = n + k, and define two new multidimensional lognor-
mal random variables X and Y such that x = (X,Y ), where
X = (x1, x2, . . . , xn) and Y = (y1, y2, . . . , yk ), with yi ≡ xn+i.
The lognormal distribution of X has the parameters μX and
�X , defined as μX = (〈ln x1〉, . . . , 〈ln xn〉) and n × n ma-
trix (�X )i j = 〈ln(xi ) ln(x j )〉 − 〈ln(xi )〉〈ln(x j )〉. The lognor-
mal distribution of Y has the parameters μY and �Y , defined
as μY = (〈ln y1〉, . . . , 〈ln yk〉) and k × k matrix (�Y )i j =
〈ln(yi ) ln(y j )〉 − 〈ln(yi )〉〈ln(y j )〉. The N-dimensional variable
x is lognormally distributed with a vector of means (μX, μY)
and an N × N global covariance matrix �XY dependent on �X

and �Y matrices through the block matrix

�XY =
[

�X CovXY

CovT
XY �Y

]
, (5)

where CovXY is an n × k covariance matrix between variables
ln X and ln Y , i.e., CovXY ≡ Cov(ln X, ln Y ), and (CovXY )i j =
〈ln(xi ) ln(y j )〉 − 〈ln(xi )〉〈ln(y j )〉.

Consequently, from Eq. (4) it follows that we can write
entropies for each of the three lognormal variables X , Y , and
x as

h(X ) = 1

ln 2

[
1

2
ln [(2πe)n det (�X )] +

n∑
i=1

〈ln (xi )〉
]
,

h(Y ) = 1

ln 2

⎡
⎣1

2
ln [(2πe)k det (�Y )] +

N∑
i=n+1

〈ln (xi )〉
⎤
⎦,

h(X,Y ) = 1

ln 2

[
1

2
ln [(2πe)N det (�XY )] +

N∑
i=1

〈ln (xi )〉
]
.

Now, using Eq. (3), we can observe that

MI(X,Y ) = 1

2 ln 2
ln

(
det (�X ) det (�Y )

det (�XY )

)
. (6)

This is the general formula for mutual information of two
random multidimensional lognormal variables, and it depends
only on the matrices of covariance of corresponding Gaussian
random vectors with appropriate parameters—both joint and
marginal distributions. Thus, MI for lognormal variables is
formally the same as MI for the underlying Gaussian variables
[12], which is a consequence of the invariance of MI with
respect to any bijective (one-to-one) transformation of the
variables involved (see Ref. [25] for this type of approach).

The formula (6) can be rewritten in an equivalent form if
we use a Schur’s decomposition for the determinant of the
block matrix �XY , namely [26,27],

det �XY = det(�X ) det
(
�Y − CovT

XY �−1
X CovXY

)
= det(�Y ) det

(
�X − CovXY �−1

Y CovT
XY

)
. (7)

Then the mutual information is

MI(X,Y ) = 1

ln 4
ln

(
det (�Y )

det
(
�Y − CovT

XY �−1
X CovXY

)
)

= 1

ln 4
ln

(
det (�X )

det
(
�X − CovXY �−1

Y CovT
XY

)
)

= 1

ln 4
ln

(
1

det
(
I − �−1

X CovXY �−1
Y CovT

XY

)
)

,

(8)

where I is the identity matrix, and the last equality follows
from a known identity, det(AB) = det(A) det(B), valid for two
arbitrary square matrices A and B. Equations (6) and (8) are
the first major result of this paper and allow us to obtain
exact analytical expressions for mutual information in some
specific cases. Note that MI(X,Y ) in Eq. (8) is nonzero only
if there are correlations between X and Y , i.e., when the co-
variance matrix CovXY is nonzero. Depending on the structure
of matrices �X , �Y , and CovXY , one can use either of the
three expressions in Eq. (8), whichever is easier, for finding
MI(X,Y ).
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III. ANALYTICAL RESULTS FOR MI
IN SPECIFIC NETWORKS

In this section we consider several specific examples of
networks with simple topology, and we give explicit formulas
for MI in each case. These networks are relatively simple to
analyze and are particular instances of the so-called bipartite
networks with correlations that frequently appear in biolog-
ical and social contexts [28–32]. Elements of the networks
below are illustrated by graphs with nodes, which are con-
nected by arrows. An arrow between the nodes indicates a
correlation among particular elements with random lognormal
activities.

A. Case n = k = 1

In this case, X = x1 and Y = y1 = x2, and the global co-
variance matrix appearing in Eq. (5) is 2×2 and has the
following form:

�XY =
[

σ 2
X CovXY

CovXY σ 2
Y

]
, (9)

where σ 2
X = Var(ln X ) = 〈ln2(X )〉 − 〈ln(X )〉2 and σ 2

Y =
Var(ln Y ) = 〈ln2(Y )〉 − 〈ln(Y )〉2. As a result

MI(X,Y ) = 1

2 ln 2
ln

(
σ 2

X σ 2
Y

σ 2
X σ 2

Y − Cov2
XY

)

= 1

2 ln 2
ln

(
1

1 − c2

)
, (10)

where c denotes the correlation coefficient between variables
ln(X ) and ln(Y ), defined as c = CovXY /σX σY . The coefficient
c can be expressed by covariance of X and Y , Cov(X,Y ), and
their variances Var(X ) and Var(Y ) as

c =
ln

[
1 + Cov(X,Y )

〈X 〉〈Y 〉
]

√
ln

[
1 + Var(X )

〈X 〉2

]
ln

[
1 + Var(Y )

〈Y 〉2

] , (11)

which follows from Eq. (2). Because of the Cauchy-Schwartz
inequality for covariance and variance, we have Cov(X,Y ) �√

Var(X )Var(Y ), and this implies that c is bounded from
above by c0, which is

c0 =
ln

[
1 +

√
Var(X )Var(Y )

〈X 〉〈Y 〉
]

√
ln

[
1 + Var(X )

〈X 〉2

]
ln

[
1 + Var(Y )

〈Y 〉2

] . (12)

Consequently, we have an upper bound on MI(X,Y ) in this
case as

MI(X,Y ) � 1

2 ln 2
ln

(
1

1 − c2
0

)
. (13)

This inequality may be useful in cases when we do not know
covariances but we do know variances of original data.

B. Case n = k = 2

In this case, X = (x1, x2) and Y = (y1, y2), and the covari-
ance matrix �XY appearing in Eq. (5) is 4×4. We choose
the components of �XY with some degree of symmetry:
(�X )i j = σ 2

x δi j + γx(1 − δi j ), (�Y )i j=σ 2
y δi j + γy(1 − δi j ), and

(CovXY )i j = aδi j + b(1 − δi j ), where i, j = 1, 2. Here, all
four variables x1, x2, y1, and y2 are mutually correlated (see
the graph below).

X1 X2

Y1 Y2

Thus, we have det(�Y ) = σ 4
y − γ 2

y and det(�X ) = σ 4
x −

γ 2
x . Additionally, we obtain

det
[
�Y − CovT

XY �−1
X CovXY

]
=

[(
σ 2

x − γx
)(

σ 2
y − γy

) − (a − b)2
]

det �X

× [(
σ 2

x + γx
)(

σ 2
y + γy

) − (a + b)2
]
.

Using Eq. (8), this leads to mutual information as

MI(X,Y ) = −1

ln 4
ln

[(
1 − (a − b)2(

σ 2
x + γx

)(
σ 2

y + γy
)
)

×
(

1 − (a + b)2(
σ 2

x − γx
)(

σ 2
y − γy

)
)]

. (14)

Equation (14) suggests that MI decreases monotonically with
increasing variances σ 2

x and σ 2
y of ln(X ) and ln(Y ). More-

over, MI has a minimum as a function of correlations γx

between x1 and x2, if 2σ 2
x (σ 2

y − γy) � (a + b)2; see Fig. 1
(this analogously applies to γy). MI also diverges for large
intracorrelations γx and γy and for sufficiently strong inter-
correlations a and b between ln(X ) and ln(Y ) variables (either
positive or negative; Fig. 1).

C. Case n � 2 and k = 1, with tridiagonal matrix for �X

In this case we take �X to be tridiagonal matrix, and we
choose (�X )ii = σ 2

x and (�X )i,i±1 = γ , with all other ele-
ments of �X to be zero. This means that correlated are only
those xi and x j that are nearest neighbors in the “indices
space.” Examples of such short-range correlations are, e.g.,
correlations between spins in ferromagnets above a critical
temperature, and density-density correlations in ideal and
weakly nonideal gas (e.g., Ref. [33]). Matrix �Y is just scalar,
equal to σ 2

y . Covariance CovXY is a vector, and we take it
as (CovXY )i = a. This configuration is depicted by the graph
below.

X1 X2 X3 Xn−1 Xn
. . .

Y

The matrix �X is tridiagonal, and determinants of tridi-
agonal matrices are known [34,35]. The determinant of the
arbitrary tridiagonal n × n matrix with all diagonal elements
t and all off-diagonal elements s is given by the function
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(a)

(b)

FIG. 1. MI in Eq. (14) as a function of γx and a. (a) Solid line:
σ 2

x = 9, σ 2
y = 9, a = 2.4, b = 1, and γy = 1; dotted line: σ 2

x = 9,
σ 2

y = 9, a = 3, b = 1.5, and γy = 1. (b) Solid line: σ 2
x = 9, σ 2

y = 9,
γx = 1, b = 0, and γy = 1; dotted line: σ 2

x = 9, σ 2
y = 16, γx = 1,

b = 8.4, and γy = 1.

θn(t, s), which takes the form [34,35]

θn(t, s) = [(t + √
t2 − 4s2)n+1 − (t − √

t2 − 4s2)n+1]

2n+1
√

t2 − 4s2
. (15)

Hence, we have det(�X ) = θn(σ 2
x , γ ). Mutual information

is determined from the first line in Eq. (8) and is given
by

MI(X,Y ) = 1

ln 4
ln

(
σ 2

y

σ 2
y − CovT

XY �−1
X CovXY

)
, (16)

where CovT
XY �−1

X CovXY can be found after tedious calcula-
tions as (see the Appendix)

CovT
XY �−1

X CovXY

= na2(
σ 2

x + 2γ
) + γ a2

2n
(
σ 2

x + 2γ
)(

σ 4
x − 4γ 2

)
det(�X )

×
[
(−1)n+12n+1γ n

(
σ 2

x − 2γ
) +

(
σ 2

x +
√

σ 4
x − 4γ 2

)n

×
(
σ 2

x − 2γ +
√

σ 4
x − 4γ 2

)
+

(
σ 2

x −
√

σ 4
x − 4γ 2

)n

×
(
σ 2

x − 2γ −
√

σ 4
x − 4γ 2

)]
. (17)

The above complicated formula simplifies in two extreme
cases. In the case when n = 2, we obtain CovT

XY �−1
X CovXY =

2a2/(σ 2
x + γ ), and hence mutual information takes the simple

form MI(X,Y ) = 1
ln 4 ln (

σ 2
y

σ 2
y −2a2/(σ 2

x +γ ) ). In the case of n � 1,

the first term on the right in Eq. (17) dominates, and we obtain
CovT

XY �−1
X CovXY ≈ na2/(σ 2

x + γ ) + O(1), and MI is given

by a similar expression: MI(X,Y ) ≈ 1
ln 4 ln (

σ 2
y

σ 2
y −na2/(σ 2

x +γ ) ).

The latter formula implies that MI diverges for the number
of units n ≈ σ 2

y (σ 2
x + γ )/a2. In both cases, it is easily seen

that MI grows with correlations a between variables X and Y
(both positive and negative), but it decreases monotonically
with increasing the correlations γ between xi variables. The
latter implies that negative correlations among xi carry more
information than their positive correlations. This is a differ-
ent situation than in Case B, where both strong positive and
negative correlations between xi enhance MI. As expected,
MI also decreases with increasing variances σ 2

x and σ 2
y . The

general dependence of mutual information on γ , σ 2
x , and

n, based on the exact Eqs. (16) and (17), is presented in
Fig. 2.

D. Case n � 2 and k = 1, with Kac-Murdock-Szegö
matrix for �X

The only difference with Case C above is that now the
matrix �X has all nonzero elements, which are given by
(�X )i j = σ 2

x γ |i− j|, where |γ | � 1 [36]. This means that all xi

are mutually correlated, but distant ones (with remote indices)
are gradually less correlated (see below).

X1 X2 X3 Xn−1 Xn
. . .

Y

The inverse of the matrix �X is [26,36]

(
�−1

X

)
i j = δi j[1 + γ 2(1 − δi1 − δin)] − γ (δi, j−1 + δi, j+1)

σ 2
x (1 − γ 2)

,

(18)

which allows us to find

CovT
XY �−1

X CovXY = a2[n(1 − γ ) + 2γ ]

σ 2
x (1 + γ )

. (19)

Consequently, mutual information in this case is given by a
simple explicit formula:

MI(X,Y ) = 1

ln 4
ln

⎛
⎝ σ 2

y

σ 2
y − a2[n(1−γ )+2γ ]

σ 2
x (1+γ )

⎞
⎠. (20)

It is easily seen that MI grows monotonically with the num-

ber of units n and diverges for n = [σ 2
x σ 2

y (1+γ )−2γ a2]
(1−γ )a2 . The

dependence of MI on other parameters is similar to Case C
above. In particular, MI decreases monotonically with increas-
ing correlations γ among xi variables from negative (γ < 0)
to positive (γ > 0).
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(a)

(b)

(c)

FIG. 2. MI in Eq. (16) as a function of γ , σ 2
x , and n. (a) Solid line:

σ 2
x = 10, σ 2

y = 1, a = 1, and n = 10; dotted line: σ 2
x = 9, σ 2

y = 9,
a = 3, and n = 10; dash-dotted line: σ 2

x = 10, σ 2
y = 10, a = 3, and

n = 10. (b) Solid line: σ 2
y = 1, a = 1, γ = 1

2 , and n = 10; dotted
line: σ 2

y = 1, a = 1.3, γ = 1
2 , and n = 10. (c) Circles: σ 2

x = 10, σ 2
y =

1, a = 1, and γ = 1; crosses: σ 2
x = 10, σ 2

y = 1, a = 1, and γ = 3.

E. Case n � 2 and k � 2, with nonsymmetric
and nondiagonal CovXY

Let us consider the n × n matrix �X and the k × k matrix
�Y to be both tridiagonal with elements (�X )i j = σ 2

x δi j +
γx(δi, j−1 + δi, j+1) and �Y = σ 2

y δi j + γy(δi, j−1 + δi, j+1). The
covariance CovXY is an n × k sparse matrix taken with one
nonzero element (CovXY )n1 = a and the rest of the elements
are 0 (see the graph below).

X1 X2 X3 Xn−1 Xn
. . .

Y1 Y2 Y3 Yk−1 Yk
. . .

This case is relevant for two groups of cascade networks of
interacting elements.

We use the last line in Eq. (8) for MI. In this config-
uration, it is easy to show that (�−1

X CovXY �−1
Y CovT

XY )i j =
a2(�−1

X )in(�−1
Y )11 for j = n and 0 for 1 � j � n − 1, for ev-

ery i. This leads to the simple form for the determinant det(I −
�−1

X CovXY �−1
Y CovT

XY ) = 1 − a2(�−1
X )nn(�−1

Y )11, and conse-
quently for MI

MI(X,Y ) = 1

ln 4
ln

(
1

1 − a2
(
�−1

X

)
nn

(
�−1

Y

)
11

)
. (21)

The matrix elements (�−1
X )nn and (�−1

Y )11 are given
by the ratios of the function θn defined in Eq. (15),
i.e., (�−1

X )nn = θn−1(σ 2
x , γx )/θn(σ 2

x , γx ) and (�−1
Y )11 =

θk−1(σ 2
y , γy)/θk (σ 2

y , γy); see the Appendix.
In the limits n � 1 and k � 1, and for σ 2

x > 2γx and σ 2
y >

2γy, we obtain an approximated MI as

MI(X,Y )n�1 ≈ −1

ln 4
ln

[
1 − 4a2(

σ 2
x + √

σ 4
x − 4γ 2

x

)
× (

σ 2
y +

√
σ 4

y − 4γ 2
y

)−1

]
.

This equation shows that large variances of both σ 2
x and σ 2

y
have a detrimental effect on MI. On the other hand, increasing
the covariances among ln(X ) (|γx|) and among ln(Y ) (|γy|)
causes an increase in MI.

F. Case n = k � 2, with symmetric and diagonal CovXY

In this case, we take �X to be tridiagonal with elements
(�X )i j = σ 2

x δi j + γx(δi, j−1 + δi, j+1), and �Y to be diagonal
with elements (�Y )i j = σ 2

y δi j . Additionally, we choose the
covariance matrix CovXY to be diagonal, (CovXY )i j = aδi j .
This situation corresponds to the system depicted below.

X1 X2 X3 Xn−1 Xn
. . .

Y1 Y2 Y3 Yn−1 Yn
. . .

Here, there are correlations between nearest neighbors of
variables xi, but there are no correlations between variables yi.
Additionally, xi correlates directly only with yi.

Elements of the matrix of interest �X − CovXY �−1
Y CovT

XY
appearing in Eq. (8) for mutual information are (�X − CovXY

�−1
Y CovT

XY )i j = (σ 2
x − a2

σ 2
y

)δi j + γx(δi, j−1 + δi, j+1). Thus, it

is also the tridiagonal matrix, similar to �X . Therefore,
the determinants of both �X and �X − CovXY �−1

Y CovT
XY

are given by Eq. (15), i.e., det(�X ) = θn(σ 2
x , γx ) and

det (�X − CovXY �−1
Y CovT

XY ) = θn(σ 2
x − a2

σ 2
y
, γx ).
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(a)

(b)

(c)

FIG. 3. MI in Eq. (22) as a function of γx , a, and n. (a) Solid line:
σ 2

x = 10, σ 2
y = 1, a = 1, and n = 10; dotted line: σ 2

x = 9, σ 2
y = 9,

a = 3, and n = 10; dash-dotted line: σ 2
x = 10, σ 2

y = 10, a = 3, and
n = 10. (b) Solid line: σ 2

x = 9, σ 2
y = 9, γx = 1, and n = 10; dotted

line: σ 2
x = 9, σ 2

y = 4, γx = 1, and n = 10. (c) Points: σ 2
x = 25, σ 2

y =
1, a = 1, and γx = 1; crosses: σ 2

x = 50, σ 2
y = 1, a = 2, and γx = 2.

The corresponding mutual information is given by the first
line in Eq. (8) as

MI(X,Y ) = 1

ln 4
ln

⎛
⎜⎝ θn

(
σ 2

x , γx
)

θn

(
σ 2

x − a2

σ 2
y
, γx

)
⎞
⎟⎠. (22)

The dependence of MI on γx, a, and n is shown in Fig. 3.
In the special case n = k = 2, we recover MI in Case B
[see Eq. (14)], but with b = γy = 0.

IV. INFORMATION TRANSFER FOR NEURONS

Here, we apply the exact formula for MI in Eq. (8) to
neuroscience; i.e., we derive mutual information relevant
for information transfer in neural networks of a mam-
malian brain. Specifically, we find MI between activities of

n weakly correlated presynaptic neurons with firing rates �f =
( f1, f2, . . . , fn) and activity of a postsynaptic neuron with the
firing rate Y . This situation can be depicted by the analogical
graph as in Case D considered above. Below we perform com-
putations and make comparison for two cases: (i) assuming
that presynaptic firing rates �f are lognormally distributed, and
(ii) assuming that they are normally distributed. We note that
although the mutual information between pre- and postsynap-
tic neural activities has been found many times in the past
[22,24,37–40], none of those approaches used lognormally
distributed variables (either Gaussian or a mixture of specific,
like Poisson, and nonspecific discrete distributions was used).

The simplest model relating post- and presynaptic firing
rates Y and �f is [41,42]

Y =
n∑

i=1

wi fi, (23)

where �w = (w1,w2, . . . ,wn) are synaptic weights, and we
assume that all of them are positive (all excitatory presynaptic
neurons). For cortical neurons the number of synaptic contacts
n is very large, typically in the range n ∼ 103–104 [43]. The
dependence of Y on �f could, in principle, be nonlinear. We
assume linearity, since it was shown that for a biophysically
motivated nonlinear class of neurons (so-called class 2) the
dependence of Y on �f can become linear by incorporating
adaptation in neural firing rates, which is often observed in
brain networks [44–46].

A. MI for neural activities as lognormal variables

Our major assumption in this section is that both firing
rates �f and synaptic weights �w have lognormal distributions,
which is compatible with experimental data for neurons and
synapses in the mammalian cerebral cortex [6–8]. Addition-
ally, we assume that all fi (and corresponding wi) have the
same parameters characterizing the distribution (uniformity
assumption). Thus, the postsynaptic firing rate Y in Eq. (23) is
a sum of lognormal random variables identically distributed,
since each product wi fi is lognormally distributed. It should
be clearly said that Y has an unknown exact form of prob-
ability density. However, it has been numerically verified
by others [47,48] that the sum of (uncorrelated and corre-
lated) lognormal random variables can be approximated by
lognormal distribution for large but finite n. Moreover, and
more importantly, it has been proven that in the limiting case
n 
→ ∞ the sum of positively correlated lognormals also has a
lognormal probability density [49,50]. (Standard central limit
theorem does not apply here because of the correlations be-
tween the summands with heavy tails.) For these reasons, in
this section, we assume that the postsynaptic neural activity Y
has a lognormal distribution.

The goal is to find mutual information MI( �f ,Y ) between
vectors �f and Y . We assume that activities of presynaptic
neurons [i.e., ln( fi )] are weakly correlated, and we take
for their covariance matrix � f the form given by the Kac-
Murdock-Szegö matrix, i.e., (� f )i j = σ 2

f γ
|i− j|, with |γ | 
 1,

where σ 2
f is the variance for all ln( fi). The corresponding

variance for all ln(wi) is denoted as σ 2
w, and the variance for
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postsynaptic activity ln(Y ) is denoted as σ 2
Y . The latter de-

pends on the parameters characterizing distributions of �f and
�w (see below). Additionally, we assume that synaptic weights
wi are not correlated between themselves and that vectors �f
and �w are not correlated either. These two assumptions are
consistent with empirical observations, but are not essential
for the derivation (in principle, they could be included). They
make the final formula look simpler. Using Eq. (2), we can
write expressions for various moments of fi and wi, which are
used later:

〈 fi〉 ≡ 〈 f 〉 = eμ f + 1
2 σ 2

f ,

〈wi〉 ≡ 〈w〉 = eμw+ 1
2 σ 2

w ,〈
f 2
i

〉 ≡ 〈 f 2〉 = e2μ f +2σ 2
f ,〈

w2
i

〉 ≡ 〈w2〉 = e2μw+2σ 2
w ,

〈 fi f j〉 = e2μ f +σ 2
f (1+ci j ), (24)

where we used the uniformity of the moments, and con-
sequently the uniformity of the parameters μ f = 〈ln( fi )〉
and μw = 〈ln(wi )〉. Additionally, ci j is the correlation co-
efficient between ln( fi ) and ln( f j ), i.e., ci jσ

2
f = 〈(ln( fi ) −

μ f )(ln( f j ) − μ f )〉 = (� f )i j . The latter means that ci j =
γ |i− j|.

To determine MI we need the variance of ln(Y ) and the
covariance matrix between ln(Y ) and ln( fi ). This is accom-
plished by finding the first two moments of Y in terms of
the parameters characterizing �f and �w, and matching them
to the first two moments of the assumed lognormal form of Y
(so-called Wilkinson method; Refs. [47,48]). We have

〈Y 〉 =
n∑

i=1

〈wi〉〈 fi〉,

and

〈Y 2〉 =
n∑

i=1

〈
w2

i

〉〈
f 2
i

〉 + 2
n−1∑
i=1

n∑
j=i+1

〈wi〉〈w j〉〈 fi f j〉,

which after using Eqs. (24) yields

〈Y 〉 = neμ f +μw e(σ 2
f +σ 2

w )/2,

〈Y 2〉 = e2(μ f +μw )eσ 2
f +σ 2

w

×
⎛
⎝neσ 2

f +σ 2
w + 2

n−1∑
i=1

n∑
j=i+1

eσ 2
f ci j

⎞
⎠. (25)

On the other hand, for lognormally distributed Y , we have
〈Y 〉 = eμY + 1

2 σ 2
Y and 〈Y 2〉 = e2μY +2σ 2

Y , where μY and σ 2
Y are the

mean and the variance of ln(Y ). This allows us to find σ 2
Y in

terms of the parameters for �f and �w as

σ 2
Y = ln

⎛
⎝1

n
e(σ 2

f +σ 2
w ) + 2

n2

n−1∑
i=1

n∑
j=i+1

eσ 2
f ci j

⎞
⎠. (26)

To find the covariance CovY �f ≡ Cov[ln(Y ), ln( �f )] be-
tween ln(Y ) and ln( fi ), we first determine the covari-
ance Cov(Y, fi ) between Y and fi. We have Cov(Y, fi ) =
〈Y fi〉 − 〈Y 〉〈 fi〉 = 〈wi〉〈 f 2

i 〉 − 〈Y 〉〈 fi〉 + ∑n
j �=i〈w j〉〈 fi f j〉. All

these moments are given above, and we obtain

Cov(Y, fi ) = emw+σ 2
w/2e2(m f +σ 2

f )

×
⎡
⎣1 − e−σ 2

f

⎛
⎝n −

n∑
j �=i

eσ 2
f ci j

⎞
⎠

⎤
⎦, (27)

which after using Eq. (2) yields the covariance vector of
interest:

(CovY �f )i = ln

⎡
⎣1

n

⎛
⎝eσ 2

f +
n∑

j �=i

eσ 2
f ci j

⎞
⎠

⎤
⎦. (28)

The general formulas in Eqs. (26) and (28) can be expanded
for weak presynaptic neural correlations, i.e., eσ 2

f ci j ≈ 1 +
σ 2

f ci j for |γ | 
 1, with the help of
∑

j �=i ci j = γ [δi1 + δin +
2(1 − δi1)(1 − δin)] + O(γ 2). This leads to

σ 2
Y = ln

{
1 + 1

n

[
e(σ 2

f +σ 2
w ) − 1

]}

+ 2γ σ 2
f

(
1 − 1

n

)2

n + [
e(σ 2

f +σ 2
w ) − 1

] + O(γ 2) (29)

and

(CovY �f )i = ln

[
1 + 1

n

(
eσ 2

f − 1
)]

+ γ σ 2
f [δi1 + δin + 2(1 − δi1)(1 − δin)]

n + [
eσ 2

f − 1
] + O(γ 2).

(30)

Note that the covariance vector CovY �f is finite even when
there are no correlations between presynaptic neural activities
(γ 
→ 0); however, in the limit n 
→ ∞ it vanishes.

The last step is to find the value of CovT
Y �f �

−1
f CovY �f ,

using approximation to Eq. (18) for small γ , i.e., (�−1
f )i j =

1
σ 2

f
[δi j − γ (δi, j−1 + δi, j+1)] + O(γ 2). The result is

CovT
Y �f �

−1
f CovY �f = n(1 − 2γ )

σ 2
f

ln2

[
1 + 1

n

(
eσ 2

f − 1
)]

+ 4(n − 1)γ(
eσ 2

f + n − 1
) ln

[
1 + 1

n

(
eσ 2

f − 1
)]

+ O(γ 2). (31)

This term also vanishes in the limit of very large number of presynaptic neurons, n 
→ ∞.
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Mutual information between pre- and postsynaptic neuronal activities is given by the first line of Eq. (8), with det(�Y ) = σ 2
Y

and det (�Y − CovT
Y �f �

−1
f CovY �f ) = σ 2

Y − CovT
Y �f �

−1
f CovY �f , which are given by Eqs. (29) and (31). MI takes the form

MI( �f ,Y )ln = 1

ln 4
ln

(
ln

{
1 + 1

n

[
e(σ 2

f +σ 2
w ) − 1

]}
(

ln
{
1 + 1

n

[
e(σ 2

f +σ 2
w ) − 1

]} − n
σ 2

f
ln2

[
1 + 1

n

(
eσ 2

f − 1
)]) [

1 + γ g
(
n, σ 2

f , σ
2
w

) + O(γ 2)
])

, (32)

where the function g(n, σ 2
f , σ

2
w ) is defined as

g
(
n, σ 2

f , σ
2
w

) =
2n ln2

(
1 + 1

n

[
eσ 2

f − 1
])[(

2(1−1/n)(
e
σ2

f +n−1
)

ln
[

1+ 1
n

(
e
σ2

f −1
)] − 1

σ 2
f

)
ln

{
1 + 1

n

[
e(σ 2

f +σ 2
w ) − 1

]}
− (1−1/n)(

e
σ2

f +σ2
w +n−1

)]

ln
{
1 + 1

n

[
e(σ 2

f +σ 2
w ) − 1

]}(
ln

{
1 + 1

n

[
e(σ 2

f +σ 2
w ) − 1

]} − n
σ 2

f
ln2

(
1 + 1

n

[
eσ 2

f − 1
])) , (33)

with σ 2
f = ln[1 + Var( f )/〈 f 〉2] and σ 2

w = ln[1 + Var(w)/
〈w〉2], where Var( f ) = 〈 f 2〉 − 〈 f 〉2 and Var(w) = 〈w2〉 −
〈w〉2 [see Eq. (24)]. Equations (32) and (33) constitute
the major result of this paper. These two equations with
quite complex formulas give us MIln for any number of
presynaptic neurons n, as well as for arbitrary levels of vari-
ability in presynaptic firing rates σ f and synaptic weights
σw. Note that MIln does not depend at all on μ f and μw.
For very noisy synapses, i.e., for σw 
→ ∞, both factors un-
der the logarithm in Eq. (32) tend to 1 (function g 
→ 0),
and hence mutual information MIln 
→ 0. The function g
in Eq. (33) is generally positive (unless presynaptic activ-
ity has very high variability, σ 2

f � 1, but then MI already
approaches infinity). Specifically, for σ 2

f 
 1 and arbitrary
σ 2

w, we get a relatively simple form for this function, g ≈
2σ 2

f /{n ln[1 + (eσ 2
w − 1)/n]}, which implies that positive cor-

relations between presynaptic neurons (γ > 0) increase MI,
while their negative correlations (γ < 0) are detrimental
for MI.

Of particular interest is the expression for MI when neu-
ronal activities and synaptic weights have low variability, such
that both σ 2

f 
 1 and σ 2
w 
 1. In this case, Eqs. (32) and

(33) simplify significantly, and we obtain the following simple
expression for MI:

MI( �f ,Y )ln ≈
ln

{[
1 + σ 2

f

σ 2
w

][
1 + 2γ σ 2

f

(σ 2
w+σ 2

f ) + O(γ 2)
]}

ln 4
. (34)

Note that MI in this limit is independent of the number of
presynaptic neurons n. Moreover, Eq. (34) implies that MI
grows with increasing the variance of presynaptic neurons σ 2

f ,
and it decays with increasing the synaptic weight variance σ 2

w.
This suggests that the ratio σ 2

f /σ
2
w can be interpreted as the

signal-to-noise ratio, with the variability in synaptic weights
serving as the noise.

Equation (34) can be rewritten in terms of means and
variances of presynaptic firings 〈 f 〉, Var( f ), and of synaptic
weights 〈w〉, Var(w), using Eq. (24). For σ 2

f 
 1 and σ 2
w 
 1,

we have σ 2
f ≈ Var( f )/〈 f 〉2 and σ 2

w ≈ Var(w)/〈w〉2, which

leads to

MI( �f ,Y )ln ≈ 1

ln 4
ln

[(
1 + 〈w〉2Var( f )

〈 f 〉2Var(w)

)

×
(

1 + 2γ 〈w〉2Var( f )

[〈 f 〉2Var(w) + 〈w〉2Var( f )]

+ O(γ 2)

)]
. (35)

From this formula it is clear that in the limit of low neu-
ronal and synaptic variabilities, MI scales with their relative
ratio.

B. Comparison between neuronal MI with lognormal
and normal neural activities

In this section we take a more traditional viewpoint and
derive neuronal MI treating neural activities as Gaussian
variables. The resulting expression for Gaussian MI is then
compared with the lognormal MI obtained in Eq. (32).

It should be said from the outset that treating positive firing
rates as normal variables is a little unrealistic, since there is
always some nonzero probability that the rates can become
negative. Obviously, that likelihood is extremely small if neu-
ral activity variances are much smaller than their mean levels.

We assume explicitly that firing rates �f in Eq. (23) have
normal distribution with uniform mean 〈 f 〉 and variance
Var( f ), and they are weakly correlated. No specific distri-
bution for synaptic weights �w is assumed, except that it has
uniform mean 〈w〉 and finite but not too large variance Var(w)
(it could be Gaussian too, but it is not necessary for the
arguments below). We also take the limit n 
→ ∞, implying
a very large number of presynaptic neurons. That limit allows
us to use the central limit theorem in Eq. (23) and claim that
the postsynaptic firing rate Y has a normal distribution. The
central limit theorem is permissible here because, in contrast
to the lognormal case, the summands in Eq. (23) have short
tails [51].

The goal is to find mutual information between Gaus-
sian �f and Y , denoted as MI( �f ,Y )g, which is given by the
first line of Eq. (8), where X 
→ �f . This means that now
�Y = 〈Y 2〉 − 〈Y 〉2, the covariance vector between Y and �f is
Cov(Y, fi ) = 〈Y fi〉 − 〈Y 〉〈 fi〉, and the covariance matrix � f
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is between fi and f j , i.e., (� f )i j = 〈 fi f j〉 − 〈 fi〉〈 f j〉. Again,
for the latter matrix we take the Kac-Murdock-Szegö form,
though with different coefficients, (� f )i j = c0κ

|i− j|, where
the variance in presynaptic activities c0 = 〈 f 2〉 − 〈 f 〉2 and
|κ| 
 1. The inverse of � f is (�−1

f )i j = [δi j − κ (δi, j−1 +
δi, j+1)]/c0 + O(κ2). The calculation in many respects is sim-
ilar to the one in the previous section, but a little easier.
Specifically, we obtain

�Y = n[〈w2〉〈 f 2〉 − 〈w〉2〈 f 〉2] + 2(n − 1)κ〈w〉2Var( f )

(36)

and

Cov(Y, fi ) = 〈w〉Var( f )(1 + κ[δi1 + δin

+ 2(1 − δi1)(1 − δin)]) + O(κ2). (37)

With the help of these relations we find

Cov(Y, �f )T �−1
f Cov(Y, �f )

= 〈w〉2Var( f )[n + 2(n − 1)κ] + O(κ2), (38)

which leads to the Gaussian MI in the form

MI( �f ,Y )g

≈ 1

ln 4
ln

[(
1 + 〈w〉2Var( f )

〈 f 2〉Var(w)

)

×
(

1 + 2κ〈w〉2Var( f )

[〈 f 2〉Var(w) + 〈w〉2Var( f )]
+ O(κ2)

)]
.

(39)

Comparing the above MI for Gaussian distributions with the
corresponding MI for lognormal in Eq. (32), we can notice
significant differences, as σ 2

f and σ 2
w depend in a nonlinear

way on Var( f ) and Var(w). Generally MIln is greater than
MIg, and the discrepancy between them grows with increasing
presynaptic firing rate variability and with decreasing synaptic
noise (Fig. 4). Additionally, MIln diverges for some finite√

Var( f )/〈 f 〉 for a fixed level of
√

Var(w)/〈w〉 (and vice
versa), whereas MIg is always finite for finite means and
variances. However, in the case when variabilities in f and
w are weak, i.e., for σ 2

f , σ
2
w 
 1, we see that the lognormal

formula for MI in Eq. (35) is exactly the same as the one in
Eq. (39) for Gaussian MI (note that in this limit 〈 f 2〉 ≈ 〈 f 〉2

and κ 
→ γ ). This reflects a simple fact that, for small σ 2
f and

σ 2
w, lognormal distributions can be approximated by normal

distributions [52].

C. Implications for information processing
in cortical brain networks

The results shown in Fig. 4 indicate that high variability in
neural activities fosters information transfer between neurons.
Morever, there seems to be a fundamental difference between
short-tailed and heavy-tailed distributions of neural activities,
with the latter having much bigger transmission impact for
a given ratio of standard deviation to the mean activity. This
is also true for the variability in synaptic weights: synapses
with broad heavy-tailed distributions generally provide higher
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FIG. 4. Neuronal MI as a function of presynaptic activity
(a) and synaptic weights (b). Parameters used are as follows:
(a) Var(w)/〈w〉2 = 1.4 [6]; (b) Var( f )/〈 f 〉2 = 1.5 [7]; and for both
n = 8000 [43].

mutual information than synapses with bell-shaped distribu-
tions [Fig. 4(b)].

Our theoretical result, presented in Fig. 4, and its in-
terpretation are compatible with experimental data coming
from cortical networks [53,54]. These papers demonstrated
that diversity of brain dynamics, i.e., activity patterns with
broad heavy-tailed distributions, tend to improve informa-
tion transfer between different cortical regions [53,54]. More
generally, these conclusions are also in line with empirical
evidence showing that neuronal representations in mammalian
brains are high dimensional, meaning that neurons exhibit a
diversity of context-dependent activities, which is important
functionally [55]. Taken together, this may suggest that evolu-
tion prefers brains with heterogeneous dynamics to optimize
information processing (e.g., Ref. [8]).

V. CONCLUSIONS

In this paper we used analytical expression for mutual
information between random vectors with lognormal distri-
bution to obtain closed-form expressions of MI for different
networks of interacting elements with specific covariance ma-
trices, mostly sparse with a high degree of symmetry. These
formulas may be helpful in many practical applications in en-
gineering and biology. Additionally, we applied these results
to information transfer in neural networks of the mammalian
cerebral cortex. Specifically, we derived an analytical formula
for MI of a neuron receiving many correlated synaptic inputs
that are lognormally distributed, and we compared such MI
with the case when the total synaptic input is normally dis-
tributed. Interestingly, mutual information in the first case of
lognormal input can be significantly greater than that in the
second case with Gaussian variables.
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APPENDIX: INVERSE AND DETERMINANT OF
TRIDIAGONAL MATRIX AND PROOF OF EQ. (17)

To compute CovT
XY �−1

X CovXY in Eq. (17), we need first to
find the inverse of the tridiagonal matrix �X . Let us consider a
general n × n tridiagonal matrix A with all diagonal elements
equal to t and off-diagonal elements all equal to s. Inverse
elements of A are given by [34,56]

(A−1)i j = (−1)i+ j s j−iθi−1φ j+1/θn (A1)

for i � j, where θn = det(A). Matrix A−1 is symmetric, and
hence (A−1)i j = (A−1) ji. In Eq. (A1), θi and φi are functions
of t and s. Additionally, functions θi satisfy the following
recurrence relations:

θi = tθi−1 − s2θi−2, (A2)

with θ0 = 1 and θ1 = t . Similarly, functions φi satisfy the
following recurrence relations:

φi = tφi+1 − s2φi+2, (A3)

with φn+1 = 1 and φn = t .
Both of the recurrence relations, Eqs. (A2) and (A3), can

be solved by a standard substitution of θi = ri, with unknown
r. The solution for r is r± = 1

2 (t ± √
t2 − 4s). The specific so-

lutions for θi and φi are given by linear combinations of r− and

r+, with coefficients dependent on the boundary conditions in
Eqs. (A2) and (A3). It is easy to show that

θi(t, s) = [(t + √
t2 − 4s2)i+1 − (t − √

t2 − 4s2)i+1]

2i+1
√

t2 − 4s2
(A4)

and φi = θn−i+1, for i = 1, 2, . . . , n. The functions θi(t, s) can
be interpreted as determinants of reduced i × i matrices gen-
erated from the original matrix A, with all diagonal elements
t and all off-diagonal elements s.

Now we can determine CovT
XY �−1

X CovXY in Eq. (17). We
have

n∑
i, j=1

(
CovT

XY

)
i

(
�−1

X

)
i j (CovXY ) j

= a2
n∑

i, j=1

(
�−1

X

)
i j

= a2

⎛
⎝ n∑

i=1

(
�−1

X

)
ii + 2

n−1∑
i=1

n∑
j=i+1

(
�−1

X

)
i j

⎞
⎠,

where the symmetric matrix �−1
X has the following elements:

(
�−1

X

)
i j = (−1)i+ jγ j−i

det(�X )
θi−1θn− j, (A5)

for i � j. These sums can be executed, and after lengthy
computations one can obtain Eq. (17) in the main text.
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