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Structure of quantum supercooled liquids
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Supercooled liquids show a drastic slowdown in the dynamics with decreasing temperature, while their
structure remains similar to that of normal liquids. In this paper, the structural features in a quantum supercooled
liquid are explored in terms of cages defined using the Voronoi polyhedra and characterized in terms of their
volumes and geometries. The cage volume fluctuations are sensitive to the quantum effects, and decrease as the
glass transition is approached by varying the quantumness. This is in contrast to the classical case where the
volumes are insensitive to temperature variations as one approaches the transition. The cage geometry becomes
more spherical upon increasing quantumness from zero, pushing the system closer to the glass transition. The
cage geometry is found to be significantly correlated with asymmetry in the position uncertainty of the caged
particle in the strongly quantum regime.
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I. INTRODUCTION

The dynamics of a liquid slows down drastically upon
supercooling, leading to the phenomenon of a glass transition
due to confinement of the particles, or “caging,” by their
neighbors. It is not well understood what structural changes,
if any, accompany the phenomenon of a glass transition. The
liquid structure, as analyzed in terms of a two-point structural
correlation, the structure factor, or equivalently, the radial
distribution function, does not show significant changes as
one approaches the glass transition. It is therefore desirable
to identify structural features that may exhibit significant
variations upon supercooling and possibly indicate a ther-
modynamic origin of the glass transition, which is currently
a focus of much research. Several works have studied the
presence of locally favored structures and tried to identify the
correlation of slow dynamics with local structural parameters
such as tetrahedrality and packing efficiency [1–3] and more
complex quantities derived from machine learning approaches
[4], and diverging correlation lengths associated with higher-
order structural correlations [5].

In this paper, we study the microscopic structural proper-
ties of a quantum supercooled liquid. It has been recognized
in recent years that quantum effects may bring in interesting
changes in the behavior of liquids at low temperatures. Some
examples include the linear temperature dependence of the
specific heat in glasses at low temperatures (<1 K) in con-
trast to the expected cubic temperature dependence in crystals
[6–9], suppression of the glass-transition temperature of low
Tg materials [10,11], and anomalous behavior in the diffusion
coefficients of H2 and D2 at low temperatures in nanoporous
substrates [12–14]. The observations in Refs. [10–14] sug-
gest that the quantum effects can either slow down or make
the dynamics faster, indicating a nonmonotonous (reentrant)
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behavior in the glassy nature as one scans through the whole
regime of quantumness from weak (� < particle size) to

strong (� > particle size), where � =
√

h̄2β

2m is the thermal de
Broglie wavelength of the particle of mass m, and β is the in-
verse temperature. This reentrant behavior has been observed
in quantum simulations in simple model systems [15,16].

We employ path-integral molecular dynamics simulations
to account for the quantum effects. We particularly focus on
the structure of cages in the regimes of weak and strong
quantumness. The reentrant behavior allows one to define
two types of liquids, with an intervening glass transition: one
where caging potential effects are relatively important (a weak
quantum regime), and the other where tunneling effects are
significant (a strong quantum regime). Our study indicates
that the cage geometries and their size distributions depend
on supercooling and can be a static indicator of the reentrant
behavior of the glass transition in quantum liquids. We further
show that in a strongly quantum regime, the liquid structure
around the cages having significantly different geometries,
may show qualitative differences, although the radial distri-
bution function of the liquid shows no interesting feature
upon supercooling by varying the quantumness. The cage
geometry is found to be correlated with the asymmetry in the
quantum uncertainty in the position of the caged particle. This
correlation increases with the quantumness.

II. SIMULATION MODEL AND METHODS

We consider a three-dimensional glass forming liquid [17]
consisting of two species A and B, in a ratio of 80:20. The
system consists of 1000 particles with a number density 1.206.
The interaction between two particles, α and β, is given by the
Lennard-Jones potential,

Vαβ (r) = 4εαβ

{(σαβ

r

)12
−

(σαβ

r

)6
}
, (1)
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FIG. 1. The probability distribution of (a) volumes (V ) and (b) asphericities (α) of the cages for �∗ = 0.1 (brown), 0.3 (green), 0.5 (purple),
1.5 (red), and 1.6 (black). The inset in (a) shows the distribution of cage volumes in the classical case, for T = 1.0 (brown), 0.7 (green), 0.6
(purple), 0.5 (red), and 0.46 (black). The inset in (b) shows the variation of average asphericity (〈α〉) as a function of �∗ (blue) for the quantum
case and temperature (red) for the classical case.

where r is the distance between two particles, and σαβ and εαβ

are the effective size and the interaction energy, respectively.
The distance is in units of σAA. The mass m is set to unity
for both species. The length scales and timescales are in units
of σAA and τ =

√
mσ 2

AA/εAA , respectively. This model is well
known to show a dynamic slowdown typically observed going
closer to the glass transition in the classical case [18,19].

The path-integral formalism incorporates quantum effects
using a mapping between a quantum particle and a classi-
cal ring polymer [20] with P beads. Path-integral molecular
dynamics [21,22] simulations are carried out starting from
equilibrium configurations from classical simulations at the
desired temperature. The quantumness of the system is varied
by manipulating h̄. If the de Broglie wavelength is small
compared to the classical size (σ ) of the particle, the quan-
tum effects are insignificant in the system. As the de Broglie
wavelength becomes comparable to the particle size, quan-
tum effects start to play an important role in dictating the
properties of the system. The limit h̄ → 0 gives the classical

TABLE I. The relaxation time (τ ), average values of cage
volumes (〈V 〉), and asphericities (〈α〉) for different values of
quantumness.

�∗ τ 〈V 〉 〈α〉
0.1 1.79 0.8983 0.3791
0.2 5.8 0.8968 0.3678
0.3 36 0.8953 0.3599
0.4 664 0.8942 0.3542
0.5 6745 0.8929 0.3518
1.3 174 0.8908 0.3554
1.4 58 0.8909 0.3623
1.5 4.26 0.8921 0.3925
1.6 0.77 0.8937 0.4541

limit. Results presented are for the major component of the
system (A-type species) at a fixed temperature, T = 1.0, and
different �∗ = �/σAA obtained by varying h̄. Classically, at
this temperature, the system is in the normal liquid regime
showing fast (relaxation time τα ∼ τ ) exponential relaxation.
In the quantum case, however, even at T = 1.0, it is possible
to push the system to the supercooled state by increasing �∗
from zero, leading to a marked increase in the relaxation times
(∼3 orders of magnitude) of the system (see Table I), and back
to the liquid state, by further increasing �∗ to values greater
than the particle size as shown in Refs. [15,23], resulting
in the reentrant behavior in the dynamics as a function of
quantumness.

III. STRUCTURAL PROPERTIES OF CAGES

The cage of a particle is defined by the volume exclusively
available for the particle by considering configurations of
nearest neighbors. This is done using the Voronoi polyhedra
[24,25] of the center of mass (c.m.) of ring polymers, which is
a classical-like degree of freedom of the quantum particle, and
is an estimate of the average position of the quantum particle.
In a disordered system, the Voronoi polyhedra, defined as the
space closer to its central atom than to any other, give us
some insights about the variations in the three-dimensional
(3D) local environment of particles than the radial distribution
function, which is an average quantity [26]. The Voronoi poly-
hedra divide the total volume to volumes exclusively available
for each particle, giving a measure of local density around
each particle. Each snapshot of the system configuration is
analyzed in terms of the Voronoi polyhedra properties, volume
(V ) and asphericity (α), to characterize the cages.

The distribution of cage volumes for different values of
quantumness is shown in Fig. 1(a). Although the average
volume of cages remains unaffected, fluctuations in the vol-
ume distribution are significantly affected as quantumness is
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FIG. 2. The radial distribution function for the c.m. of the ring polymer, for particles with lowest (black curves) and highest (red curves)
10% of asphericities for (a) �∗ = 0.1 and (b) �∗ = 1.6. The insets in (a) and (b) show the corresponding radial distribution function for the
beads.

varied. It is observed that the fluctuations decrease as one
approaches the transition point; the system becomes more
homogeneous in terms of the cage volumes as one goes deeper
into the supercooled state. This indicates that in the weak
quantum regime, the local density variations decrease with
increasing quantumness, although the relaxation timescale
of density fluctuations is known to increase with increas-
ing quantum effects [27]. In the strong quantum regime, the
fluctuation in volume increases with increasing quantumness,
while the timescale of density relaxation decreases. In con-
trast, in the classical case, the local density fluctuations are
found to be insensitive to the temperature variations [see the
inset of Fig. 1(a)] [28], although their relaxation time in-
creases drastically upon lowering the temperature [18]. Thus
in the weak quantum region, the liquid becomes more homo-
geneous in terms of density fluctuations as the quantumness is
increased, while a reverse trend is seen in the strong quantum
regime.

We next analyze the geometries of the cages in terms of
their asphericities, defined as the ratio α = S3

36πV 2 − 1, where
S is the total surface area and V is the volume of the polyhe-
dron, respectively. This provides an estimate of how close the
polyhedron is to a sphere (α = 0). A truncated octahedron,
a rhombic dodecahedron, and a cube have α = 0.33, 0.35,
and 0.91, respectively. A comparison of the distribution of
asphericities of polyhedra as a function of �∗ is shown in
Fig. 1(b). Increasing quantumness in the moderate quantum
regime leads to shifting of the average asphericity (〈α〉) to
lower values. The distribution becomes more homogeneous
upon supercooling. Thus, going towards the glass transition,
cages tend to become more spherical. Similar behavior is also
observed in the classical case, where the glass transition is
approached by decreasing the temperature. Going towards the
stronger quantum regime, the asphericities become broadly
distributed with a larger average value. A comparison of
〈α〉 for the classical and quantum system is shown in the
inset of Fig. 1(b), which clearly shows that cages become
more spherical as the transition point is approached both in

the classical and quantum liquids. However, on the stronger
quantum regime, this gives way to an increasing trend of 〈α〉
with increasing �∗ while the liquid becomes less glassy as
the relaxation time decreases. Thus, the average asphericity
values reflect the reentrant behavior of the dynamics observed
in the system.

Does a change in the geometry of a cage cause any signif-
icant change in the local liquid structure? In order to explore
this, we consider the particles with cages of highest and lowest
(10%) α values in the distribution, and study the liquid struc-
ture around these particles, in terms of the radial distribution
function gα (r) of the c.m. of ring polymers. This is shown in
Fig. 2 for two �∗ values. In the weak quantum system, there
are no qualitative differences in the local structure around
particles with different cage geometries. However, in the
strong quantum regime, there are significant differences in the

FIG. 3. Tunneling fraction for �∗ = 0.2 (brown), 0.4 (blue), 1.3
(green), 1.5 (red), and 1.6 (black). The inset shows the average
tunneling fraction (〈ϕ〉) as a function of �∗.
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TABLE II. The average tunneling fraction (ϕ) and the anisotropy
of polymer shapes (R).

�∗ 〈ϕ〉 〈R〉
0.1 0.0224 0.0008
0.2 0.038 0.0148
0.3 0.054 0.0181
0.4 0.0558 0.0204
0.5 0.08929 0.0214
1.3 0.125 0.00305
1.4 0.143 0.0350
1.5 0.159 0.0454
1.6 0.226 0.0675

structure around the particles of cages of different aspheric-
ities as shown in Fig. 2(b). The sharper first maximum in
gα (r) for regions around particles with low α indicates that
these regions are more structured. On the other hand, in the
high asphericity regions, the nearest neighbors are closer, as
implied by the additional peak arising in the intermediate r ≈
1.4σAA for high α values. Note that for strong quantumness,
the local structure obtained in terms of bead radial distribution
around the cages with different asphericity shows qualitatively
different behavior and predicts a significant nonzero proba-
bility for particles to be found even at zero distance, which
is more pronounced in the neighborhood of particles with
larger asphericity cages. This is a consequence of the position
uncertainty in quantum liquids. For distances r > σAA, the
structure is almost flat, resembling the structure of a gaseous
system.

IV. QUANTIFYING TUNNELING IN QUANTUM LIQUIDS

The reentrant behavior in the dynamics of the system is a
result of predominant tunneling in the strong quantum regime
[16]. The spread of the beads of the ring polymer with respect
to the c.m. (average position of the quantum particle) is an
indicator of the position uncertainty of the quantum particle
[15,29]. The greater the spread of the beads, the larger is
the position uncertainty of the quantum particle, indicating a
higher propensity of tunneling. As discussed in Sec. III, the
Voronoi volume gives an estimate of the confinement of the
quantum particle by its neighbors, or the cage. Thus, the cage
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FIG. 5. The correlation coefficients for α − φ (blue solid cir-
cles), α − R (red open squares), and R − ϕ (black solid squares)
as a function of �∗.

defined this way can be interpreted as the classical potential
in which the particle is confined, while the beads outside the
cages denote the weight of the probability of the particle to be
outside this potential and thus is a measure of the tunneling.
Hence, we define tunneling as the fraction of beads outside
the Voronoi volume defined for the quantum particle. The
tunneling fraction (ϕ) for different �∗ is shown in Fig. 3.
For low values of quantumness the tunneling fraction is low,
since the uncertainty in particle position is smaller than the
cage size. As quantumness increases, the position uncertainty
grows, leading to a higher probability of finding the particle
outside its cage. The variation of average tunneling fraction
(〈ϕ〉) as a function of quantumness is shown in the inset of
Fig. 3 and in Table II. For the highest quantumness studied,
the value is ∼22%. The tunneling fraction of around 12%
is significant enough to bring in the liquidlike behavior in
the system, although this will depend on the strength of the
confining potential.

Given the geometries of the cages are significantly hetero-
geneous in the strong quantum regime, it is a relevant question
to ask whether the shapes of the ring polymer reflect a similar
heterogeneity and whether the two heterogeneities are corre-
lated. Anisotropy in the shape of a ring polymer is analyzed in

(a) (b) (c)

FIG. 4. The position of beads with respect to the center of mass for (a) �∗ = 0.2, (b) �∗ = 0.4, and (c) �∗ = 1.6.
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FIG. 6. Joint probability distribution of the variables α and R (left panel), and the quantity P(α,R) − P(α)P(R) (right panel) for (a) �∗ =
0.4, (b) �∗ = 1.2, and (c) �∗ = 1.6.

terms of the instantaneous difference in the radius of gyration,

Rgμ =
√

1
P

∑P
i=1(μi − μcm)2, μ ∈ x, y, z, along the three axes

and quantified by the parameter

R = 1

3

∑
μ

∑
ν 
=μ

|Rgμ − Rgν |. (2)

Averaging over the ensemble, it is observed that R in-
creases systematically with increasing quantumness. The
values are presented in Table II and the typical shapes of the

ring-polymer in the weak, moderate and strong quantum
regime are shown in Fig. 4.

To identify the possible correlations between the tunneling
fraction, asphericity, and the anisotropy in the polymer shape,
we calculate the correlation coefficient between each pair of
variables, defined by [30]

ρxy = 1

Ns

∑Ns
i=1(xi − 〈x〉)(yi − 〈y〉)

σxσy
, (3)
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where 〈· · · 〉 denotes the average over the sample, σx and σy

are the standard deviations of variables x and y, respectively,
and Ns is the number of observations. In the weak quan-
tum regime, the variables show poor correlation. However,
in the strong quantum regime, the variables α and R show
significant positive correlations as seen from Fig. 5. This
is also evident from the joint distribution P(α,R) which is
symmetric about the mean values [see Fig. 6(a)] and be-
comes increasingly distorted in the strong quantum regime
[Fig. 6(c)]. A measure of interdependence of the two vari-
ables is identified by analyzing the quantity  = P(α,R) −
P(α)P(R) and is depicted in the right-hand panel of Fig. 6
for three different �∗. For the weak quantum regime,  is
antisymmetric with respect to 〈α〉, implying that the two sides
show an opposing correlation between the variables leading to
a small value of ραR. In the strong quantum regime, a large
positive correlation is seen to arise from the (α,R) regions
lower than the average values, leading to the net positive value
of ραR.

V. CONCLUSIONS

The Voronoi polyhedra carry more structural information
than the average structure calculated by the radial distribution
function, and give insights into the local structure around the
particles in the system. It is observed that the average cage
volume is insensitive to the quantum effects. But quantumness
does affect the fluctuations in the volume distribution. Nearing
the glass transition by increasing the quantumness, the system

becomes more homogeneous in terms of the cage volumes.
This is in contrast to the classical case, where nearing the glass
transition by changing temperature does not have a signifi-
cant effect on the volume distribution. The cage geometries,
understood in terms of the asphericities, show that the cages
become more spherical as one approaches the glass transi-
tion. In the strong quantum regime, where the system moves
towards the liquid state as the quantumness is increased, a
broad distribution of asphericities is observed. The structures
around particles with high and low asphericities are consider-
ably different in the strongly quantum regime: Regions with
higher asphericities have nearest neighbors closer as com-
pared to the regions of low asphericity. The tunneling fraction
increases systematically with increasing quantumness. The
shape anisotropy of the ring polymer increases with increasing
quantum effects, indicating the polymer being stretched in one
of the directions as tunneling increases. The cage geometry
and polymer shape anisotropy are seen to be significantly
(positively) correlated in the strong quantum regime. Thus,
as the tunneling facilitates the escape of particles from their
cages, which become more anisotropic, the ring polymers also
acquire an anisotropic shape in the strong quantum regime.
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