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The expected utility hypothesis is a popular concept in economics that is useful for making decisions when
the payoff is uncertain. In this paper, we investigate the implications of a fluctuation theorem in the theory of
expected utility. In particular, we wonder whether entropy could serve as a guideline for gambling. We prove
the existence of a bound involving the certainty equivalent which depends on the entropy produced. Then, we
examine the dependence of the certainty equivalent on the entropy by looking at specific situations, in particular,
the work extraction from a nonequilibrium initial state.
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I. INTRODUCTION

Wealth is commonly affected by uncertainty, which can
come from our impossibility to know all the information to
get a deterministic prediction. For instance, in a quantum
system this uncertainty can be intrinsic and cannot be re-
duced arbitrarily. Thus, typically an agent aims to gain wealth
which is affected by stochastic fluctuations, so that he has
to make a choice (among the different procedures available)
under uncertainty. A risk-neutral agent will make his choice
by preferring procedures giving the maximum average gain.
However, if the agent takes into account the risk of his choice,
he can make his choice relying on the expected utility hy-
pothesis, first formalized by von Neumann and Morgenstern
within the theory of games and economic behavior in 1944
[1]. Thus, the choice will depend on how much the agent is
risk averse. Formally, risk aversion can be characterized in
terms of a utility function, from which we get the certainty
equivalent (in simple terms, the certain amount of wealth that
is equivalent, from the agent’s point of view, to the proce-
dure in question). Fluctuations are not always arbitrary, e.g.,
the fluctuations coming from the permanent state of ther-
mal agitation of the matter cannot violate the second law of
thermodynamics. This behavior can be a consequence of the
so-called fluctuation theorems (see, e.g., Refs. [2–4]).

From a thermodynamic point of view, the role of wealth
can be related to the thermodynamic work (see, e.g., Ref. [5]),
which is a stochastic quantity. When the initial state is an
equilibrium Gibbs state, the work w satisfies the Crooks fluc-
tuation theorem

p(w) = eβ(w−�F ) p̄(−w), (1)

which relates the work probability distribution p(w) of
the out-of-equilibrium process to the probability distribution
p̄(w) of a corresponding time-reversed process. In particular,
�F is the equilibrium free energy change, so that wirr =
w − �F gives the irreversible work. While an agent that
is neutral to risk will prefer to minimize the average ir-
reversible work 〈wirr〉 in the out-of-equilibrium process, in
general, a risk-non-neutral agent will look on the irreversible
work certainty equivalent, denoted with wCE

irr , which for a

constant absolute risk aversion r = α − 1 can be expressed
as wCE

irr = β−1Dα[p(w)|| p̄(−w)], where Dα[p(w)|| p̄(−w)] is
the Rényi divergence (see Ref. [5] for details). We note that
w can take both positive and negative values, although in
microeconomics the utility is generally defined just for pos-
itive values of the variables. The result of Ref. [5] suggests
that the fluctuation theorems can play a role in the expected
utility hypothesis, and here we try to explore this role further.
Differently from Ref. [5], we aim to derive some general
results which can be applied to the work extraction from a
nonequilibrium initial state, so that the fluctuation theorem
in Eq. (1) does not hold. Our idea is to look on the work
extracted certainty equivalent instead of the irreversible work
one as done in Ref. [5]. This leads to a “game” different from
the one introduced in Ref. [5]. To do this, we start from the
thermodynamic uncertainty relations of Refs. [6–8], which
provide a bound of the fluctuations of some random quantity.
The bound follows from some fluctuation theorems involving
the entropy produced and the quantity, like the fluctuation
theorem of Ref. [9]. We prove a generalized thermodynamic
uncertainty relation which involves the certainty equivalent
for a risk-non-neutral agent and reproduces the usual thermo-
dynamic uncertainty relation when the agent is risk neutral.
This result shows how the certainty equivalent is related to
the average entropy produced. However, there are situations
where the certainty equivalent shows a nontrivial dependence
on the entropy, which goes beyond this bound.

II. EXPECTED UTILITY HYPOTHESIS
AND FLUCTUATION THEOREMS

For our purposes, we focus on an agent who must choose
between two procedures that yield two different wealths rep-
resented by the random variables w1 and w2 (having certain
probability distributions). To give an example, we consider
an agent who must choose between winning a fixed payoff
wdet = 50 or flipping a coin and winning a payoff whead = 100
if heads, or nothing otherwise. Intuitively, if the agent is risk
neutral, he is indifferent to the choice, since if he flips the
coin he will win the average payoff wdet. Furthermore, we
expect that if the agent is risk averse (loving), he will choose
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the certain payoff wdet (to flip the coin). The expected utility
theory modelizes the agent’s risk aversion by using a utility
function u(w), so that (following this theory) the agent will
choose the procedure yielding the wealth w1 instead of the
wealth w2 if [10,11]

〈u(w1)〉 > 〈u(w2)〉. (2)

Thus, in our example, an agent with the utility function u(w)
will choose to flip the coin if u(0) + u(whead ) > 2u(wdet ) is
neutral to the choice if equality holds or will choose certain
payoff otherwise. It is easy to see that the inequality in Eq. (2)
remains unchanged if we perform an affine transformation on
the utility function, i.e., the transformation u(w) �→ au(w) +
b, where a is a positive variable. This means that the utility
function is defined up to affine transformations, since two
utility functions related by such transformation give the same
preference ordering given by Eq. (2). The wealth w can be
further characterized by the certainty equivalent, denoted with
wCE, defined such that

u(wCE) = 〈u(w)〉. (3)

Thus, the certainty equivalent is obtained as the Kolmogorov-
Nagumo average of the wealth, i.e., wCE = u−1(〈u(w)〉). The
meaning of the certainty equivalent becomes more clear if we
consider as usual a strictly increasing utility function u(w),
so that Eq. (2) is equivalent to wCE

1 > wCE
2 , where wCE

1,2 is
the certainty equivalent corresponding to the wealth w1,2.
To understand in simple terms how the agent’s risk aversion
depends on the utility function u(w), we start by noting that
if u(w) is a linear function the certainty equivalent coincides
with the average value, i.e., wCE = 〈w〉. In this case, the agent
prefers the procedure maximizing the average wealth and it
is neutral to risk. Instead, if u(w) is a strictly increasing
concave function, then the agent is averse to risk, since by
applying the Jensen’s inequality to Eq. (3) we get wCE < 〈w〉.
Similarly, if u(w) is a strictly increasing convex function the
agent will be loving to risk since wCE > 〈w〉. In particular, the
difference RP = 〈w〉 − wCE gives the so-called risk premium.
For instance, in our example, if u(w) is a convex function (for
arbitrary values whead and wdet), by applying Jensen’s theorem
we get the inequality u(0) + u(whead ) � 2u(whead/2). Then,
by considering u(w) strictly increasing, if whead > 2wdet,
based on the previous discussion, the agent will flip the coin.
In summary, we say that the agent is risk averse if wCE < 〈w〉,
risk neutral if wCE = 〈w〉, and risk loving if wCE > 〈w〉. Fur-
thermore, the utility function allows us to quantify how risk
averse an agent is. For a utility function which is concave
and strictly increasing, risk aversion can be measured with the
Arrow-Pratt coefficient of absolute risk aversion defined as

rA(w) = −u′′(w)

u′(w)
, (4)

which is non-negative. It is clear that risk aversion depends
on how much the utility function u(w) is concave. Then, the
more simple quantifier of risk aversion should be the second
derivative u′′(w). However, u′′(w) is not invariant under affine
transformations, but we can work around this problem by
dividing it by the first derivative u′(w), which explains Eq. (4).
More details can be found, e.g., in Refs. [10,11].

A. Certainty equivalent bound

Having introduced some rudiments of the expected utility
hypothesis, we now focus on a different hypothesis—that the
wealth w is related to a random variable σ by the fluctuation
theorem

p(σ,w)

p(−σ,−w)
= eσ , (5)

where p(σ,w) is the joint probability distribution of the
variable σ and the wealth w. For instance, this theorem
holds for some specific physical variables w and σ (e.g.,
see Ref. [9]). So, making an analogy with thermodynamics,
we call σ stochastic entropy. Thus, we can assume that the
fluctuation theorem in Eq. (5) holds as happens in certain
physical situations (e.g., the ones of the thermodynamic un-
certainty relations of Refs. [6,7]) and that the quantity w

can be thought of as wealth. For our purposes the variable
w is thought of as the work extracted in Sec. III, so that
the fluctuation theorem can hold for some initial nonequi-
librium states, as we will explicitly show. In general, given
a wealth w with probability distribution p(w), there can
exist an entropy σ such that the joint probability distri-
bution p(σ,w) satisfies the fluctuation theorem in Eq. (5).
For instance, when the support of p(w) is discrete, a suf-
ficient condition for the existence of a variable σ such that
Eq. (5) holds is that the probability distribution of the wealth
has the form p(w) = ∑N

n=−N pnδ(w − wn), with wn = −w−n

and pn p−n = K2, where K is some constant. In this case,
we can define p(σ,w) = ∑N

n=−N pnδ[σ − ln(pn/p−n)]δ(w −
wn) and we can easily check that Eq. (5) is satisfied. In par-
ticular, p(w) is the marginal probability distribution p(w) =∫

p(σ,w)dσ . However, we can also make the trivial choice
p(σ,w) = δ(σ )p(w), so that the joint probability distribu-
tion p(σ,w) resulting from p(w) is not unique. In general,
for discrete supports of w and σ , which are {wn} and {ak},
we need to have wn = −w−n and ak = −a−k ; i.e., the joint
probability distribution needs to have the form p(σ,w) =∑M

k=−M

∑N
n=−N pk,nδ(σ − ak )δ(w − wn), with M being an

integer, where
∑

k,n pk,n = 1 and pk,n � 0. From Eq. (5),
the integral p(−w) = ∫

e−σ p(σ,w)dσ gives a condition for
the probabilities pn = ∑

k pk,n of the wealth, depending on
M and typically different from the condition pn p−n = K2,
which is achieved for M = N . In general, a necessary con-
dition for the existence of σ such that Eq. (5) holds is that
p(w) has the same support of p(−w), since Eq. (5) implies
that p(−w) = ∫

e−σ p(σ,w)dσ , and the integration over σ

changes the probabilities but does not change the support of
w. Then, given a wealth w, it is not always possible to define
p(σ,w) such that Eq. (5) holds: Eq. (5) is a hypothesis whose
implications to the expected utility we want to examine. To
be as general as possible, we consider an agent with an ar-
bitrary utility function u(w), which in general can always
be written as u(w) = ue(w) + uo(w), with ue(w) = ue(−w)
and uo(w) = −uo(−w). In particular, given any utility func-
tion u(w), the even and odd components can be obtained as
ue,o(w) = [u(w) ± u(−w)]/2. If the fluctuation theorem in
Eq. (5) holds, we get the general bound

(u(wCE) − 〈ue(w)〉)2〈
u2

o(w)
〉 �

〈
tanh2

(σ

2

)〉
� f 2(〈σ 〉), (6)
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where f is the inverse of h(x) = 2x tanh−1 x. Thus, the cer-
tainty equivalent is constrained by the entropy production.

Proof. To prove Eq. (6), we note that

u(wCE) = 〈ue(w)〉 + 〈uo(w)〉; (7)

thus, we get

[u(wCE) − 〈ue(w)〉]2 = 〈uo(w)〉2 �
〈
u2

o(w)
〉
, (8)

which is a trivial bound which does not involve explicitly the
entropy. From the fluctuation theorem in Eq. (5), given an
arbitrary function of two-variable F (σ,w), we get the identity

〈F (σ,w)〉 = 〈F (−σ,−w)e−σ 〉, (9)

from which

〈uo(w)〉 = 1

2
〈uo(w)(1 − e−σ )〉 (10)

= 1

2

〈
uo(w)

√
1 + e−σ

(1 − e−σ )√
1 + e−σ

〉
. (11)

By using the Cauchy-Schwartz inequality, we get

〈uo(w)〉2 � 1

4

〈
u2

o(w)(1 + e−σ )
〉〈 (1 − e−σ )2

1 + e−σ

〉
(12)

= 〈
u2

o(w)
〉〈

tanh2
(σ

2

)〉
, (13)

where we have used the identity in Eq. (9). As shown, e.g., in
Ref. [8], we have the inequality〈

tanh2
(σ

2

)〉
� f 2(〈σ 〉), (14)

from which follows Eq. (6). �
The bound achieved is tighter than the trivial one obtained

from Eq. (8) since 0 � f 2(x) � tanh(x/2) � 1, with f (0) =
0 and f (x) → 1 as x → ∞ (see, e.g., Ref. [8]). In partic-
ular, from Eq. (6) we see that, as 〈σ 〉 → 0, if 〈u2

o(w)〉 	= 0
and it is finite, then wCE → u−1(〈ue(w)〉). For example, if
p(σ,w) = δ(σ )p(w), from the fluctuation theorem we need
to have p(w) = p(−w), and this result directly follows from
Eq. (7). If 〈σ 〉 → ∞, from the bound we get Eq. (8), so that
the entropy does not constrain the certainty equivalent. The
bound can be saturated; i.e., following Ref. [7], we consider
the minimal probability distribution distribution pmin(σ,w),
which reads

pmin(σ,w) = 1

2 cosh(a/2)
[ea/2δ(σ − a)δ(w − b)

+ e−a/2δ(σ + a)δ(w + b)]. (15)

Then, we get the equality in Eq. (6) for p(σ,w) = pmin(σ,w)
or for p(σ,w) = δ(σ )p(w). For a linear utility function, so
that the certainty equivalent is wCE = 〈w〉, Eq. (6) reduces to

w2
CE

〈w2〉 � f 2(〈σ 〉), (16)

which is the thermodynamic uncertainty relation of Ref. [7].
Thus, for a risk-neutral agent, this bound suggests that if
〈w〉 > 0 (〈w〉 < 0) the certainty equivalent becomes smaller
(larger) as the entropy decreases, when 〈w2〉 changes slowly

with the entropy. Equivalently, Eq. (6) can be written as

〈ue(w)〉 < u(wCE) � 〈ue(w)〉 + f (〈σ 〉)
√〈

u2
o(w)

〉
(17)

if 〈uo(w)〉 > 0, or as

〈ue(w)〉 > u(wCE) � 〈ue(w)〉 − f (〈σ 〉)
√〈

u2
o(w)

〉
(18)

if 〈uo(w)〉 < 0.
A relation between the certainty equivalent wCE and σ can

emerge from the bound. When the expectation values 〈ue(w)〉
and 〈u2

o(w)〉 do not change with 〈σ 〉, the right side of Eq. (17)
decreases as the average entropy decreases, whereas the right
side of Eq. (18) increases as the average entropy decreases.
This suggests that a risk-non-neutral agent prefers procedures
producing a small or large average entropy depending on the
sign of 〈uo(w)〉, since the latter determines the validity of
one of Eqs. (17) and (18). However, outside of this case the
relation between wCE and 〈σ 〉 can be very complex. To see
it, we note that for the distribution in Eq. (15) the bound is
saturated and both 〈ue(w)〉 and 〈u2

o(w)〉 do not change with
〈σ 〉, but if we add a point in the support, we get

p3(σ,w) = 1

1 + 2 cosh(a/2)
[ea/2δ(σ − a)δ(w − b)

+ e−a/2δ(σ + a)δ(w + b) + δ(σ )δ(w)], (19)

so that clearly both 〈ue(w)〉 and 〈u2
o(w)〉 will change with 〈σ 〉.

They change slowly if ue(x) and uo(x) evaluated at x = 0 and
b are not too large; e.g., it is easy to see that 〈ue(w)〉 monotoni-
cally changes from [ue(0) + 2ue(b)]/3 to ue(b) as the average
entropy goes from zero to infinity. Then, if 〈uo(w)〉 > 0, so
that Eq. (17) holds, if [ue(0) + 2ue(b)]/3 ≈ ue(b), u(wCE)
will decrease as the average entropy decreases, but if ue(b)
is negative and very large in modulus, u(wCE) follows the
trend of 〈ue(w)〉 and it will increase as the average entropy
decreases.

B. Exponential utility function: Examples

To be more quantitative we give some mathematical ex-
amples by focusing on the particular case of the exponential
utility function defined such that

u(w) = 1

r
(1 − e−rw ) (20)

for r 	= 0, and u(w) = w for r = 0, which is a strictly increas-
ing function. The agent is risk averse for r > 0, risk neutral for
r = 0, and risk loving for r < 0, and the absolute risk aversion
of Eq. (4) is constant and is rA(x) = r. From Eq. (3), defining
the certainty equivalent wCE, we get

e−rwCE = 〈e−rw〉. (21)

The even and odd components of the utility function u(w)
can be easily calculated as explained above and explicitly
read as ue(x) = [1 − cosh(rx)]/r and uo(x) = sinh(rx)/r. If
〈sinh rw〉 > 0 when r > 0, e.g., when w takes non-negative
values (we cannot have losses), Eq. (17) is achieved, which
suggests that the certainty equivalent becomes smaller as the
entropy decreases. In contrast, if 〈sinh rw〉 < 0 when r > 0
(in simple terms losses are very likely), Eq. (18) is achieved,
which suggests that the certainty equivalent becomes larger
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FIG. 1. The parametric plot of wCE versus the entropy 〈σ 〉 for
different values of r. We change γ from 0 to 1 (solid lines) and from
−1 to 0 (dashed lines). We have r = −6, −4, −2, 0, 2, 4, and 6 from
top to bottom. Of course, the curves keep the trend which emerges in
the plot also for larger values of r.

as the entropy decreases. However, for large r, since 〈ue(w)〉
and/or 〈u2

o(w)〉 can change strongly with the average entropy,
we can obtain the opposite situation as we have seen for a
distribution with a support of three points. To give another
example, we consider the probability distribution

p(σ,w) = n[g(σ,w)θ (σ ) + g(−σ,−w)eσ θ (−σ )], (22)

where n is such that
∫

p(σ,w)dσdw = 1 and g(σ,w) is
a non-negative function (see, e.g., Ref. [12]). We focus on
g(σ,w) = e−σ 2−w2+γ σw. In this case, 〈w〉 always has the same
sign of 〈sinh rw〉 with r > 0, which is equal to the sign of γ .
As shown in Fig. 1, for γ > 0 (γ < 0) the certainty equivalent
wCE increases (decreases) as the entropy increases for r non-
positive (non-negative), whereas wCE decreases (increases) as
the entropy increases for r positive (negative) and is large in
modulus. Thus, every risk-loving (risk-averse) agent prefers
to gamble when the entropy is large (small) and when the
average gain 〈w〉 is positive (negative). On the other hand,
when 〈w〉 is negative (positive), this becomes true only as
the agent becomes more and more risk loving (risk averse).
Furthermore, even the bound suggests that a risk-non-neutral
agent can prefer the situation opposite that preferred by a risk-
neutral one; e.g., we can have 〈w〉 < 0 and 〈sinh(rw)〉 > 0,
with r > 0, so that the bound suggests that a risk-neutral agent
prefers to gamble when 〈σ 〉 is small, whereas a risk-non-
neutral agent prefers to gamble when 〈σ 〉 is large. This can
happen for a distribution with more than three points in the
support, e.g., of the form

p2N (σ,w) = K
N∑

n=−N,n 	=0

ean/2δ(σ − an)δ(w − wn), (23)

with K−1 = 2
∑

n>0 cosh(an/2) and the support such that
wn = −w−n and an = −a−n to ensure the distribution satisfies
the fluctuation theorem. As shown in Fig. 2 for N = 2, in
the region where 〈w〉 < 0 and 〈sinh(rw)〉 > 0, with r > 0,
the certainty equivalent increases when the entropy increases,
as suggested by the bound. In particular, we note that for

FIG. 2. The parametric plots of 〈w〉〈sinh(rw)〉 [panel (a)] and
the certainty equivalent wCE [panel (b)] versus the entropy 〈σ 〉. We
consider N = 2 and wn = n for n > 0 and a1 = −2a2. The plot is
generated by changing a2 in [0,3].

r = 1, the certainty equivalent is maximum for a nonzero 〈σ 〉,
corresponding to a negative 〈w〉, so that the agent prefers to
gamble even if on average the losses are different from 0. Of
course, this behavior will be achieved for more points in the
support; e.g., we get it if the probability is peaked only on
four points in the support, so that the examined case in Fig. 2
is approximately reproduced.

III. WORK EXTRACTION

In order to show how this general discussion can be rel-
evant to a physical situation, we focus on a work-extraction
protocol performed by an agent that is non-neutral to risk. We
aim to obtain the fluctuation theorem in Eq. (5), where the
wealth w is equal to the work extracted. The work extraction
will be realized by performing a cyclic change of the parame-
ters of a thermally isolated system, which is initially prepared
in a certain nonequilibrium state. To be more specific, this
situation can be realized by focusing on a closed quantum
system made of two parties, A and B, having Hamiltonian
HA(t ) and HB(t ), which are time dependent. By considering
the time-dependent interaction Hint (t ) between A and B, the
total Hamiltonian H (t ) = HA(t ) + HB(t ) + Hint (t ) will gen-
erate the unitary time evolution operator Ut,0, which is the
solution of the Schrödinger equation iU̇t,0 = H (t )Ut,0 with
the initial condition U0,0 = 1. In particular we consider the
case where the interaction Hint (t ) is turned off at the initial
time t = 0 and the final time t = τ . The work extraction is
performed by cyclically changing some parameters of the sys-
tem, so that H (0) = H (τ ) = H and so that HA(0) = HA(τ ) =
HA and HB(0) = HB(τ ) = HB. The initial state is locally at
equilibrium, i.e., ρ(0) = e−βAHA ⊗ e−βBHB/Z , where Z is the
normalization constant Z = ZAZB, where ZX = Tr{e−βX HX },
with X = A and B. Since the system is thermally isolated,
the work extracted is minus the change of energy, so that the
average work extracted is 〈w〉 = Tr{H[ρ(0) − ρ(τ )]}, where
ρ(t ) = Ut,0ρ(0)U †

t,0. We note that if βA = βB the initial state
is a Gibbs state, so that it is passive [13]; i.e., it is not possible
to extract a nonzero average work by performing any unitary
cycle. The work w is defined by adopting a two-projective
measurement scheme [14]. Initially, we perform an energy
measurement of the two parties A and B at the time t = 0.
Then we extract the work by changing the Hamiltonian in
the time interval (0, τ ), generating the time evolution with
the unitary operator Ut,0. In the end, we again perform an
energy measurement of the two parties A and B at the time
t = τ . With the aim to get the fluctuation theorem in Eq. (5),
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we define a stochastic entropy σ with the joint probability
distribution

p(σ,w) =
∑

pmm′Pmm′nn′δ(σ − σmm′nn′ )

× δ
(
w − εA

m − εB
m′ + εA

n + εB
n′
)
, (24)

where the initial populations are pmm′ =
〈εA

m, εB
m′ |ρ(0)|εA

m, εB
m′ 〉; |εX

m 〉 are eigenstates of HX with
eigenvalues εX

m , with X = A and B; and σmm′nn′ =
βA(εA

n − εA
m) + βB(εB

n′ − εB
m′ ). The transition probability is

given by Pmm′nn′ = |〈εA
n , εB

n′ |Uτ,0|εA
m, εB

m′ 〉|2. It is easy to
see that this probability distribution satisfies the fluctuation
theorem in Eq. (5). We focus on two qubits with the local
Hamiltonian HX (t ) = ωX σ X

z /2, with X = A and B, with the
interaction

Hint (t ) = λ(t )
[
(1 + γ )σ A

x ⊗ σ B
x + (1 − γ )σ A

y ⊗ σ B
y

]
, (25)

where the coupling λ(t ) is such that λ(0) = λ(τ ) = 0 and
{σx, σy, σz} are the Pauli matrices. The local ground states
are |εX

1 〉 with energy εX
1 = −ωX /2, with X = A and B, while

|εX
2 〉 are the local excited states with energy εX

2 = ωX /2. We
consider ωA > ωB; it is easy to see that the initial state is
nonpassive if βB/βA > ωB/ωA, so that we expect 〈w〉 > 0 at
least for certain unitary evolutions. For γ = 0 the excitation
number is conserved and we can have only transitions in
the sector with odd-parity excitation, i.e., between the states
|εA

1 εB
2 〉 and |εA

2 εB
1 〉. In this case the support of the distribution

probability of work has only three points, which are w =
ωB − ωA, 0, and ωA − ωB. In contrast, for γ 	= 0, we can have
also transitions in the sector with even-parity excitation, i.e.,
also between the states |εA

1 εB
1 〉 and |εA

2 εB
2 〉, so that the support

of the distribution probability of work has five points, which
are w = −ωA − ωB, ωB − ωA, 0, ωA − ωB, and ωA + ωB. To
characterize risk aversion, we consider the exponential utility
function u(w) in Eq. (20). As shown in Fig. 3, for γ = 0 the
imprint of the entropy is strong, which determines completely
the trend of the certainty equivalent. However, for γ 	= 0,
the certainty equivalent follows the trend of the entropy only
for not too large r; otherwise wCE shows oscillations with
different period with respect to the ones of 〈σ 〉. This example
shows how, in general, very risk-averse (risk-loving) agents
cannot look to entropy alone to make their choice. On the
other hand, the entropy can be a useful reference quantity for
agents not too far from being risk neutral.

IV. CONCLUSIONS

To summarize, we investigated what role fluctuation theo-
rems can play in the expected utility hypothesis. To achieve
our results, we make the hypothesis that wealth is related
to a stochastic entropy by a fluctuation theorem, differently
from Ref. [5] where a Crooks fluctuation theorem for the
work is assumed instead. We prove the existence of a general
bound for the certainty equivalent, which depends on the
entropy, reproducing the thermodynamic uncertainty relation
for a risk-neutral agent. Thus, we examine the predictions and

FIG. 3. The plots of the average entropy 〈σ 〉 (dashed lines) and
the certainty equivalents (solid lines) in the function of the dura-
tion time τ . We consider ω = min(ωA, ωB)/2, λ(t ) = 2ω sin(πt/τ ),
βA = 0.1, βB = 4, ωA = 2ωB, γ = 0 in panel (a), and γ = 0.5 in
panel (b). We have r = −6, −4, −2, 0, 2, 4, and 6 from top to bottom.

limitations of that bound. Our aim is to answer the question
of whether and when entropy can be a useful quantity to
help risk-non-neutral agents make their decision. It results that
the relation between certainty equivalent and entropy can be
simple as suggested by the bound found, but can also become
complex as shown with some examples. Finally, we apply our
results to thermodynamics by focusing on a work-extraction
protocol realized by performing a unitary cycle which starts
from an initial nonequilibrium state.
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