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Work distribution of a colloid in an elongational flow field and under Ornstein-Uhlenbeck noise
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The study of thermodynamic properties of microscopic systems, such as a colloid in a fluid, has been of
great interest to researchers since the discovery of the fluctuation theorem and associated laws of stochastic
thermodynamics. However, most of these studies confine themselves to systems where effective fluctuations
acting on the colloid are in the form of delta-correlated Gaussian white noise (GWN). In this study, instead, we
look into the work distribution function when a colloid trapped in a harmonic potential moves from one position
to another in a fluid medium with an elongational flow field where the effective fluctuations are given by the
Ornstein-Uhlenbeck noise, a type of colored noise. We use path integrals to calculate this distribution function
and compare and contrast its properties to the case with GWN. We find that the work distribution function turns
out to be non-Gaussian as a result of the elongational flow field but continues to obey the fluctuation theorem
in both types of noise. Further, we also look into the effects of the various system parameters on the behavior
of work fluctuations and find that although the distribution tends to broaden with increasing noise intensity,
increased correlation in fluctuations acts to oppose this effect. Additionally, the system is found to consume heat
from the surroundings at early times and dissipate it into the media at later times. This study, therefore, is a step
towards gaining a better understanding of the thermodynamic properties of colloidal systems under nonlinear
complex flows that also display correlated fluctuations.
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I. INTRODUCTION

Thermodynamic properties of microscopic systems display
markedly different behaviors compared to those exhibited
by macroscopic systems. In particular, the principles that
govern classical thermodynamics for macroscopic systems
are often violated in the microscopic limit. For microscopic
systems that are away from equilibrium, these violations ap-
pear as broad distributions of thermodynamic quantities such
as entropy, heat, and work [1–7]. The corresponding distri-
butions have been observed in several experimental studies
[8–16] and also match those calculated using the principles
of nonequilibrium statistical mechanics [3,17]. Additionally,
these distribution functions are now known to follow a cer-
tain universal principle called the fluctuation theorem (FT)
[8,9].

The fluctuation theorem [18] is an important result in the
field of stochastic thermodynamics that provides insight into
the distributions of thermodynamic quantities of systems that
are in a nonequilibrium state. The FT was first proposed in
1993 [8], in which Evans, Cohen, and Morriss showed that
there is a finite probability of entropy being consumed partic-
ularly when the system is far from equilibrium, leading to a
violation of the second law of thermodynamics. Mathemati-
cally, it states that the ratio between the probability of entropy
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production to that of entropy consumption varies as exp (βS),
where β = 1/kBT ′ is the Boltzmann factor and T ′ is the
temperature of the surrounding heat bath. This mathematical
expression was later found to be true, not just for entropy but
for other thermodynamic quantities as well, such as work and
heat. The principle of fluctuation theorem was experimentally
verified for the first time in 2002, in which a plastic bead was
trapped by an optical tweezer [19] and set to move around in
a solution [9]. Following this, over the years multiple other
experiments have validated FT for various systems, such as
systems of optically trapped colloidal beads, granular sys-
tems, systems in turbulent flows, nanoscale systems, material
sciences, and also in many biological processes such as pro-
tein folding, chemical kinetics, gene regulations, and RNA
folding [10–16,20–27]. Another area where stochastic ther-
modynamics and FT are studied extensively is in the systems
of active baths in which the thermodynamics of passive tracers
or colloids are studied under the influence of random colli-
sions with active components [16,28,29]. Here, in this work,
we focus on the stochastic thermodynamics of a colloidal
system that is under the influence of correlated fluctua-
tions, which was earlier found to have a significant influence
on different physical, chemical, and biological processes
[30–34].

Recent advances in the study of active baths using the
principles of nonequilibrium statistical mechanics have gained
significant attention in the past few years [35–40]. Active
baths are composed of self-propelling units that can convert
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energy from the surroundings to directed motions. Because of
this, a bath consisting of active components is always present
in a nonequilibrium state. Understanding the behavior of such
systems has become the central interest of both theoreticians
and experimentalists from very diverse research backgrounds.
In order to model the dynamics of a passive tracer in such
an active system, an active random force is considered in the
equation of motion in addition to the Gaussian white noise
(GWN) arising due to the thermal fluctuations in the system.
The active counterpart of the random force appears from the
random collisions of the passive tracer with the surrounding
active components in the system. The active force is usually
modeled using the Gaussian colored noise, also known as
the Ornstein-Uhlenbeck (OU) noise, which has exponential
correlations in time with a characteristic time limit (τ ) [41].
The incorporation of this OU noise then enables a study of the
time evolution of thermodynamic observables of such systems
away from equilibrium [35–40]. Further, in the study of active
baths, the contribution of thermal fluctuations can be ignored
when the velocities of the active components are very high
[35,42,43].

Although significant efforts have gone towards the study
of stochastic thermodynamics in colloidal systems, its under-
standing in the presence of varying background fluid flows
and velocities is still lacking. Earlier studies often considered
the background medium of these systems to be either at rest
or having a uniform velocity. The study of the motion of
colloids in the presence of a constant flow of the surrounding
medium [17] or that of a charged Brownian oscillator in an
external electric field [44] are a couple of such examples.
But, in practice, whether it is a particle moving in an air
medium or a cellular entity moving around in the cytoplasm,
the nature of the motion of background media has a significant
effect on the dynamics of the tracer particle. The media in
such real systems in which colloids move around are found to
exhibit motions that are nonuniform in nature and that keep
the systems away from equilibrium. Also, in the case of active
baths, the motion of active components generates disorder in
the media, which in turn affects the motion of the passive
tracers. Therefore, for the purposes of generality, it becomes
important to study the statistical behaviors of such systems.
But, unfortunately, the thermodynamics of such systems are
very poorly studied because of the complications that arise
from the complex flow patterns present in the surrounding
media, rendering the flow anisotropic. Further, although the
types and complexities of nonlinearity can vary from one
system to another, in practice it is preferable to study some
particular types of nonlinear gradient flows, such as one of or a
combination of shear, rotation, and elongation, to get insights
into the dynamics of a particle under such conditions. Some
of the past research works have focused on the dynamics
and thermodynamics of colloids in various types of nonlinear
flows, including shear and elongational flow [1,2,4,5,27,45–
51]. In a few of these works, the probability distributions of
different observables were also evaluated which were found to
satisfy the fluctuation theorem [1,2,4,5]. Most of these studies,
however, were carried out considering delta-correlated noise,
also known as Gaussian white noise, arising from thermal
fluctuations that are intrinsic to the system [1,2,27,44,52–54].
But the thermodynamics of such systems in the presence of

OU noise (or colored noise), which is often considered as an
external noise [35,38,39,55–57], still remains unexplored.

In this article, we use the path-integral technique [58,59]
to evaluate the work distribution function of a colloidal par-
ticle moving from one position to another in a fluid medium
that is exhibiting a particular nonlinear flow and where the
colloid is itself under the influence of an external harmonic
potential. We define our system and the corresponding equa-
tion of motion of a colloidal particle in elongational flow and
in the presence of external harmonic potential through the
overdamped Langevin equation and then go on to calculate
the work done by the colloid in moving from one position
to another. We introduce the elongational fluid flow in this
system as it is a typical example of a nonlinear flow of a
fluid in which the x and y components of the velocity field
(�v(�r)) are coupled with each other while the z component of
velocity remains independent of other components. Because
of this coupling behavior, the work done in moving the colloid
from one position to another is a nonlinear function of its
time-dependent coordinates and the distribution of work done
(which is the primary goal of our study) becomes asymmetric.
We also compare this with the work distribution for constant
background flow by modifying the velocity field such that
the flow rate (γ̇ ) is set to zero in the expression of �v(�r). For
both types of background flow, we study the dynamics of the
colloid by considering different types of noise, such as white
noise and colored noise, to examine how the work distribu-
tions change when internal and external noise are considered,
respectively.

The rest of the manuscript is organized as follows. The
system under consideration in this study and the amount of
work done due to the motion of the colloid is described in
Sec. II. The calculation of the probability distribution function
(PDF) for the final positions of the colloid in an elongational
flow field using OU or colored noise is shown in Sec. III.
A similar calculation for delta-correlated or white noise is
given in Appendix B. The calculation of the work distribu-
tion function and the corresponding results and discussion are
presented in Sec. IV.

II. MOTION OF A COLLOID IN AN
ELONGATIONAL FLOW FIELD

Consider a colloidal particle that is under the influence
of an external harmonic potential and is moving in a fluid
medium with an elongational flow. The dynamics of this col-
loid is highly affected by the noise present in the system.
Let �r(t ) be the position of the colloid at any time t . The
motion of the colloid in such a system can be described by
an overdamped Langevin equation [60,61], as follows:

ζ �̇r − ζ �v(�r) + ∂U (�r)

∂�r = �η(t ), (1)

where ζ is the friction coefficient. The velocity profile of the
solvent medium is given by �v(�r) = �v0 + γ̇ κ�r, where �v0 =
v0(î + ĵ + k̂) is the constant background solvent velocity, γ̇

is the flow rate, and κ =
(

0 1 0
α 0 0
0 0 0

)
is the velocity gradient

tensor responsible for the nonlinear flow of the medium and
coupling between different velocity components. The value
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of α varies from −1 to +1. α = −1 corresponds to pure
rotation, 0 corresponds to shear flow and +1 corresponds to
elongational flow. In our calculations we have used α = 1,
which is the case for elongational types of flows. The external
harmonic potential is given by U (�r) = kr2/2, and �η(t ) is the
random force (or noise) acting on the colloid. This noise can
either be uncorrelated, as is the case for thermal fluctuations,
or correlated, as is the case for active noise. Here we consider
the noise to be in the form of the OU process [41], wherein
the noise autocorrelation function decays exponentially over
time with a characteristic time constant of τ . The OU process
is a stochastic process whose dynamics can be represented in
terms of the following stochastic differential equation: η̇(t ) =
−η(t )/τ + √

Dθ (t )/τ . Here θ (t ) is a Gaussian white noise
of zero mean and delta-correlated autocorrelation function. D
represents the strength of the noise. The OU noise, therefore,
has the following statistical properties:

〈�ηi(t )〉 = 0 (2a)

〈�ηi(t )�η j (t
′)〉 = D

τ
δi j exp

(−|t − t ′|
τ

)
, (2b)

with higher D corresponding to larger fluctuations about the
mean.

The colloid moves in the fluid from one position to another
during a time interval of T , and during the event it performs
some work due to its motion. Since the process is stochastic,
the trajectories between the initial and final points for the
given interval are different for each sample. As a result, the
work done, which is a path-dependent function, also varies
from sample to sample. This ultimately leads to a distribution
of work for a specific set of system conditions. This work done
by the colloid following a particular trajectory can, in general,
be calculated as

WT =
∫ T

0
�v(�r) · ∇U (�r) dt . (3)

Here �v(�r) is the velocity of the solvent and U (�r) is the external
harmonic potential, as mentioned earlier. For the evaluation of
the work distribution under the influence of the OU noise, we
consider two special cases. The first case is for the constant
background flow, which is obtained by setting γ̇ = 0 in the
expression of �v(�r), whereas the second case is for elonga-

tional flow with nonzero γ̇ . We discuss these two cases in
detail in Sec. IV. We next compute the conditional probability
distribution of the position of the colloidal particle before
moving on to the calculation of the work distribution function.
In the following calculations we have used different values
of T to show the system behavior at different times. The
probability distributions for the final positions of the colloid
in different cases are shown at two different times (T = 1 and
10). Further, in the plots to illustrate the fluctuation theorem,
we have used different values of T (up to 2.7 for OU noise in
elongational flow) to show the dynamical changes in the prob-
ability distribution of positive and negative work done along a
trajectory. Also, in the study of the dynamical change of distri-
bution properties, we used a range of timescales depending on
the choice of various parameters such as friction coefficient,
relaxation time, etc., for different cases. For example, in the
plots showing the mean work and standard deviation, T is
varied between 0 and 10 for constant flow and between 0 and
14 for elongational flow. Similarly, in the plots showing the
skewness parameter, T is varied between 0 and 6 for white
noise and between 0 and 15 for colored noise. Numerical
computations exhibit divergence errors beyond these values
of T and therefore have not been plotted. However, all the
interesting characteristics of the quantities can already be seen
for the plotted ranges of time.

III. CONDITIONAL PROBABILITY DISTRIBUTION
FOR THE FINAL POSITION OF THE COLLOID

We now focus on computing the probable distance the
colloidal particle can travel in a time T given that it was
at position �r0 at the initial time. The resulting conditional
probability can then be used to compute the distribution func-
tion for the work performed. Since the OU process [41] is
Gaussian distributed, the probability distribution of the colloid
following a particular trajectory during a time interval T can
be obtained from [62–64]

P[�η] ∝ exp

{
− 1

4D

∫ T

0
dt

[
�η(t )T �η(t ) + τ 2 �̇η(t )T �̇η(t )

]}
. (4)

Using �η and its first-order time derivative (�̇η) from Eq. (1) in
Eq. (4), we get

P[x, y, z] ∝ J[x, y, z] exp

{
− 1

4D

∫ T

0
dt

[
τ 2ζ 2(ẍ2 + ÿ2 + z̈2) + (ζ 2 + τ 2k2 + τ 2ζ 2γ̇ 2)(ẋ2 + ẏ2)

+ (ζ 2 + τ 2k2)ż2 − 2ζ 2v0(ẋ + ẏ + ż) + 2ζk(xẋ + yẏ + zż) + 2ζkτ 2(ẋẍ + ẏÿ + żz̈)

− 2ζ 2γ̇ (ẋy + xẏ) − 2ζ 2γ̇ τ 2(ẋÿ + ẍẏ) − 4ζ γ̇ kτ 2ẋẏ − 4kζ γ̇ xy + (k2 + ζ 2γ̇ 2)(x2 + y2)

+ k2z2 + (2ζ 2γ̇ v0 − 2ζkv0)(x + y) − 2ζkv0z + 3ζ 2v2
0

]}
, (5)

where J[x, y, z] is the Jacobian for the change of variable from �η to �r [1,2] whose calculation is shown in Appendix A. The
conditional probability density, P(x f , y f , z f , T |x0, y0, z0), of finding the particle at (x f , y f , z f ) after time T given that the particle
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started moving from (x0, y0, z0) at t = 0 can be expressed as

P(x f , y f , z f , T |x0, y0, z0) ∝ e3kT/2ζ e
− ζk

4D [(x2
f +y2

f +z2
f −x2

0−y2
0−z2

0 )+τ 2(v2
x f

+v2
y f

+v2
z f

−v2
x0

−v2
y0

−v2
z0

)]

×
∫ x(T )=x f

x(0)=x0

D[x]
∫ y(T )=y f

y(0)=y0

D[y]
∫ z(T )=z f

z(0)=z0

D[z] e−S[x,y,z],
(6)

where D[x], D[y], and D[z] represent the path integrals over x, y, and z between the end points (x0, y0, z0) and (x f , y f , z f ), and
S[x, y, z] represents the action during the time interval of T , defined as

S[x, y, z] =
∫ T

0
dt L(x, y, z, ẋ, ẏ, ż, ẍ, ÿ, z̈, t ). (7)

Here L represents the Lagrangian of the system, given by

L(x, y, z, ẋ, ẏ, ż, ẍ, ÿ, z̈, t ) = 1

4D

[
τ 2ζ 2(ẍ2 + ÿ2 + z̈2) + (ζ 2 + τ 2k2 + τ 2ζ 2γ̇ 2)(ẋ2 + ẏ2)

+ (ζ 2 + τ 2k2)ż2 − 2ζ 2v0(ẋ + ẏ + ż) − 2ζ 2γ̇ (ẋy + xẏ) − 2ζ 2γ̇ τ 2(ẋÿ + ẍẏ) − 4ζ γ̇ kτ 2ẋẏ

− 4kζ γ̇ xy + (k2 + ζ 2γ̇ 2)(x2 + y2) + k2z2 + (2ζ 2γ̇ v0 − 2ζkv0)(x + y) − 2ζkv0z + 3ζ 2v2
0

]
. (8)

Equation (6) represents the path integral for the particle
moving from the initial to the final position that can be solved
using Feynman’s variational technique [58,59]. The motion of
the colloid in such a system is highly stochastic, and there can
be an infinitely large number of trajectories between the initial
and final points. The most probable trajectory along which the
action is minimum can therefore be found using the Euler-
Lagrange equation of motion, given by

∂L
∂ri

− d

dt

(
∂L
∂ ṙi

)
+ d2

dt2

(
∂L
∂ r̈i

)
= 0, (9)

where the index i = 1, 2, 3 corresponds to x, y, and z compo-
nents. Using the Lagrangian in Eq. (9), the equation of motion
of the colloid becomes

˙̇ ˙̇�r + M �̈r + N�r + P�I = 0, (10a)

where

M =
⎛
⎝−α1 α2 0

α2 −α1 0
0 0 −β1

⎞
⎠;

N =
⎛
⎝ α3 −α4 0

−α4 α3 0
0 0 −β2

⎞
⎠; P =

⎛
⎝ α5

α5

−β3

⎞
⎠, (10b)

and �I is the 3 × 3 identity matrix. Here, α1 = γ̇ 2 + 1
τ 2 + k2

ζ 2 ,

α2 = 2kγ̇

ζ
, α3 = k2

τ 2ζ 2 + γ̇ 2

τ 2 , α4 = 2kγ̇

ζ τ 2 , α5 = γ̇ v0

τ 2 − kv0
ζ τ 2 , β1 =

1
τ 2 + k2

ζ 2 , β2 = k2

τ 2ζ 2 , and β3 = kv0
ζ τ 2 .

The x and y components of Eq. (10a) are fourth-order
coupled differential equations which are difficult to solve ana-
lytically. However, in the limiting case of constant background
flow that can be obtained from the general case of a colloid in
an elongational flow medium by setting γ̇ = 0, equations of
motions along individual components are independent of each
other and, therefore, are possible to solve analytically. We
solve for x(t ), y(t ), and z(t ) numerically using MATHEMATICA

[65] by first setting the parameters of Eq. (10a) to specific
constant values. We set τ , ζ , k, and D to unity (in appropriate
units) to avoid extremely large solutions. We consider v0 and

γ̇ to be unity as well. Solutions of x(t ) and y(t ) contain eight
constants that can be evaluated by using the boundary condi-
tions, which are x(0) = x0, x(T ) = x f , ẋ(0) = vx0 , ẋ(T ) = vx f

and y(0) = y0, y(T ) = y f , ẏ(0) = vy0 , and ẏ(T ) = vy f . The
solution for the z component is comparatively easy, since the
motion of the particle along the z direction is independent
of the other components and therefore can be solved using
the boundary conditions z(0) = z0, z(T ) = z f , ż(0) = vz0 , and
ż(T ) = vz f . For further simplification, we consider that the
motion of the colloid starts from the origin at t = 0 with zero
initial velocity. We took the final velocity of the colloid to be
unity as well along each direction. The action was then calcu-
lated using all these values of parameters within a timescale
of 0 to T . Taking all these constants, the final form of the
normalized conditional PDF at some arbitrary time T is

PN (x f , y f , z f , T |x0, y0, z0)

= exp
[
A1 + A2

(
x2

f + y2
f

) + A3(x f + y f )

+ A4x f y f + A5z2
f + A6z f )

]
, (11)

where Ai’s are numerical constants, depending upon the par-
ticular choice of parameters mentioned above. A similar
calculation of the conditional probability distribution for the
case of a colloid in a fluid flow under the influence of delta-
correlated noise is provided in Appendix B. The plots for
the conditional probability distributions [as obtained from
Eqs. (11) and (B9)] for the final position of the colloid in
the case of constant flow (upper row) and elongational flow
(lower row) are shown in Fig. 1. For each type of flow, we
compare and contrast the distributions obtained considering
white noise and colored noise at two different final times,
i.e., T = 1 and T = 10. This helps in comparing the shift
of the distributions with time in different conditions. As seen
from Fig. 1, for the case of constant flow, the distributions are
shifted towards the direction of the background flow field and
the diffusion happens symmetrically along every direction.
But in the case of the elongational flow, distributions indeed
shift along the flow field direction but the shape is elongated
along the diagonal axis of the x-y plane. This is expected
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FIG. 1. Distribution for the final positions of the colloid (at T = 1 and 10) in a fluid having constant flow (upper row) and elongational
flow (lower row) in the presence of Gaussian white noise (left) and OU noise (right). Distributions are calculated for γ̇ = 1 in the case of
elongational flow, whereas γ̇ is taken to be zero for constant flow field. Friction coefficient (ζ ), stiffness constant (k), background velocity of
the fluid (v0), noise strength (D), and relaxation time (τ ) were fixed to unity during these calculations. The color bar represents the value of the
conditional probability density.

particularly due to the nature of the flow of the surrounding
medium, as the flow of the medium is no longer uniform and
is biased in a particular direction. As a result, the motion of the
particle is more probable along the direction of flow compared
to that along the other directions. One can also observe that the
distributions in the case of colored noise spread slower than
those in the case of white noise for both types of flow.

Equation (11) is now further used for the calculations of
work distribution in moving the colloid from the initial posi-
tion to the final position, which is discussed in Sec. IV.

IV. RESULTS AND DISCUSSION

Having computed and studied the dynamics of the particle
through the conditional probability distribution for the final
position of the particle after time T [Eq. (11) and Fig. 1], we

can now proceed with the calculation of the work distribution.
Specifically, we calculate the distribution for work performed
by the colloid during its evolution from the initial position
(x0, y0, z0) at t = 0 to the final position (x f , y f , z f ) at any
arbitrary time T . This distribution, given by P(W, T ) and
representing the amount of work WT that is being performed
in time T , can be expressed as

P(W, T ) = 〈δ(W − WT )〉. (12)

The angular brackets here denote the ensemble average taken
over all possible trajectories between the initial and the final
positions.

Using the Fourier representation of the Dirac-delta func-
tion and taking the ensemble average over all possible
trajectories, Eq. (12) can be rewritten as

P(W, T ) = e3kT/2ζ

∫ ∞

−∞
dλ

∫ ∞

−∞
dx0

∫ ∞

−∞
dy0

∫ ∞

−∞
dz0

∫ ∞

−∞
dx f

∫ ∞

−∞
dy f

∫ ∞

−∞
dz f

× P0(x0, y0, z0)PN (x f , y f , z f , T |x0, y0, z0) exp[iλ(W − WT )], (13a)

where

P0(x0, y0, z0) = δ(x0)δ(y0)δ(z0) (13b)

is the initial distribution of the colloid assuming that the col-
loid begins its motion from the origin. Substituting this initial
distribution in Eq. (13a) and carrying out the integration over
all the possible initial and final positions of the colloid, the
characteristic function of P(W, T ) can be obtained as

CW (λ) = 〈exp(−iλWT )〉. (14)

Making use of this characteristic function CW (λ), the distribu-
tion for work can be calculated as

P(W, T ) =
∫ ∞

−∞
dλ exp(iλW ) CW (λ). (15)

Further, the moments of the work distribution function can be
found analytically from the characteristic function using the
formulas

〈W 〉 = i
∂

∂λ
CW (λ)

∣∣∣∣
λ=0

and 〈W 2〉 = − ∂2

∂λ2
CW (λ)

∣∣∣∣
λ=0

.

(16)
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FIG. 2. Work distributions of the colloid moving in (a) constant flow and (b) elongational flow considering white noise (empty squares)
and colored noise (filled squares). Distributions were calculated at a final time T = 1, and other parameters such as friction coefficient (ζ ),
stiffness constant (k), noise strength (D), and the linear part of the background velocity (v0) were fixed to unity. The relaxation time (τ ) in the
case of OU noise was fixed at 0.1, and γ̇ in the case of elongational flow was set to 0.5.

The first moment, 〈W 〉, represents the mean value of
P(W, T ), and σ =

√
〈W 2〉 − 〈W 〉2 gives the standard devia-

tion of the distribution of work done. One can now calculate
these properties of the work distribution function for different
types of flow and in the presence of different types of noise.

Work done in moving the colloid in the velocity field
�v(�r) = �v0 + γ̇ κ�r for a duration of time T is calculated via
Eq. (3) and is given by

WT = k
∫ T

0
[v0(x + y + z) + 2γ̇ xy]dt . (17)

We now substitute the above equation, Eq. (17), into Eq. (15)
via Eq. (14) and compute the work distribution function.

Specifically, for the limiting case of the constant back-
ground flow, we set the value of the flow rate (γ̇ ) to zero,
which makes WT , as given by Eq. (17), a linear function of
the colloid’s position. The corresponding work distribution is
evaluated numerically by setting the friction coefficient (ζ ),
stiffness constant (k), and constant background velocity of the
fluid (v0) to unity. The relaxation time (τ ) is fixed to a value of
0.1. The resulting distributions for the case of delta-correlated
and exponentially correlated noise at T = 1 (in the regime
where the mean work and standard deviation of the distribu-
tion rapidly increase with time) are shown in Fig. 2(a) (shown
with empty squares and filled squares, respectively). For both
cases, the distributions under the condition of constant back-
ground flow are symmetric about the mean values, resembling
Gaussian-distribution-like properties. One can also verify that
the mean of the distribution increases with increasing back-
ground velocities, and the increase is higher in the case of
delta-correlated noise compared to that for OU noise. It can
also be verified that the distribution is more spread out for
higher velocities, reflecting the corresponding probable longer
excursions of the colloid in the same time duration. Addition-
ally, the symmetry of the distribution comes from the fact
that the work done by the colloid in the case of constant
background flow is a linear function of its trajectory.

On the other hand, in the case of elongational flow where
the flow rate (γ̇ ) is nonzero, WT becomes a nonlinear function
of the position of the colloid [see Eq. (17)]. To find P(W, T ) in

this case, we first calculate the characteristic function CW (λ),
from which we obtain the moments of the distribution fol-
lowing Eq. (16). The value of CW (λ) is then further used in
Eq. (15) and integrated over λ to obtain the exact result for
P(W, T ). This distribution for the work done in the case of
the elongational flow field of the fluid is shown in Fig. 2(b).
Since the shape of this distribution, in contrast to the case
for constant flow, is no longer symmetric, we also measure
its skewness (α). Skewness is the parameter that determines
the asymmetry of the distribution and can be evaluated as
α = [〈W 3〉 − 3〈W 〉σ 2 − 〈W 〉3]/σ 3, where 〈W 3〉 is the third
moment of the distribution. The distribution is symmetric for
α = 0, and the higher the value of α, the more asymmetric the
distribution becomes. For α > 0 the distribution is positive-
skewed, and for α < 0 the distribution is negative-skewed.

The resulting work distribution function of the colloid in
the presence of the OU noise is shown in Fig. 2(b) (filled
squares), along with the distribution in the case of white noise
(empty squares) for comparison. Distributions were calculated
at some arbitrary time T = 1, and other parameters such as
friction coefficient (ζ ), stiffness constant (k), noise strength
(D), and the uniform component of the background velocity
(v0) were fixed to unity. In the case of the OU noise, the value
of τ was fixed at 0.1. In both the cases (under white noise and
OU noise conditions) the distributions are asymmetric, which
is unlike the case in a constant flow. This asymmetry in the
presence of elongational flow appears because of the fact that
the work done in this case is a nonlinear function of the tra-
jectory of the colloid. This is also evident from Fig. 1, where
we observed that the distributions become asymmetric in the
case of elongational flow, unlike the case for constant flow.
A similar effect is also observed in the case of white noise.
In this case the corresponding result is similar to the work
distribution of a dumbbell-shaped polymer chain in an elon-
gational flow where the fluctuations were modeled as white
noise [2]. The presence of asymmetry in the work distribution
can be described with the help of position distribution, which
is shown in Fig. 1. In the case of constant flow, the particle
moves symmetrically in every direction, which in turn gives a
symmetric work distribution. But in the case of elongational
flow, the particle motion is more likely along the direction of
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FIG. 3. Variation of mean work 〈W 〉 and standard deviation (inset) of P(W, T ) as a function of time (arb. unit) for white noise (empty
squares) and colored noise (filled squares) taken in the system for (a) constant flow and (b) elongational flow. In the case of elongational flow,
we fixed the flow rate (γ̇ ) to 0.3. We set v0, k, τ , ζ , and D to unity during the calculation.

the flow, and hence work done along a particular direction is
higher compared to that along the other directions, and the
work distribution, therefore, becomes asymmetric.

The variation of mean work and standard deviation of the
work distribution for constant flow and elongational flow is
shown in Fig. 3 for both types of noise. The standard deviation
(σ ) of the distribution is calculated by taking the square root
of the variance. The mean work increases linearly with time
for higher times, whereas the increase is nonlinear in the early
time regime for all cases. It should also be noted that the
linear increase in the case of white noise appears faster than
that for colored noise for both types of flow. Additionally, the
standard deviation for white noise increases in the early time
limit, whereas it becomes saturated for higher times in both
types of flows and for both kinds of noise considered here.
This particular behavior of mean work and standard deviation
has a significant role in understanding the fluctuation theorem
as well, which is discussed later.

Further, the time evolution of the shape parameter (skew-
ness) of work distribution under elongational flow is shown in
Fig. 4 for both the noise conditions. It shows that the skewness
increases very rapidly with time initially, and after reach-
ing a maximum, it gradually decreases over time. However,
the magnitude of skewness continues to be sufficiently large
(greater than zero) even after a significant amount of time
has elapsed for both cases. Nevertheless, as is also evident

FIG. 4. Time evolution of the shape of the work distribution at a
constant γ̇ = 1 in elongational flow and in the presence of (a) white
noise (empty squares) and (b) colored noise (filled squares). Dots
represent the time at which skewness was calculated. We set v0, k, ζ ,
D to unity, and τ in the case of OU noise was fixed to 1.

from Fig. 2(b), it is clear that the measure of asymmetry
(or the skewness parameter) is higher when white noise is
considered in comparison to the case when the system is under
the influence of colored noise.

Next, the function ln [P(W, T )/P(−W, T )] (= f (W, T )
let’s say) is plotted with respect to W (β set to unity) for
constant flow and elongational flow in the presence of white
and colored noise to test the validation of the fluctuation
theorem. The results are shown in Fig. 5, in which the curves
show different behaviors of the system under different flow
properties. In the case of constant flow, f (W, T ) for differ-
ent values of T are straight lines of varying slopes passing
through the origin for both white and colored noise, which
are shown in Figs. 5(a) and 5(b). The slope of the function
initially decreases with the increasing value of T , but after

FIG. 5. Plot of ln[P(W, T )/P(−W, T )] vs W (β is considered
unity) for the case of constant background flow [(a) for white noise
and (b) for colored noise] and elongational flow [(c) for white noise
and (d) for colored noise]. In the case of constant background flow,
we checked the dependency at various times, keeping the background
velocity fixed to unity. Similarly, in the case of elongational flow, we
checked the dependence for different time limits by fixing the flow
rate (γ̇ ) to unity. Other parameters (ζ and k) were fixed to unit value
and τ = 0.1 during the calculations.
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TABLE I. Coefficients (a) and exponents (m) obtained from fitting the curves in Figs. 5(c) and 5(d) satisfying the fluctuation theorem in
the case of elongational flow. The curves were fitted with f (W ) = aW m at different T values in the presence of white and colored noise.

White noise Colored noise

T a m T a m

0.6 1.9759 ± 0.0236 1.6725 ± 0.0447 0.5 6.0629 ± 0.1188 1.3755 ± 0.0618
1.0 1.1706 ± 0.0150 1.2154 ± 0.0364 0.8 2.9784 ± 0.0321 1.3905 ± 0.0342
1.4 1.0716 ± 0.0064 1.0814 ± 0.0155 1.0 2.2900 ± 0.0269 1.2544 ± 0.0343
3.0 1.3682 ± 0.0010 1.0089 ± 0.0018 2.0 1.6722 ± 0.0067 1.0548 ± 0.0102
4.0 1.7288 ± 0.0003 1.0024 ± 0.0005 2.7 1.7611 ± 0.0043 1.0318 ± 0.0061

reaching a minimum, the slope again starts increasing. The
slopes themselves depend on the choice of parameter values
as well as the amount of time elapsed by the system.

Furthermore, Figs. 5(c) and 5(d) show the variation of the
function f (W, T ) at different T values in the case of the
elongational flow field and under the influence of white and
colored noise, respectively. Similar to the case of constant
flow and as shown in the figure, the slope initially decreases
with time and after reaching a minimum it starts increas-
ing. However, unlike the case of constant flow, f (W, T ) is
a nonlinear function of W in the case of the elongational
flow field. To further quantify the nonlinearity, we have also
fitted each curve corresponding to varying T with the function
f (W, T ) = aW m. and the values of a and m for different val-
ues of T are given in Table I. It is observed that in the presence
of white as well as colored noise, the curve is nonlinear for
short times (small T values) with m > 1. However, the value
of m decreases and becomes closer to 1 with increasing time,
resulting in the curves gradually becoming linear. Further,
one can see that the plots follow the trend f (W, T ) ≈ W for
T � τ , resembling a phenomenon known as the stationary
state fluctuation theorem (SSFT), expressed as

P(W, T )

P(−W, T )
≈ exp (W ), (18)

which is found to be valid for large time limits only [66,67].
Therefore we see from Fig. 5 that the work fluctuation in

both constant and elongational flow satisfies the fluctuation
theorem in the presence of white as well as colored noise. The
nonlinear and time-dependent behavior of FT that we see here
for this system was also found earlier in many other systems,
such as a system in a transient and stationary state in which
a harmonically trapped Brownian particle is dragged through
a fluid medium [66,68], a harmonic oscillator in contact
with a thermostat and under the effect of external force [67],
and a system of a simple electrical circuit consisting of a
resistor and capacitor [69]. In all of the above examples, it
was shown that the curves deviate from the f (W, T ) = W
line and the slopes vary with time, and as the system evolved
over a sufficient amount of time, the nonlinearity of the curve
gradually decreased and approached linearity. Therefore the
work distribution for the colloid in such a system in a nonequi-
librium state satisfies the principle of the fluctuation theorem.
The fluctuation theorem was also found to be valid in elon-
gational flow for a sufficiently large time where fluctuations
were considered as white noise [2]. In our study we have
reported the work distribution for a colloid and have also

established the FT in the presence of OU noise, both for
constant background flow and elongational flow.

So far we have limited our study to making comparisons
of work distributions of a moving colloid in different types
of background flows and under different noise conditions.
We now look into the dependencies of work distributions
of a colloid moving in an elongational flow field and that
is influenced by OU noise. Figure 6 shows how P(W, T )
changes with different parameters, which were taken to be
fixed during earlier computations, and how these parameters
affect the dynamics of such a colloid. In Fig. 6(a) we show
work distributions for different values of the stiffness coeffi-
cient (k) of the external harmonic potential. As k increases,
the peak of the distribution shifts towards higher values of W ,
but the variation of mean and standard deviation with k shows
an oscillatory behavior. Figure 6(b) shows distributions for
varying relaxation time constants (τ ). The standard deviations
of the distributions decrease with higher values of τ . This
indicates that the distribution gets a short duration of time
to spread over for higher relaxation times, resulting in lower
values of work being sampled across different trajectories.
Figure 6(c) shows P(W, T ) for varying noise strength (D). It
is evident that the fluctuations in any thermodynamic quantity
will increase with increasing noise strength, and the result

FIG. 6. Distributions of work done for the colloid in elongational
flow and in the presence of OU noise for varying (a) stiffness constant
k, (b) relaxation time τ , (c) noise strength D, and (d) flow rate γ̇

(shown with empty circles, empty squares, and filled circles). Distri-
butions were calculated at T = 1, keeping other parameters except
the varying one fixed to unity and τ fixed to 0.1.
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FIG. 7. Probability distribution of the heat exchanged P(Q, T ) during the motion of the colloid with its surroundings in elongational flow
and under the influence of (a) white noise and (b) colored noise at different final times. The figures in the inset show the change of 〈Q〉, 〈W 〉,
and 〈�U 〉 with time. Horizontal dotted lines in the inset of each figure show 〈Q〉 = 0 line. Calculations were done keeping ζ , k, γ̇ , D, v0 fixed
to unity, and τ in the case of colored noise is fixed to 0.1.

satisfies the argument. We have also shown the variation of
P(W, T ) with varying flow rates (γ̇ ) in Fig. 6(d). The mean
of the distribution increases with increasing flow rates, which
suggests that the colloid performs more work in the case of
higher flow rates in an elongational flow field.

Until this point we have mainly focused on the behav-
ior of the colloid in different flow types and different kinds
of noise influencing its dynamical properties. We have also
studied the temporal evolution of different parameters of the
work distribution function and its dependence on the four
system parameters. We now look into what this means for
the overall thermodynamics of the system. Having computed
the work done, the amount of heat exchanged (QT ) with the
surroundings up to a time T can be calculated by invoking
the first law of thermodynamics, i.e., QT = WT − �U , where
�U = k(x2

f + y2
f + z2

f − x2
0 − y2

0 − z2
0 )/2 is the change in in-

ternal energy of the system. Making use of WT from Eq. (17),
the amount of heat exchanged is then given by

QT = k
∫ T

0

[
v0(x + y + z) + 2γ̇ xy

]
dt − k

2

(
x2

f + y2
f + z2

f

)

(19)

after invoking the initial condition x0 = y0 = z0 = 0, as also
mentioned earlier. Similar to the work distribution function,
the heat distribution function, P(Q, T ), representing the prob-
ability that QT amount of heat energy is being exchanged
in time T is given by P(Q, T ) = 〈δ(Q − QT )〉. The charac-
teristic function for the heat exchange can then be obtained
following the same technique that was used to compute
Eqs. (13a) and (14) for the calculation of the work distribution.
Therefore

CQ(λ) = 〈exp (−iλQT )〉, (20)

where QT can be evaluated from Eq. (19). Using this char-
acteristic function, the heat distribution can be calculated
as

P(Q, T ) =
∫ ∞

−∞
dλ exp (iλQ) CQ(λ). (21)

The mean value of the heat energy exchanged with the
surrounding medium can also be evaluated from the charac-
teristic function through

〈Q〉 = i
∂

∂λ
CQ(λ)

∣∣∣∣
λ=0

. (22)

Using this set of equations, Eqs. (19)–(22), we have calculated
the heat distribution function (P(Q, T )) and the mean value
of QT for a colloid moving in an elongational flow field and
influenced by white and colored noise.

The final results for the heat distribution of the colloid
moving in the elongational flow field and under the influence
of the two different noise types are shown in Fig. 7. One can
see that at a sufficiently small time (T = 0.5), the probability
of positive heat exchange is approximately zero, but it grad-
ually increases with time. Analogous to the distribution, the
mean value of the heat exchange (shown in the inset of Fig. 7)
is also negative at short times. This indicates that the system
consumes heat energy from the surroundings to perform the
work required to move the colloid from one position to an-
other. A similar phenomenon of heat consumption in the small
time limit was earlier also found in a system having multiple
coupled harmonic oscillators kept at different temperatures
[70] and a system with a trapped Brownian oscillator in aging
gelatin droplets [71]. After a sufficient time has elapsed (T >

1.5), the mean heat exchange becomes positive and the system
starts dissipating heat into the surrounding medium. At the
time at which this transition occurs, the distribution, P(Q, T ),
becomes continuous with significant probability for positive Q
values as well. The high probability for positive heat exchange
continues beyond the transition time, but the probability distri-
bution itself starts to exhibit a singularity in the case of white
noise, see Fig. 7(a). On the other hand, in the case of colored
noise, the heat distribution shows a similar transition, but no
discontinuity or singularity is observed for higher T values.
This kind of transition in the heat distribution was also found
when the fluctuation phenomena was studied in an electrical
circuit having a resistor and a capacitor in parallel [69]. Heat
distributions are known to generally have a discontinuity in
these kinds of systems in which a passive colloid is driven by
an external harmonic potential and noise [1,17,68,69,72,73].
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Additionally, the spread of the heat distribution is smaller in
the case of colored noise compared to that in white noise,
which is consistent with the results obtained for the work
distribution and the conditional probability distribution for the
final position of the colloid as well, as shown in Figs. 1 and 2,
respectively.

Now let us discuss the overall thermodynamic picture of
the system in terms of the fluctuation theorem, work done
by the colloid, and the heat exchanged with the surrounding
medium. During the study of the fluctuation theorem, we
noticed that at a small time limit the probability of positive
work is much higher compared to that of the negative work.
The ratio initially decreases with time and after reaching
a minimum, it starts increasing again. This particular phe-
nomenon can be explained with the help of Fig. 3, in which
the temporal evolution of the mean and standard deviation
of the work distribution is shown. When T is very small the
ratio P(W, T )/P(−W, T ) is very large, but as T increases the
standard deviation of P(W, T ) also increases, which implies
that the width of the distribution becomes broader with time.
As a result the probability of negative work also increases with
time. After sufficient time has elapsed (in both noise types),
the standard deviation becomes saturated and the mean of
the distribution continues to increase linearly with time. This
basically implies that the distribution shifts towards the higher
W without getting broadened in width and because of this,
the probability of positive work increases and that of negative
work decreases with T . This explains why the ratio starts
increasing again after a certain amount of time and continues
to increase monotonically. Although the slope of the ratio was
previously found to oscillate with time [67], it is not the same
for our system. The insets of Fig. 7 show that at early times,
the system consumes heat from the surroundings, and part of
the heat is used to increase the internal energy and the remain-
ing amount is used to perform some work which is required
for the system to move from one state to another. The entropy
change of the medium �Sm = Q/T ′ also becomes negative.
After some time, the system stops consuming heat, in fact,
it starts dissipating heat to the surroundings, and therefore
the entropy of the medium increases. Further, consistent with
the results of Figs. 1 and 3, the average work done and the
average change in internal energy increases with time, as it is
dependent on the amount of displacement of the colloid from
the initial position.

V. CONCLUSIONS

In summary, we deduce that the work distribution of the
colloid is symmetric when it moves in a constant flow from the
initial position to the final position during a time interval of T
irrespective of whether it is under the influence of either delta-
correlated noise or OU noise. But in the case of elongational
flow, the work distribution becomes asymmetric for both types
of noise. This is a direct effect of the nonlinearity introduced
in the work done as a result of the elongational flow field. We
have also studied the temporal dynamics of different distribu-
tion parameters, such as mean work and standard deviation.
Specifically, in the early time limit, the increase in mean work
is nonlinear in time, whereas it becomes linear after a finite
amount of time for each type of flow and under both noise

types. We also observed that the linear increase of mean work
appears quicker in delta-correlated noise compared to that in
OU noise for each flow. Additionally, the standard deviation
of each distribution becomes saturated after a finite amount of
time. The fluctuation theorem is also satisfied for the system
considered in this study. We have also looked at how the
work distribution changes with varying system parameters,
such as stiffness constant k, relaxation time τ , noise strength
D, and flow rate γ̇ . Out of these four system parameters, the
work distribution narrows only for increasing τ values, while
it generally broadens for increasing values of other system
parameters. This is because of the correlated nature of the
fluctuations, which do not allow the colloid to undergo large
excursions. This phenomenon is then also reflected in the
work distribution function. Similarly, a study of other ther-
modynamic variables also gives valuable information about
the system. At the small time limit, heat is consumed by the
system to perform work. However, in the long time limit, as
the system performs more work as a result of the increased
displacement of the colloidal particle due to the elongational
flow field, heat is dissipated into the surroundings. Therefore
the present study provides an insight into a yet-unexplored
aspect of the dynamics of a colloidal particle in a flow field,
specifically, while it is also under the influence of a type of
correlated noise. Future extensions of this study looking into
the effects of other kinds of noise will really open up avenues
for better theoretical understanding and eventually greater
control over experimental studies in real biological systems
as well.

APPENDIX A: CALCULATION OF THE JACOBIAN

The equation of motion of a colloidal particle moving
in a medium and under the influence of external harmonic
potential can be expressed by an overdamped Langevin
equation,

ζ �̇r − ζ �v(�r) + ∂U (�r)

∂�r = �η(t ), (A1)

where �v(�r) = �v0 + γ̇ κ�r is the velocity of the background
medium exhibiting elongational flow. For the case of the con-
stant flow, γ̇ = 0.

To calculate the Jacobian of the coordinate transformation,
J[x, y, z] as mentioned in Eq. (5), from �η to �r [1,2], we modi-
fied Eq. (A1) as

ζ �̇r − ζ �v0 − �D · �r = �η(t ), (A2)

where �D = −k �I for constant flow and �D = ζ γ̇ κ − k �I for
elongational flow, and �I is the unit tensor. We can then write
Eq. (A2) in discrete form, which reduces to

�η(ti) = ζ
�r(ti) − �r(ti−1)

�t
− �D · �r(ti ) + �r(ti−1)

2
− ζ �v0, (A3)

where i = 1, 2, ..., N corresponds to different time steps.
J[x, y, z] can be found by calculating det[∂�η(ti )/∂�r(t j )], i, j =
1, 2, ..., N , which eventually gives a N × N lower triangu-
lar matrix. The determinant can then be easily calculated as
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follows:

J[x, y, z] =
N∏

i=1

(ζ/�t − �D · �I/2) =
N∏

i=1

(ζ/�t + k/2)3

= (ζ/�t )3N
N∏

i=1

(1 + 3k�t/2ζ + O(�t2))

= (ζ/�t )3N exp(3k�t/2ζ ). (A4)

The total time ranging from 0 to T is divided into N equal
segments of equal width �t such that the time elapsed after
the ith step is given as ti = i�t . For the continuum limit N →
∞, �t → 0, and N�t → T , the above equation reduces to
J[x, y, z] = (ζ/�t )3N exp(3kT/2ζ ).

APPENDIX B: CONDITIONAL PDF FOR THE CASE
OF GAUSSIAN WHITE NOISE

The Gaussian white noise usually accounting for ther-
mal fluctuations considered to be produced from random

collisions of the colloid with other surrounding particles has
the following properties:

〈�ηi(t )〉 = 0 (B1a)

〈�ηi(t )�η j (t
′)〉 = 2ζkBT ′δi jδ(t − t ′). (B1b)

Since the white noise is Gaussian distributed, the probability
distribution of the noise can be written as

P[�η] ∝ exp

{
− 1

8ζkBT ′

∫ T

0
dt �η(t )T �η(t )

}
. (B2)

Substituting the value of �η(t ) from Eq. (1) into Eq. (B2), the
probability can be evaluated as

P[x, y, z] ∝ J[x, y, z] exp

{
− 1

8ζkBT ′

∫ T

0

[
ζ 2(ẋ2 + ẏ2 + ż2) − 2ζ 2v0(ẋ + ẏ + ż) + 2ζk(xẋ + yẏ + zż) − 2ζ 2γ̇ (ẋy + xẏ)

− 4ζkγ̇ xy + (k2 + ζ 2γ̇ 2)(x2 + y2) + k2z2 + (2ζ 2γ̇ v0 − 2ζkv0)(x + y) − 2ζkv0z + 3ζ 2v2
0

]}
, (B3)

where J[x, y, z] is the Jacobian for transforming the coordinates from �η to �r, whose calculation is given in Appendix A. The
conditional probability distribution for finding the colloid at (x f , y f , z f ) after a finite time T given that it was at (x0, y0, z0) at
t = 0 is given by

P(x f , y f , z f , T |x0, y0, z0) ∝ e3kT/2ζ e−k(x2
f +y2

f +z2
f −x2

0−y2
0−z2

0 )/4kBT ′
∫ x(T )=x f

x(0)=x0

D[x]
∫ y(T )=y f

y(0)=y0

D[y]
∫ z(T )=z f

z(0)=z0

D[z] e−S[x,y,z], (B4)

where D[x], D[y], and D[z] represent the path integrals over x, y, and z between the end points (x0, y0, z0) and (x f , y f , z f ), and
S[x, y, z] represents the action, defined as

S[x, y, z] =
∫ T

0
dt L(x, y, z, ẋ, ẏ, ż, t ). (B5)

Here L is the Lagrangian of the system, given by

L(x, y, z, ẋ, ẏ, ż, t ) = 1

8ζkBT ′
[
ζ 2(ẋ2 + ẏ2 + ż2) − 2ζ 2v0(ẋ + ẏ + ż) − 2ζ 2γ̇ (ẋy + xẏ)

− 4ζkγ̇ xy + (k2 + ζ 2γ̇ 2)(x2 + y2) + k2z2 + (2ζ 2γ̇ v0 − 2ζkv0)(x + y) − 2ζkv0z + 3ζ 2v2
0

]
. (B6)

The most probable trajectory of the colloid between two given endpoints in such a system can be obtained by using the
Euler-Lagrange equation of motion, which is given by

∂L
∂ri

− d

dt

(
∂L
∂ ṙi

)
= 0. (B7)

Using the Lagrangian in Eq. (B7), the equations of motion of the colloid along individual components can be obtained as

�̈r + R�r + S�I = 0, (B8)

where R =
(−α1 α2 0

α2 −α1 0
0 0 −β1

)
, S =

(
α3
α3

−β2

)
, �I is the 3 × 3 identity matrix, α1 = k2

ζ 2 + γ̇ 2, α2 = 2kγ̇

ζ
, α3 = γ̇ v0 − kv0

ζ
and β1 =

k2

ζ 2 , β2 = kv0
ζ

. Solutions to the above equations can be obtained by integrating them using the boundary conditions x(0) = x0,
x(T ) = x f , y(0) = y0, y(T ) = x f , z(0) = z0, z(T ) = z f . Similar to the case with OU noise, we solved Eq. (B8) numerically by
setting x0 = y0 = z0 = 0 and the total time taken to be unity. Other parameters were set to have the same values as before. The
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solutions were then used to evaluate the action using Eq. (B5), from which we calculated the normalized probability distribution
for the final position of the colloid, given by

PN (x f , y f , z f , T |x0, y0, z0) = A1 exp
[
A2(x f + y f ) + A3x f y f + A4

(
x2

f + y2
f

) + A5z f + A6z2
f

]
, (B9)

where Ai’s are some constants that depend on a particular set of parameter values. The flow rate is taken to be unity for the
calculation of the PDF. The distribution is shown in Fig. 1 both for white noise (left) and colored noise (right) at two different
times.
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