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Thermokinetic relations bound thermodynamic quantities, such as entropy production of a physical system
over a certain time interval, with statistics of kinetic (or dynamical) observables, such as mean total variation of
the observable over the time interval. We introduce a thermokinetic relation to bound the entropy production
or the nonadiabatic (or excess) entropy production for overdamped Markov jump processes, possibly with
time-varying rates and nonstationary distributions. For stationary cases, this bound is akin to a thermodynamic
uncertainty relation, only involving absolute fluctuations rather than the mean square, thereby offering a better
lower bound far from equilibrium. For nonstationary cases, this bound generalizes (classical) speed limits, where
the kinetic term is not necessarily the activity (number of jumps) but any trajectory observable of interest. As a
consequence, in the task of driving a system from a given probability distribution to another, we find a tradeoff
between nonadiabatic entropy production and housekeeping entropy production: the latter can be increased to
decrease the former, although to a limited extent. We also find constraints specific to constant-rate Markov
processes. We illustrate our thermokinetic relations on simple examples from biophysics and computing devices.
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I. INTRODUCTION

Consider a stochastic overdamped physical system mod-
eled by a continuous-time Markov process—a class of models
able to capture many natural or engineered systems, especially
relevant at the nanoscale: protein dynamics, chemical reac-
tions, digital electronics among others [1].

Suppose that we want to drive the state of this system of
interest from a probability distribution to another one via a
well-chosen protocol, i.e. a time-varing sequence of transition
rates. An example to which we will return at the end of this
article is the task to drive an electronic memory from a “zero”
to a “one.”

In general, this change of state will come with a undesir-
able production of entropy in the Universe, through various
irreversibilities. We would therefore like to design a protocol
that minimizes the entropy production while reaching the
final probability distribution of interest, or find useful lower
bounds on the entropy produced by any protocol fulfilling
the task. Strictly speaking, this question is ill-defined, in that
even in overdamped systems one can always generally reach
a state distribution from another at arbitrarily low entropy
production cost, provided that the time-varying dynamics is
sufficiently slow. Thus, we can only hope to obtain lower
bounds on entropy production relatedly to kinetic variables,
in the (informal) form of: “If the driving is this fast, then the
entropy production must be that high.” Such bounds are called
(classical) speed limits [2–7].

Measuring how “fast” a system evolves can be done in
a number of ways, the relevance of which are context- and
application-dependent, thus one cannot hope to obtain a “uni-
versal” speed limit theorem of interest, but rather one speed
limit for each situation of interest. A specific measure of “fast-

ness” that has been used in most speed limits in the literature is
the total expected activity, i.e., the expected number of jumps
of a discrete-state Markov chain over the total time interval:
a fast process is meant as a process that makes few jumps to
reach the desired final distribution. The activity can be seen as
an intrinsic measure of time of the process.

The speed limits results come in two categories: those
which bound (from below) the total entropy production along
the interval, and those which bound the excess (or nonadia-
batic, or Hatano-Sasa) entropy production. The nonadiabatic
entropy production is the part of the entropy production that
is associated to the irreversible convergence of the probability
distribution towards stationarity. In particular, it is zero for
a stationary (possibly nonequilibrium) process. The bounds
on nonadiabatic entropy production tend to be considered as
the “better” kind of speed limits [2,3], because they offer
nontrivial or significantly tighter results for protocols us-
ing “nonconservative forces” (i.e., generating more entropy
production than just nonadiabatic entropy production), for
example protocols working slowly near nonequilibrium sta-
tionary distributions for instance.

Recently, a version relating (total) entropy production with
activity was proved tight [5], in that it is achievable by a spe-
cific protocol. This protocol happens to involve conservative
forces, i.e., the entropy production is entirely nonadiabatic.

In this paper, we derive a speed limit for nonadiabatic
entropy production that is close to tightness, in that it cannot
be improved by more than 18 percent. We show in particular
that nonconservative forces are useful to lower nonadiabatic
entropy production to its smaller possible value, in contrast
with minimum entropy production protocols. We also prove
that if we limit ourselves to constant (or time-symmetric)
protocols, in some cases the entropy production has an in-
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compressible lower bound even regardless of the time, or the
activity (number of jumps) of the transformation.

While intuitive and relevant in a number of circumstances,
the activity (average number of jumps) as a measure of “time”
or “slowness” has the disadvantage of being sensitive to the
particular model chosen to capture the physical system. In-
deed, the same physical system can often be modeled at
different degrees of accuracy, with wildly different numbers of
states. Models that are (exactly or approximately) equivalent
from a kinetic and thermodynamic viewpoint may therefore
exhibit wildly different activity, thus potentially lead to very
loose speed limits. It seems more relevant in general to build
bounds on physical observables, whose behavior is not too
dependent of an arbitrary modeling choice.

A chief contribution of this article is precisely to build
speed limits that relate (total) entropy production, not just
to activity, but to any observable, symmetric or antisymmet-
ric under time-reversal, of the trajectories. They also relate
nonadiabatic entropy production, not just to activity, but to
any trajectory observable with some flow preservation prop-
erty. These observables, depending on the context, could be
charge, displacement, work, heat, etc. We believe that this is
in important step in making bounds derived from stochastic
thermodynamics more widely applicable to real, complex sys-
tems.

In fact, our bounds are relevant, not only to situations
where one seeks to drive the state of a system from a
probability distribution to another—yielding a necessarily
nonstationary process—but also when the task is merely
to maintain a nonequilibrium probability distribution. This
makes them akin to thermodynamic uncertainty relations.
The latter were introduced as an inequality between entropy
production of stationary nonequilibrium systems and mean-
to-standard-deviation of a time-antisymmetric observable, and
subsequently extended or refined to broader contexts (such
as periodic processes) [8–19]. In contrast, the present bounds
involve the absolute value of a fluctuating observable, rather
than the mean square or variance. Numerical and theoretical
comparisons indicate that the bound on entropy production
is sometimes looser and sometimes tighter than the original
thermodynamic uncertainty relation [8,9], and tends to be
tighter far from equilibrium.

We call our bounds thermokinetic relations, because in
each case, whether they compete with speed limits or with
thermodynamic uncertainty relations, they offer a relation
between a thermodynamic quantity (total or nonadiabatic en-
tropy production) and kinetic (dynamic) quantities (related to
statistical quantities of the process over a given time interval,
such initial and final distributions, time, total activity, or other
physical observables).

The article is organized as follows. In Sec. II we re-
vise elementary mathematical and physical concepts related
to entropy production for arbitrary time-varying or constant
Markovian protocols. We prove in Sec. III our main result,
a thermokinetic relation for entropy production, for any ob-
servable along the trajectories, first for constant-rate Markov
chains, then, via integration over infinitesimal intervals, for
time-varying Markov chains. A comparison is made with the
thermodynamic uncertainty relation in Sec. IV. In Sec. V we
show the connection with optimal transport theory, deducing
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(40)

(43) (45)
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FIG. 1. Main equations derived in this paper and their logical
interconnection. They are grouped on the basis of the observables
and protocols required for their validity. Remember that the protocol
is defined as the time sequence of transition rates of a Markov
process. In particular, constant rates (but possibly nonstationary
state probability distribution) is an example of time-symmetric pro-
tocol. Equation numbers in black refer to bounds on the total
entropy production, equation numbers in blue refer to bounds on
the nonadiabatic entropy production. For each category the main
result is highlighted in yellow. For instance, Eq. (47) is the main
bound on nonadiabatic entropy production for arbitrary protocols
and time-symmetric observables. Results in italic are applications
to the activity observable, which allows direct comparisons with the
literature.

a speed limit that involves Kantorovich costs—a more gen-
eral concept than total variation distances or the Wasserstein
distances. Thermokinetic relations involving nonadiabatic en-
tropy production are derived in Sec. VI.

In Sec. VII, we discuss consequences and applications.
One application is a biophysical molecular motor—kinesin
moving along a microtubule—working in stationary condi-
tions on which we compare our thermokinetic relations with
thermodynamic uncertainty relations. Another application is
the process of writing a bit in an electronic memory, modeled
as rising the charge (or number of electrons) stored in a capac-
itance inserted in a larger, generic nonlinear electronic circuit.

In this paper a host of thermokinetic relations are de-
rived. They relate total or nonadiabatic entropy production
with time-antisymmetric observables (such as work or dis-
placement) or time-symmetric observables (such as activity
or Kantorovich costs, which include total variation dis-
tances or Wasserstein distances). They act as speed limits
(nonstationary conditions) or thermodynamic uncertainty re-
lations (stationary conditions). They apply to Markov chains
with time-symmetric (e.g., constant) or arbitrary time-varying
rates. All these variants are potentially useful depending
on the system and task at hand. Figure 1 provides a con-
cise summary of the main results of this paper and their
relationships.

II. USEFUL CONCEPTS OF PROBABILITY THEORY
AND STOCHASTIC THERMODYNAMICS

A. Kullback-Leibler divergence and total variation distance

Before any physics, we start with mathematical defini-
tions and facts on divergences. Given an arbitrary space �

endowed with the probability distribution p, the (ensemble)
average, or expected value, of an observable A : � → R is
denoted 〈A〉p, or 〈A〉 if p is clear from the context. It is
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defined as
∑

ω∈� A(ω)p(ω). We use overall in this paper dis-
crete sum notations for simplicity and familiarity, although a
fully general notation would use integrals, such as

∫
�

Ad p or∫
�

Ap(dω), to cover continuous situations as well.
Let us now assume that the space � is endowed with two

probability distributions p and q, the Kullback-Leibler of p
relative to q is a nonnegative, possibly infinite, real number
defined as

D(p‖q) =
∑
ω∈�

p(ω) ln
p(ω)

q(ω)
. (1)

We adopt here again the sum notation for simplicity even
though the definition makes sense for continuous and discrete
distributions alike. In the former case, the sum is to be re-
placed with an integral and the ratio of probabilities with a
probability density function (formally, the Radon-Nikodym
derivative d p/dq).

The following well-known identity (chain rule for
Kullback-Leibler divergence; see, e.g., Ref. [20]) will be re-
peatedly useful. Consider two probability distributions p and
q over an arbitrary space � and an observable X : � → X ,
taking values in an arbitrary set X . Then we have the follow-
ing decomposition into two nonnegative terms:

D(p‖q) = D(pX ‖qX ) + D(p‖q|X ). (2)

Here pX is the probability distribution on the observable
X , derived from probability distribution p on � as pX (x) =∑

ω:X (ω)=x p(ω). The conditional Kullback-Leibler divergence
is defined as

D(p‖q|X ) =
∑
x∈X

pX (x)D(p‖q|X = x) (3)

=
∑
x∈X

pX (x)
∑

ω:X (ω)=x

p(ω)

pX (x)
ln

p(ω)/pX (x)

q(ω)/qX (x)
.

We introduce a simple bound for Kullback-Leibler diver-
gences. Consider two arbitrary probability distributions p and
q on the space �, and a nonnegative function A : � → R+
such that pA = qA (in other words, the event A = a has the
same probability under p and under q, for all a), and 〈A〉p =
〈A〉q > 0. Then we can define ϕ = A/〈A〉 as a probability
density function on � with respect to both p and q, meaning
that both ϕp and ϕq are valid probability distributions on �

[assigning probability ϕ(ω)p(ω) or ϕ(ω)q(ω) to each ω, and
summing to one:

∑
ω∈� ϕ(ω)p(ω) = ∑

ω∈� ϕ(ω)q(ω) = 1].
Then we can write

D(ϕp‖ϕq) � ϕmaxD(p‖q), (4)

where ϕmax = Amax/〈A〉 is the maximum (or supremum) of ϕ

over �. In other words,

D(p‖q) � 〈A〉
Amax

D

(
Ap

〈A〉
∣∣∣∣
∣∣∣∣ Aq

〈A〉
)

. (5)

Equality holds when A takes only two values 0 and Amax,
with p = q for all ω such that A(ω) = 0. The proof of Eq. (4)

goes as follows:

D(ϕp‖ϕq) = D(ϕp‖ϕq|ϕ)

=
∑
z>0

zp(ϕ = z)D(ϕp‖ϕq|ϕ = z)

� ϕmax

∑
z>0

p(ϕ = z)D(ϕp‖ϕq|ϕ = z)

= ϕmax

∑
z>0

p(ϕ = z)
∑

ω:ϕ(ω)=z

zp(ω)

zp(ϕ = z)
ln

zp(ω)

zq(ω)

� ϕmax

∑
z�0

p(ϕ = z)
∑

ω:ϕ(ω)=z

p(ω)

p(ϕ = z)
ln

p(ω)

q(ω)

= ϕmaxD(p‖q|ϕ)

= ϕmaxD(p‖q). (6)

Note that in case of an infinite space �, we may have ϕ

taking arbitrarily high values with vanishingly small probabil-
ities, in which case we can replace ϕmax with an “effective”
maximum; see Appendix A.

Another notion of divergence between two probability dis-
tributions is the total variation distance [20]:

dTV(p, q) = 1

2

∑
ω∈�

|p(ω) − q(ω)| � 1. (7)

Equivalently:

dTV(p, q) = 〈sgn(p − q)〉p = 〈sgn(q − p)〉q. (8)

Unlike the Kullback-Leibler divergence, this is a proper
distance—in particular, it is symmetric and respects the trian-
gle inequality. It is related to the Kullback-Leibler distance in
the following way: We can find a convex increasing function
h with h(0) = 0 such that for any distributions p, q on a space
� we have

D(p‖q) � h[dTV(p, q)]. (9)

Pinsker’s inequality [20] states that x �→ h(x) = 2x2 is such
a function. Although well known, Pinsker’s inequality is far
from optimal. Vajda’s bound [21] h(x) = ln 1+x

1−x − 2 x
1+x is

much tighter for dTV(p, q) ≈ 1 where Vajda’s inequality cor-
rectly predicts an unbounded Kullback-Leibler divergence,
unlike Pinsker’s inequality. Even better is Gilardoni’s bound
[22], for

h(x) = ln
1

1 − x
− (1 − x) ln(1 + x)

= ln
1 + x

1 − x
− (2 − x) ln(1 + x). (10)

Note that Pinsker’s inequality remains very slightly better than
Gilardoni’s for small values dTV(p, q) ≈ 0.

There is an optimal such convex function h∗, beating in
particular Pinsker, Vajda, and Gilardoni’s bounds. It is optimal
in that for each d ∈ [0, 1], there exist distributions p, q such
that dTV(p, q) = d and D(p‖q) = h∗(d ). Interestingly, these
optimal distributions can always be chosen on a set � of two
elements only. Despite this, h∗ has no known explicit analytic
expression, although it can easily be computed numerically
through an implicit formula [23].
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FIG. 2. The function h(x) as given by Pinsker and Gilardoni, the
optimal h∗ given (in implicit form) by Fedotov et al. [23], and the
tightest bound h∗

sym on the symmetric Kullback-Leibler divergence.

The situation is simpler for a symmetric version of
Kullback-Leibler divergences, as we can write

D(p‖q) + D(q‖p)

2
� hsym[dTV(p, q)]. (11)

for some convex increasing function hsym. Of course we can
take any function h as above, for instance Pinsker’s hsym(x) =
2x2. Interestingly however, none of these are tight, and the
tighest bound has an explicit formulation:

h∗
sym(x) = x ln

1 + x

1 − x
= 2x atanh x, (12)

as proved, e.g., in Refs. [7,22]. It is verified with equality
for the two-element probability distributions p = (ε, 1 − ε)
and q = (1 − ε, ε). In fact, it is more generally tight for any
distributions p and q so that for some constant c > 0 and each
ω ∈ �, either |ln p(ω)/q(ω)| = c, or q(ω) = p(ω) = 0. We
then have dTV(p, q) = tanh c

2 and D(p‖q)+D(q‖p)
2 = c tanh c

2 , as
a direct calculation shows.

See Fig. 2 for a graphical comparison of these bounds.

B. Entropy production and its decompositions

In this section we recall some elementary concepts and
well-known relations of the stochastic thermodynamics of
Markov processes, written here in the language of Kullback-
Leibler divergences. The goal of this section is to establish
the equalities (23), (24), and (25) relating various concepts of
entropy production, along with the necessary notations.

The entropy production of a time-varying Markov process
over a discrete state space over a given time interval [τini, τfin]
is defined as (in units such that the Boltzmann constant equals
one)

�σ = D(p‖p) =
∑
ω∈�

p(ω) ln
p(ω)

p(ω)
, (13)

where the sum runs over all trajectories ω of the Markov pro-
cess on the time interval. Here the time-reversed probability
distribution p(ω) denotes the probability of the time-reversed

trajectory ω in the time-reversed process, whose initial state
distribution is defined to be the final state distribution pre-
dicted by p, and the transition rates are defined as the
transition rates of p, read backward in time (in case these rates
are time-varying). We assume in this article an “overdamped”
framework, where the time-reversed trajectory is simply the
list of states and transitions read in reverse order.

Whenever � is the set of trajectories of a Markov process
taking place in a state space X , we define two observables Xini,
the initial state of the trajectory, and Xfin the final state of the
trajectory. By construction of the time-reversed process p we
have, in particular,

pXfin
(x) =

∑
ω:Xfin(ω)=x

p(ω)

=
∑

ω:Xini (ω)=x

p(ω). (14)

Since p(ω) computes the probability of ω starting with initial
distribution pXfin , we see by definition

pXfin = pXfin
. (15)

When the transition rates are constant over time, or more
generally symmetric under time-reversal , it is sometimes
convenient to consider, as an intermediate quantity, the proba-
bility distribution p̃(ω) = p(ω): the trajectory is reversed but
not the process (i.e., we keep the same initial distribution and
the same sequence of rates as in p). In particular,

p̃Xfin (x) =
∑

ω:Xfin(ω)=x

p̃(ω)

=
∑

ω:Xfin(ω)=x

p(ω)

=
∑

ω:Xini (ω)=x

p(ω)

= pXini . (16)

In summary we can write, in contrast to Eq. (15),

pXini = p̃Xfin . (17)

Since the rates are assumed constant or time-symmetric,
p̃(ω) and p(ω) compute the probability of ω with the same
transition rates but with a different probability for the initial
state of ω (which is the final state of ω), which are pXini and
pXfin respectively.

Overall we can write, for constant-rate or time-symmetric-
rate Markov chains:

D(p‖p) =
∑
ω∈�

p(ω) ln
p(ω)

p̃(ω)

p̃(ω)

p(ω)

= D(p‖p̃) +
∑
ω∈�

p(ω) ln
pXini [Xfin(ω)]

pXfin [Xfin(ω)]

= D(p‖p̃) − D(pXfin‖pXini )

= D(p‖p̃|Xfin)

� D(p‖p̃). (18)

Equality holds for stationary Markov chains, or for infinites-
imal time intervals, as over a very short interval [τini, τfin],
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D(pXfin‖pXini ) is of order (τfin − τini )2 (the square Fisher met-
ric), thus is negligible before a nonzero �σ (which is typically
in the order of τfin − τini).

Considering now two distributions p and q on the trajectory
space � of some Markov process (possibly with time-varying
transition rates), which differ only in their initial distribution
(obeying the same transition rates) one can write the Chain
Rule for the initial state, finding

D(p‖q) = D(pXini‖qXini ) + D(p‖q|Xini ) = D(pXini‖qXini ),

(19)

and for the final state,

D(p‖q) = D(pXfin‖qXfin ) + D(p‖q|Xfin). (20)

Comparing the two equations we find

D(pXini‖qXini ) − D(pXfin‖qXfin ) = D(p‖q|Xfin) � 0. (21)

This is one standard way [20] to show that the Kullback-
Leibler divergence between two state distributions driven by
the same rates is nonincreasing. We can write further

D(p‖p) = D(p‖p|Xfin) + D(pXfin‖pXfin
)

= D(p‖q|Xfin)

= D(p‖q|Xfin) + [D(p‖q|Xfin) − D(p‖q|Xfin)]

= D(p‖q|Xfin) + [D(p‖q) − D(p‖q)]. (22)

We have used Eq. (15)—thus the facts that pXfin = pXfin
and

qXfin = qXfin
—and the fact that q(ω) and p(ω) are identical

conditional to the final state of ω (as they obey the same
time-varying rates).

Although this decomposition is true for any q obeying the
same time-varying rates as p, it takes a particularly significant
meaning when rates are constant in time, or time-symmetric,
and q is a stationary process obeying those rates (qXfin = qXini ,
thus q = q̃). In this case D(p‖q|Xfin) is called the nonadiabatic
entropy production �σNA [24] or excess entropy production
[25] or Hatano-Sasa entropy production [26], and is zero if
and only if p is also stationary.

Furthermore in this case D(p‖q) − D(p‖q) =
D(p‖q|Xini ) � 0 is called the housekeeping entropy
production �σHK, or adiabatic entropy production [24],
which is zero if and only if detailed balance is satisfied, i.e.,
if the q is an equilibrium, i.e., time-reversible (q = q), i.e.,
driven by conservative forces.

In summary we have proved the following decomposition
[24] for entropy production �σ = D(p‖p) on a constant-rate
or time-symmetric-rate Markov process with q as the corre-
sponding stationary process:

�σ = �σNA + �σHK

= D(p‖q|Xfin) + D(p‖q|Xini ). (23)

In addition, we have proved, in the same context,

�σ = D(p‖p̃) − D(pXfin‖pXini ). (24)

Finally, another well-known observation is that for any set
of trajectories �, we find

D(p‖p̃) = 1

2

∑
ω∈�

(p(ω) − p(ω)) ln
p(ω)

p(ω)

= D(p‖p̃) + D( p̃‖p)

2
. (25)

To evaluate the entropy productions in case of a gen-
eral continuous-time discrete-state Markov chain with
time-varying rates, one can decompose the total time inter-
val into successive infinitesimal time intervals τfin − τini = dt ,
where the rates can be considered constant, and sum the en-
tropy production computed over each interval. Note that in
this process, the terms D(pXfin‖pXini ), of the negligible order
O(dt2), vanish. Recall as well that in an interval dt , the
trajectory ω of a Markov jump process either is constant
[no transition, with probability 1 − O(dt )], or consists in a
single transition between initial and final state [with proba-
bility O(dt )]. We can safely neglect the possibility of two or
more transitions in an interval dt , as it occurs with negligible
probability O(dt2).

III. THERMOKINETIC RELATIONS
FOR ENTROPY PRODUCTION

A. Constant or time-symmetric rates

Let A be a time-symmetric nonnegative function on trajec-
tories in �. By time-symmetric, we mean symmetric under
time reversal, i.e., A(ω) = A(ω) for all trajectories ω. Thus,
for a constant-rate or time-symmetric-rate Markov process
over arbitrary time intervals, we find, following Eqs. (24),
(25), (5), (11), and (12),

�σ+D(pXfin‖pXini ) �
〈A〉

Amax
h∗

sym

(
dTV

(
Ap

〈A〉 ,
Ap̃

〈A〉
))

= 〈A〉
Amax

h∗
sym

( 〈A sgn(p − p̃)〉
〈A〉

)

= 2
〈A sgn(p − p̃)〉

Amax
atanh

〈A sgn(p − p̃)〉
〈A〉 . (26)

This is our first thermokinetic relation for constant-rate or
time-symmetric-rate Markov chains, relating entropy produc-
tion to nonnegative symmetric observables. Recall that h∗

sym is
the convex increasing function defined by Eq. (12).

Given any observable f : � → R on trajectories, we
can build the nonnegative time-symmetric observable A(ω) =
| f (ω)|+| f (ω)|

2 . Thus, we get, for any trajectory observable f :
� → R:

�σ + D(pXfin‖pXini ) �
〈| f |〉
| f |max

h∗
sym

⎛
⎝

〈 | f |+| f |
2 sgn(p − p̃)

〉
〈| f |〉

⎞
⎠.

(27)

This implies a particularly simple form for time- antisymmet-
ric [also called current-like, i.e., such that f (ω) = − f (ω)]
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observable f :

�σ + D(pXfin‖pXini ) �
〈| f |〉
fmax

h∗
sym

( |〈 f 〉|
〈| f |〉

)

= 2
|〈 f 〉|
fmax

atanh
|〈 f 〉|
〈| f |〉 . (28)

This is equivalent to the thermokinetic relation (26) above, ex-
pressed for time-antisymmetric trajectory observables instead.
This is one of the main results of this article.

The right-hand side (r.h.s.) is increasing in the |〈 f 〉| argu-
ment, and is decreasing in the 〈| f |〉 argument and in the fmax

argument. From these observations we may infer new valid
inequalities, e.g., by replacing 〈| f |〉 with an upper bound in
the r.h.s. For example, the trivial bound 〈| f |〉 � fmax leads to
the simpler, but weaker, thermokinetic relation:

�σ + D(pXfin‖pXini ) � h∗
sym

( |〈 f 〉|
fmax

)
. (29)

B. General time-varying Markov processes

Let us now turn to the general case of time-varying rates
over an arbitrary interval. We can decompose a time-varying
Markov process into a succession of constant-rate Markov
processes over infinitesimal intervals.

Let us first spell out what Eq. (28) becomes for an infinites-
imal interval. Over each infinitesimal interval [t, t + dt], we
can consider that at most one transition occurs, as two tran-
sitions only occur with vanishing probability O(dt2). Thus,
the trajectories ω are either constant (no transition at all, with
the system sitting at some state x) or with one transition.
In the usual graph-theoretic representation of a discrete-state
Markov chain [27], this transition is represented by one (di-
rected) edge e from state (vertex) x to state (vertex) x′. In this
context, an antisymmetric observable f (ω) over [t, t + dt]
takes value 0 if no transition happens, and some value f (e) if
ω is the transition e. Thus, f is described by a real number
f (e) attached to each edge e, so that f (e) = − f (e) (time-
antisymmetry). The probability p(e), i.e., the probability that
ω = e, also called the flow over e, is pXt (x)rt (x → x′)dt ,
where rt (x → x′) is called the transition rate along e. The
flow over e is an infinitesimal quantity, i.e., proportional to dt .
Thus, although f takes real (noninfinitesimal) values on all
transitions at all times, 〈 f 〉 = ∑

e f (e)p(e) is an infinitesimal
quantity, proportional to dt . The same is true for 〈| f |〉 or 〈A〉.
Thus, both sides of Eq. (28), for infinitesimal time interval dt
are infinitesimal in the order of dt . Note finally that the term
D(pXfin‖pXini ) of the order dt2, thus negligible.

For a time-varying Markov chain over a noninfinitesimal
interval [τini, τfin], with possibly time-varying real labels on
edges ft (e) at each interval [t, t + dt], a trajectory ω is a
succession of (finitely many) transitions taking place over the
interval, and we assign to ω the sum of all real numbers f
labeling those transitions, which we can denote

∫
f (recalling

that this integral reduces to a sum, as on all but finitely many
infinitesimal intervals we have f = 0). The expected value of
this trajectory observable is 〈∫ f 〉 = ∫ 〈 f 〉. Recall that 〈 f 〉 is an
infinitesimal quantity, proportional to dt , thus

∫ 〈 f 〉 is indeed
an integral in the usual sense.

We may now integrate Eq. (28) on the total interval
[τini, τfin], with the following bound on the entropy production
�σ over the total interval:

�σ �
∫ 〈|f |〉

fmax
h∗

sym

( |〈f 〉|
〈| f |〉

)

= 2
∫ |〈 f 〉|

fmax
atanh

|〈 f 〉|
〈| f |〉 . (30)

The convexity of h∗
sym implies Jensen’s inequality

∫
w(t )h∗

sym(g(t ))dt∫
w(t )dt

� h∗
sym

(∫
w(t )g(t )dt∫

w(t )dt

)
(31)

for any nonnegative weight function w and any function g
(taking values between 0 and 1, where h∗

sym is defined). The
triangle inequality also implies

∫ |〈 f 〉| � | ∫ 〈 f 〉|. Applying
these inequalities to Eq. (30), we find the thermokinetic re-
lation for general time-varying (overdamped) Markov chains,
the second central result of this article:

�σ �
∫ |〈 f 〉|

fmax
h∗

sym

( |∫ 〈 f 〉|∫ 〈| f |〉
)

= 2
|∫ 〈 f 〉|
fmax

atanh
|∫ 〈 f 〉|∫ 〈| f |〉 . (32)

Here fmax is the maximum (or supremum) value of f (e)
over all transitions e, and over all times t if the observable f
is time-varying.

Note that although Eq. (32) is a weaker inequality than
Eq. (30), it has the advantage of involving

∫ 〈 f 〉 and
∫ 〈| f |〉,

which typically have a direct physical interpretation as we
shall see in the examples. Moreover, Eq. (32) can be met with
equality in some important cases as we detail hereafter.

IV. COMPARISON WITH THE THERMODYNAMIC
UNCERTAINTY RELATION

In the stationary case (probability on state distribution con-
stant over time, with in particular pXfin = pXini ), this relation
(32) can be compared with the standard thermodynamic un-
certainty relation:

�σ � 2
〈 f 〉2

Var f
= 2

〈 f 〉2

〈 f 2〉 , (33)

here expressed over an infinitesimal time interval τfin − τini =
dt , where the relation is the tightest [19]. In this limit, 〈 f 〉2

is of the order O(dt2) thus is negligible compared to Var f =
〈 f 2〉 − 〈 f 〉2.

To compare Eqs. (32) and (33) fruitfully, we first consider
time-antisymmetric observables f that can only take three val-
ues f (e) = fmax, f (e) = − fmax or f (e) = 0 for any transition
e. In that case we find 〈 f 2〉 = fmax〈| f |〉. Using the fact that
atanh x > x for any 0 < x < 1, we see that our thermokinetic
relation (32) is always tighter than the thermodynamic un-
certainty relation (33). They tend to be equally tight when
the argument of atanh in Eq. (32) is small, e.g., close to
equilibrium [p(e) ≈ p(e)].

Nevertheless for other observables, Eq. (33) may prove
a better bound on the entropy production than Eq. (32). To
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show this, we consider in Appendix B the best possible choice
of f for Eq. (33), i.e., with the maximum mean-to-standard-
deviation ratio, which makes (33) as tight as can be. This is
the hyperaccurate current in the terminology of Ref. [28].
With this optimal choice, our thermokinetic relation (32) can
be weaker (when close to equilibrium, p ≈ p̃) or tighter (when
far from equilibrium, p/p̃ → 0 or ∞) than the classic (33). It
has the added advantage that it is valid for nonstationary cases
as well.

In Sec. VII C we will offer a numerical illustration of
our thermokinetic relation (28) and the thermodynamic un-
certainty relation (33) on a biophysical example—kinesin
moving along a microtubule.

V. SPEED LIMITS FOR GENERAL OPTIMAL TRANSPORT
COSTS, INCLUDING THE TOTAL VARIATION DISTANCE

The relations above are dependent on the particular
protocol driving the initial distribution towards the final dis-
tribution. It can be useful however to remove the dependence
of the formula above on the specifics of the particular process,
to get an absolute lower bound on the entropy production cost
required to drive the system from a given state distribution pini

to another state distribution pfin. As explained in the Introduc-
tion, one must however constrain how “fast” the trajectory is,
to obtain a useful tradeoff, and this can be done in various
ways.

The chief contribution of this section is precisely to exploit
the thermokinetic relations derived above to offer a flexible
family of speed limits based on statistics of physical observ-
ables.

Consider that A, a time-symmetric nonnegative weight as-
signed to every trajectory ω in an arbitrary trajectory space �,
represents the “cost” of ω. For each state x ∈ X we assume
we have a zero-cost trajectory ωx going from x to x (e.g., the
constant trajectory).

Given two probability distributions pini and pfin on the state
space X , we may now look for the probability distribution
p∗(ω) on trajectories in � that drives the states from pini to pfin

with minimal cost 〈A〉p∗ . In other words, we want to pick p∗ on
� so that p∗

Xini
= pini and p∗

Xfin
= pfin (and no other constraint:

for instance we do not require here that p∗ derives from a
Markovian process), while achieving the minimum possible
value for 〈A〉. Finding such an optimal probability distribution
p∗ is essentially the standard optimal transport problem, as
introduced by Monge [29] and by Kantorovich [30] and later
extended by Rubinstein, Wasserstein, Dobrushin, etc. [31–33]
We call the optimal average cost 〈A〉p∗ the Kantorovich cost
KA(pini, pfin) (also called earth mover’s, or optimal transport
cost in the literature, see Appendix C). Note that KA is not
necessarily a proper distance on the space on probability
distributions on the state space X , although it is for many
reasonable choices of � and A. More background and de-
tail on optimal transport, comparing the general concept of
Kantorovich cost with more specific concepts such as the
1-Wasserstein distance, and the total variation distance in
particular, is provided in Appendix C.

Clearly, the average cost given by any probability dis-
tribution p on trajectories in � is an upper bound on
the Kantorovich cost between the initial and final state

distributions pini = pXini and pfin = pXfin :

〈A〉p � KA(pXini , pXfin ). (34)

We can generally obtain a better bound on KA(pXini , pXfin ) by
“improving” the probability distribution p. From p we con-
struct pred, a reduced probability distribution on trajectories,
in the following way. For each ω from x to x′ �= x such that
p(ω) > p(ω), set pred(ω) = p(ω) − p(ω), and pred(ω) = 0.
We also pick a zero-cost trajectory ωx from x to x assigning
pred(ωx ) = p(ωx ) + p(ω). Similarly, we pick a zero-cost tra-
jectory ωx′ from x′ to x′ and set pred(ωx′ ) = p(ωx′ ) + p(ω). In
other words, we “cancel” the flow along opposite directions
and redirect the corresponding probability flow on self-loops.
This keeps the probability distribution of initial and final states
unperturbed, while decreasing the expected cost of trajecto-
ries. Thus, we can write

〈A〉p � 〈A〉pred � KA(pXini , pfin). (35)

The middle quantity can be rewritten as

〈A〉pred = 1

2

∑
ω

|Ap(ω) − Ap(ω)| (36)

= 〈A〉pdTV

(
Ap

〈A〉p
,

Ap̃

〈A〉p

)
.

Thus, we can weaken Eq. (26) and obtain the following
speed limit for constant-rate or time-symmetric-rate Markov
chains:

�σ + D(pXfin‖pXini ) �
〈A〉p

Amax
h∗

sym

(
KA(pini, pfin)

〈A〉p

)
. (37)

We now consider arbitrary time-varying Markov chains.
A trajectory can be decomposed into constant-rate Markov
chains over infinitesimal time intervals, where at most one
transition happens. The cost on each interval, written as A, is
thus a cost assigned to each possible transition (as we request
that constant paths have zero cost). This cost can possibly be
time-varying. Integrating Eq. (37) over the trajectory on the
whole time interval, and using convexity of h [proceeding as
for the derivation of Eq. (32)]:

�σ �
∫ 〈A〉
Amax

h∗
sym

(∫
dKA∫ 〈A〉

)
, (38)

where
∫

dKA is the integral of costs KA(pXt ,Xt+dt ) over the
whole trajectory from pini to pfin. Here Amax is the maximum
value over all transitions and times, and

∫ 〈A〉 is the expected
sum of costs of all transitions over the trajectory.

The quantity
∫

dKA, which depends on all intermediate
state probability distributions pXt , can itself be bounded from
below by a Kantorovich cost (depending only on pini to pfin)
in the following way. Let us assign a cost denoted

∫
A(ω) to

a trajectory ω over the whole interval [τini, τfin], defined as the
integral of costs over infinitesimal transitions (i.e., the sum
of cost of each transition along the trajectory, as we request
that constant paths have zero cost). Then

∫ 〈A〉 is the mean
value of this trajectory cost. As a result, the corresponding
Kantorovich cost K∫

A(pini, pfin) is no larger than the integral
of Kantorovich costs over infinitesimal intervals. Note that if
the cost function A is different for each time interval, then in
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general the Kantorovich cost K∫
A is not necessarily a distance

—which does not hamper our results.
Thus, we may write

�σ �
∫ 〈A〉
Amax

h∗
sym

(
K∫

A(pini, pfin)∫ 〈A〉
)

. (39)

This is one of the main results of this article. This speed
limit has the advantage that K∫

A(pini, pfin) does not depend
on the particular process driving pini to pfin. The quantity∫ 〈A〉 is the expected total (integrated) cost of the whole
trajectory.

An important example of the above is the activity speed
limit [2–7]. Consider a connected Markov chain (with tran-
sitions possible between every pairs of states), and A(ω) = 1
if at least one transition occurs along the trajectory ω, and
A(ω) = 0 otherwise (constant trajectory, no transitions). It is
well known that the corresponding Kantorovich cost is pre-
cisely the total variation distance dTV (see, e.g., Ref. [31]).
Thus, for any constant-rate or time-symmetric-rate Markov
chain over any time interval we find

�σ + D(pXfin‖pXini ) � 〈A〉ph∗
sym

(
dTV(pini, pfin)

〈A〉p

)
, (40)

where 〈A〉p is here the probability that at least one transition
occurs. For an arbitrary time-varying Markov chain we find

�σ �
∫

〈A〉p h∗
sym

(
dTV(pini, pfin)∫ 〈A〉p

)

= 2dTV(pini, pfin) atanh
dTV(pini, pfin)∫ 〈A〉p

, (41)

where
∫ 〈A〉p is the total expected activity, i.e., the expected

number of transitions (jumps) along the interval [τini, τfin].
This number of transitions is the kinetic parameter indicative
of the slowness of the dynamics: Many steps needed to reach
a given final distribution is thought of as a slow dynamics.
Said otherwise, δt = (τfin − τini )/

∫ 〈A〉p can be seen as the
typical time between two transitions, a natural timescale of
the system, and the activity can be written as (τfin − τini )/δt ,
is a dimensionless measure of the duration of the process.
Note that this formula was obtained in Ref. [5] (among with a
specific family of Kantorovich costs, as explained in Appen-
dices C and D).

In comparison, the general formula (38) allows arbitrary
(symmetric, nonnegative, time-varying) costs for each transi-
tion of the symmetric weights. This allows to possibly model
a physical cost of interest associated to the transition, and can
mitigate the intrinsic dependence of activity on an arbitrary
coarse graining level of the model at hand.

VI. BOUNDING NONADIABATIC ENTROPY
PRODUCTION

The total entropy �σ , used in the speed limits above,
decomposes into nonadiabatic (NA) entropy and house-
keeping entropy (22). Only the NA entropy is associated
to the process of convergence to stationarity, while the

housekeeping entropy may be non zero even at stationarity.
In case of nonconservative forces, Eq. (32) is thus typically
far from being tight, especially at stationarity [where the r.h.s.
side is zero and the left-hand side (l.h.s.) is strictly positive] or
around it.

It is therefore preferable to bound �σNA (which can-
cels at stationarity) rather than �σ , to obtain use-
ful relations with kinetic quantities that also cancel at
stationarity [2,3].

A. Constant or time-symmetric rates

Let us first focus on the case of constant-rate or time-
symmetric-rate Markov processes, with corresponding sta-
tionary distribution q on trajectories. Assume we have a
nonnegative symmetric observable A on the trajectories, i.e.,
a map A : � → R+ such that A(ω) = A(ω), for any tra-
jectory ω. We also assume 〈A〉q > 0 for non triviality. In
particular, we have for instance qA = q̃A = qA. However, we
know from stationarity that qXfin = q̃Xfin = qXfin

= qXini . Now
assume that moreover A is such that the equality holds for the
joint observable (A, Xfin), i.e., qAXfin = q̃AXfin = qAXfin

. In other
words, even though the stationary process might not satisfy
detailed balance (q �= q), we have “apparent” detailed balance
from the joint knowledge of A and Xfin. Let us restate this
property in another way. For each possible value of A = z
of such an observable, there is a conservation law at each
state x: the sets {ω ∈ � : A(ω) = z and Xini(ω) = x} and {ω ∈
� : A(ω) = z and Xfin(ω) = x} have same probability. In other
words, the global probability flow conservation at stationarity
splits into several probability conservation laws on several
sets of trajectories, each corresponding to a possible value
of A.

This is the case for instance for the “activity” observable
A : � → {0, 1} already used in Sec. V mapping a noncon-
stant (with at least one transition) trajectory ω to 1 and
to 0 if ω is constant (no transition). Indeed the probability
q(A = 1, Xfin = x) records the probability flow entering x over
the trajectory (from any initial state than x). However, q̃(A =
1, Xfin = x) is the probability flow leaving the initial state x.
From stationarity, these quantities must be equal.

Other practically relevant observables than activity may be
eligible, depending on the specificities of the system at hand,
as we see later in the case of electronic memories.

To prove a lower bound on NA entropy production, we
write the following:

D(p‖q|Xfin) � D(pAXfin‖qAXfin |Xfin)

= D(pAXfin‖qAXfin
|Xfin)

= D(pAXfin‖pAXfin
|Xfin)

= D(pAXfin‖p̃AXfin |Xfin). (42)

We used here the fact that qAXfin = qAXfin
and that q, p and p̃

coincide when knowing the value of Xfin (initial state of the
reversed path). We find by repeated use of the chain rule,
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Eqs. (42), (5), and (9),

�σNA + D(pXfin‖pXini )

� D(pAXfin‖p̃AXfin |Xfin) + D(pXfin‖pXini )

= D(pAXfin‖p̃AXfin |Xfin) + D(pXfin‖p̃Xfin )

= D(pAXfin‖p̃AXfin )

� 〈A〉p

Amax
D

(
ApAXfin

〈A〉p
‖Ap̃AXfin

〈A〉p

)

= 〈A〉p

Amax
D

(
ApAXfin

〈A〉p
‖ApAXini

〈A〉p

)

= 〈A〉p

Amax
h

(
dTV

(
ApAXfin

〈A〉p
,

ApAXini

〈A〉p

))

= 〈A〉p

Amax
h

( 〈A sgn(pAXfin − pAXini )〉
〈A〉p

)
. (43)

This thermokinetic relation involves the nonadiabatic en-
tropy production, for constant-rate or time-symmetric-rate
Markov chains. Remember that h can taken as Pinsker’s or
Gilardoni’s bound (10), or the optimal (nonexplicit) optimal
bound h∗, as pictured in Fig. 2. We can reformulate it in terms
of time-antisymmetric observables, similarly to Eq. (28). Let
f be an antisymmetric observable on trajectories, such that at
every state x and for every possible value f = z, the probabil-
ity flow carried by trajectories of value z entering x equals, for
the stationary flow q, the probability flow carried by trajecto-
ries of value −z out of x. Then we find our main thermokinetic
relation in this section:

�σNA + D(pXfin‖pXini ) �
〈| f |〉
fmax

h

( |〈 f 〉|
〈| f |〉

)
. (44)

We can also bring Eq. (43) to an optimal transport interpre-
tation, still for constant or time-symmetric rates:

�σNA + D(pXfin‖pXini )

� 〈A〉p

Amax
h

(
KA(pXini , pXfin )

〈A〉p

)
. (45)

In particular, for A the activity observable, i.e., when 〈A〉p is
the probability that at least one transition occurs in the time
interval, we find

�σNA + D(pXfin‖pXini )

� 〈A〉p

Amax
h

(
dTV(pXini , pXfin )

〈A〉p

)
. (46)

B. General time-varying Markov chains: The speed limit
for nonadiabatic entropy production

Let us now turn to the general case of time-varying rates
over an arbitrary interval. We can decompose a time-varying
Markov process into a succession of constant-rate Markov
processes over infinitesimal intervals. Over each infinitesimal
interval dt , we can thus use Eq. (45), neglecting the sublead-
ing term D(pXfin‖pXini ) term. Integrating Eq. (45) on the total

interval, and using convexity of h, we find

�σNA �
∫ 〈A〉
Amax

h

(∫
dKA∫ 〈A〉

)

�
∫ 〈A〉
Amax

h

(
K∫

A(pini, pfin)∫ 〈A〉
)

, (47)

where
∫

dKA is the integrated Kantorovich cost along the
trajectory as in Eq. (32), and can be weakened to the
trajectory-independent quantity K∫

A(pini, pfin) as in Eq. (39).
This thermokinetic relation is arguably the most central result
of this article, and can also be called a speed limit.

It is also valid for time-varying observables A, as long as
the conservation condition in Sec. VI A is valid at all times.
In this case Amax is the maximum over all transitions over all
times.

In the case of the activity observable, we obtain

�σNA �
∫

〈A〉 h

(
dTV(pini, pfin)∫ 〈A〉

)
, (48)

where
∫ 〈A〉 is the total expected activity, i.e., the expected

number of jumps in the whole time interval �t . This is a novel
bound on nonadiabatic (excess) entropy production. Recall
that here h can be taken as h(x) = 2x2 (Pinsker’s bound),
leading to

�σNA � 2
d2

TV(pini, pfin)∫ 〈A〉 . (49)

This is essentially the main result of Ref. [3], itself a
refinement of Ref. [2]. The new bound (51) is substantially
tighter, using e.g., Gilardoni’s bound (10). Even slightly better
is the bound obtained with h = h∗, although it has no simple
explicit expression. All these bounds coincide in the limit of
long times (high activity, slow driving). In the limit of low
times or low activity (fast driving), Gilardoni’s classical speed
limit is unboundedly better than Pinsker’s. Indeed it correctly
predicts that the activity (expected number of jumps) to follow
the trajectory must satisfy∫

〈A〉 > dTV(pini, pfin), (50)

with an infinite NA entropy production at the limit case 〈A〉 =
dTV. In constrast, Pinsker’s version only provides a finite
lower bound.

Note that if the Markov chain transitions are known to
take place on a certain graph, then we can improve (51)
by replacing the total variation distance dTV(pini, pfin) with
the 1-Wasserstein distance on state distributions W1(pini, pfin)
induced by the graph distance between states, see Appendix C
for proof and explanations on 1-Wasserstein distances (which
are special examples of Kantorovich costs):

�σNA �
∫

〈A〉 h

(
W1(pini, pfin)∫ 〈A〉

)
. (51)

This novel bound is the counterpart for nonadiabatic entropy
production of the bounds developed in Ref. [5] for total en-
tropy production. The total variation distance corresponds to
the case of the complete graph, where all transitions are a
priori allowed.
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Finally, we also have a time-varying version of the
thermokinetic relation bound (44) for antisymmetric ob-
servable f on transitions satisfying at all times the flow
conservation condition:

�σNA �
∫ 〈| f |〉

fmax
h

( |∫〈 f 〉|∫ 〈| f|〉
)

. (52)

This form is perhaps the most practically convenient to use,
as illustrated on the electronic memory below.

VII. DISCUSSION AND APPLICATIONS

A. Tightness of thermokinetic relations and the interest
of nonconservative forces

It is known [5] that the speed limit (41) is tight for (to-
tal) entropy production and activity observable. This means
that given pini, pfin and a given “budget” for the expected
number of jumps one can find a time-varying Markov pro-
cess that drives pini to pfin within the prescribed number of
jumps whose entropy production is the r.h.s. of Eq. (41).
Remarkably, this optimal strategy only involves conservative
forces, i.e., has zero housekeeping entropy production (�σ =
�σNA).

Comparing Eq. (51) to Eq. (41), we observe that the l.h.s.
of the former is lower or equal to the l.h.s. of the latter
(�σNA � �σ ), and the same for the r.h.s. (h � h∗

sym). We
can thus wonder how tight (51) is, as a bound on �σNA. In
particular, can we find a Markov chain with �σNA strictly
smaller than the r.h.s. of Eq. (32)? It turns out that we can.
For example, consider a simple three-state Markov chain with
the master equation:

ṗ1 = p2 − p1,

ṗ2 = p3 − p2,

ṗ3 = p1 − p3

(53)

(the last equation being redundant with ṗ3 = −ṗ1 − ṗ2

expressing probability conservation). Take pXini =
(1/31, 25/31, 5/31), and observe the Markov chain
over an infinitesimal time interval dt . Thus, pXfin =
pXini + (24/31,−20/31,−4/31)dt , and the expected
activity (probability of jump) is 〈A〉 = dt . It turns out that
dTV(pXini , pXfin )/〈A〉 = 24/31 ≈ 0.77 and �σNA ≈ 45.1dt <

〈A〉h∗
sym(0.77) ≈ 49.5dt . We also have �σ = +∞ since

the flow is unidirectional, with a zero reverse flow. This
means that, albeit minimum entropy production for a given
trajectory is reached with a conservative force protocol, it is
possible to reach an even lower NA entropy production with
a nonconservative protocol (thus at the cost of higher total
entropy production). Therefore, there is a nontrivial tradeoff
between NA and housekeeping entropy production, as in
some cases the latter can be increased to decrease the former.
Said otherwise, nonequilibrium stationary states can be used
to achieve faster transitions, for a given budget in �σNA.

Nevertheless the range of this tradeoff is quite limited.
Indeed, h∗

sym and h∗ always differ in value by less than 18%, in
either direction. This gap goes to 0% both for small arguments
(ratio dTV/

∫ 〈A〉  1, slow kinetics), and large arguments
(ratio dTV/

∫ 〈A〉 close to one, fast kinetics). Thus, the tradeoff

can only exist in an intermediate range of speeds. We leave
open the exact quantitative characterization of this tradeoff.

B. Constant or time-symmetric rates revisited

Let us now focus again on constant-rate (or time-
symmetric-rate) Markov chains, in the case of activity
observable. Weakening (40) with 〈A〉 � 1 (as 〈A〉 is a prob-
ability), we find

�σ + D(pXfin‖pXini ) � 〈A〉h∗
sym

(
dTV(pXini , pXfin )

〈A〉
)

� h∗
sym[dTV(pXini , pXfin )]. (54)

Interestingly, this implies that for those initial and final state
distributions such that h∗[dTV(pXini , pXfin )] � D(pXfin‖pXini ) <

h∗
sym[dTV(pXini , pXfin )], there is an incompressible lower bound

for entropy production regardless of the activity or duration of
the transformation, due to the constraints of constant rates.
For instance, driving a system from pXini = (0.15, 0.85) to
pXfin = (0.95, 0.05) with constant rates, no matter how slowly,
necessarily produces an entropy at least 0.14.

C. Kinesin molecular motor

We illustrate the bounds on a toy model describing the
motion of the kinesin molecular motor along a microtubule
powered by ATP hydrolysis and exerting a force F on a pulled
cargo. This standard model is a two-state, eight-transition
Markov chain in a nonequilibrium stationary state. The log-
arithm of transitions rates mediated by the phosphorylation of
ATP are proportional to its chemical potential log[ATP], while
the logarithm of transition rates in the direction (respectively,
against) the pulling force F are proportional to the work
F
/(kBT ) [respectively, −F
/(kBT )], where 
 is the motor
displacement and kBT is the thermal energy of the environ-
ment. We refer to Refs. [19,34] for a detailed description of
the model. In Fig. 3 we compare the thermokinetic bound
Eq. (32) and the standard thermodynamic uncertainty relation
for various values of ATP concentration and pulling force F ,
and compare the quality of the bounds on entropy production.
The model is at equilibrium for [ATP] = 0 and F = 0. We
see in particular that (32) tends to compare favorably to the
thermodynamic uncertainty relation far from equilibrium (i.e.,
increasing ATP concentration). See caption of Fig. 3 for a
more detailed analysis.

D. Switching a bit in an electronic memory

A logical bit (zero or one) can be encoded in simple
or complex nonlinear circuit, depending on the functionality
(NOT gate, memory, clock, etc.). In generic circumstances,
such circuits can be modeled by an overdamped Markov
chain, the states of which record the charge (number of elec-
trons) present in each conductor of the circuit (for instance
the plate of a capacitance) [35,36]. The circuit state is in prob-
ability distribution p0 when encoding a logical zero, and in
probability distribution p1 when encoding a one. The switch-
ing from a zero to a one thus amounts to driving the system
from pini = p0 to pfin = p1. Assume, as is representative, that
the value of the bit is retrieved by the reading of the charge (or
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FIG. 3. Comparison of the bounds on the entropy production (solid) for the kinesin model in the stationary state. From panels (a–d)
the ATP concentration increases as [ATP] = 1, 10, 102, 103 μM, respectively. For f (e) = sgn(p(e) − p(ē)), the thermokinetic relation (32)
(TKR, dashed) and the thermodynamic uncertainty relation (33) (TUR, dotted). We observe that the TKR (dashed) curve is always above
the TUR (dotted) curve, thus offers a better bound on entropy production (solid), as predicted in Sec. IV. For the hyper-accurate current
f ∗(e) = [p(e) − p(ē)]/[p(e) + p(ē)] (making Eq. (33) as tight as can be, see Appendix B), the thermodynamic uncertainty relation (33)
(dashed-dotted). Insets: the new bound (32) for f representing the motor displacement (dashed) and the ATP current (dotted). We observe
that the two TURs (dotted and dash-dotted) coincide (i.e., when f ∗ ≈ f on average), then the TKR (dashed) is a better bound than both TURs
(dotted and dash-dotted), while when the two TUR curves diverge ( f ∗  f on average), the hyper-accurate TUR (dash-dotted) performs better
especially at low entropy production, in agreement with Appendix B.

equivalently, voltage) at the plate of a single “output” (linear
or nonlinear) capacitance Cout, part of the full circuit. The
distribution p0 (respectively, p1) results in a random charge
Q0 (respectively, Q1) on Cout.

We now use thermokinetic relations to obtain a lower
bound on the entropy produced while switching the system
from a zero to a one, i.e., from pini = p0 to pfin = p1. Note
that Landauer’s cost [37] here is zero, as we do not erase or
reset a bit but simply switch it.

The antisymmetric observable f = �Q of interest on tran-
sitions is simply the “gradient” of charge, i.e., the increase
of charge into the positive plate of Cout along the transition.
Thus, f = ±Qe or 0, where Qe is the (positive) charge of the
electron. It is possible that many transitions are zero valued,
because they do not represent a change of charge on Cout (but
on other parts of the complete circuit). In this way, the abso-
lute value along the trajectory

∫ 〈| f |〉, counting the number of
charge carriers flowing in or out the capacitance Cout, is less
than the total activity of the full circuit along the trajectory.

The net change of charge over the trajectory
∫ 〈 f 〉 is simply

Q1 − Q0, the total mean charge separating a zero from a one.
Since the maximum value for f is Qe, we find

�σ � 2
|〈Q1〉 − 〈Q0〉|

Qe
atanh

|〈Q1〉 − 〈Q0〉|∫ 〈|�Q|〉 . (55)

The quantity
∫ 〈|�Q|〉/Qe can be considered as a dimension-

less measure of the time taken by the driving, measured in
the number of charges exchanged (in either direction) by the
output capacitance. In particular, we recover Pinsker’s bound,
with a bound inversely proportional to time, consistently, e.g.,
with Refs. [38,39] in other contexts:

�σ � 2
|〈Q1〉 − 〈Q0〉|2

Qe
∫ 〈|�Q|〉 . (56)

At stationarity, the number of charges into the positive plate
of Cout match (on average) the number of charges out of that
same plate. Thus, f verifies the “ocal conservation” conditions
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stated in Sec. VI A to apply the nonadiabatic thermokinetic
relation (52):

�σNA � 2

∫ 〈|�Q|〉
Qe

h

( |〈Q1〉 − 〈Q0〉|∫ 〈|�Q|〉
)

. (57)

This relaxes in particular to the Pinsker’s bound, stronger
than (56) since it applies to the sole nonadiabatic entropy
production:

�σNA � 2
|〈Q1〉 − 〈Q0〉|2

Qe
∫ 〈|�Q|〉 . (58)

Note that in this specific example, the absolute variation
of charge |�q| over an infinitesimal interval is always 0
or Qe. Thus, Qe|�Q| = (�Q)2, always (as already observed
in a more general context in Sec. IV). Thus, Qe〈|�Q|〉 =
Var(�Q) = O(dt ) (as over an infinitesimal interval 〈�Q〉2 is
negligible, in dt2). We can thus write

�σNA � 2
|〈Q1〉 − 〈Q0〉|2∫

Var(�Q)
= 2

|〈Q1〉 − 〈Q0〉|2
(τfin − τini )Var(�Q)

, (59)

where Var(�Q) is the time-average of the variance rate and
τfin − τini is the duration of the bit switch.

This formulation has the advantage that Qe has disappeared
from the equation, and remains true in the limit Qe → 0,
i.e., when the charges are assumed to vary continuously, for
instance in a Langevin model of the circuit, with Gaussian
noise.

Note that an even better bound can be obtained in terms
of the 1-Wasserstein distance. Indeed [see Appendix C, in
particular Eq. (C6)] we can replace |〈Q1〉 − 〈Q0〉| with
W1(Q0, Q1), the Wasserstein distance between the distribu-
tions of random charge Q0 and Q1, which are two probability
distributions on the real line. In particular, we have

�σNA � 2
W1(Q0, Q1)2

(τfin − τini )Var(�Q)
. (60)

This is a better bound than Eq. (59) because, from the
general properties of Wasserstein distances [33], we have
W1(Q0, Q1) � |〈Q1〉 − 〈Q0〉|, with equality for example when
Q0 and Q1 have the same distribution, only translated by
〈Q1〉 − 〈Q0〉. A formally similar formula appears in Ref. [40]
[Eq. (18) therein], that applies to Langevin equations with
constant variance rate (white-noise intensity). On the l.h.s. it
involves a different sort of entropy production (so-called MN
excess entropy production), larger than our �σNA. On the r.h.s
it involves the 2-Wasserstein distance, which is larger than the
1-Wasserstein distance [33]. Thus, it is not stronger or weaker
than Eq. (60), and we leave the investigation of a possible
relationship or common generalisation for future work.

This is a practical bound that can assess the efficiency of a
wide range of electronic devices in storing and writing a bit.
The methodology be adapted to nonelectronic overdamped
devices as well (e.g., in chemical computing). We thus believe
that our thermokinetic relations offer a flexible framework
towards a useful characterization of the speed-dissipation
tradeoff in complex real-world systems.
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APPENDIX A: EFFECTIVE MAXIMUM IN BOUNDS
BETWEEN KULLBACK-LEILBER DIVERGENCES

We seek to improve Eqs. (5) and (4) by replacing ϕmax

and Amax with an “effective” maximum, whenever ϕ (thus A)
is unbounded. We can safely assume that D(p‖q) is finite,
otherwise Eqs. (5) and (4) are trivially true. Thus, the sum (6),
although gathering potentially infinitely many positive terms,
converges, thus the sum of all terms for which z > ϕ0, for a
large enough threshold ϕ0, is as small as we desire. Thus, for
any 0 < ε < 1 there exists a ϕ0 such that

p(ϕ > ϕ0)D(ϕp‖ϕq|ϕ > ϕM ) (A1)

=
∑
z>ϕ0

zp(ϕ = z)D(ϕp‖ϕq|ϕ = z) (A2)

< εD(ϕp‖ϕq). (A3)

Then we find that

D(ϕp‖ϕq) = p(ϕ � ϕ0)D(ϕp‖ϕq|ϕ � ϕ0)

+ p(ϕ > ϕ0)D(ϕp‖ϕq|ϕ > ϕ0) (A4)

� ϕ0 p(ϕ � ϕ0)D(p‖q|ϕ � ϕ0)

+ εD(ϕp‖ϕq) (A5)

� ϕ0D(p‖q) + εD(ϕp‖ϕq) (A6)

� ϕ0

1 − ε
D(p‖q). (A7)

Thus, we see that ϕmax (the true maximum) can be replaced
by ϕeffmax = ϕ0

1−ε
(an “effective” maximum), for each choice

of ε and corresponding ϕ0. Since ε determines the choice of
ϕ0, we can in principle optimize the choice of ε to get the best
possible bound.

Note that this proof works also for the finite case, thus can
be useful when A, albeit bounded, takes unconveniently large
values with low probability.

APPENDIX B: THERMODYNAMIC UNCERTAINTY
RELATIONS

Thermodynamic uncertainty relations are concerned with
upper bounds on the ratio |〈 f 〉|/

√
〈 f 2〉 (or, equivalently,

|〈 f 〉|/StdDev f where StdDev is the standard deviation), for
a time-antisymmetric observable f .

For a constant-rate or time-symmetric-rate Markov chain,
we find [19] that the time-antisymmetric observable with
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highest such ratio is

f ∗(ω) = p(ω) − p(ω)

p(ω) + p(ω)
. (B1)

Indeed we find, for any time-antisymmetric observable f
we have

〈 f 〉 = 〈 f f ∗〉, (B2)

and, from Cauchy-Schwartz inequality:

〈 f 〉2 = 〈 f f ∗〉2 � 〈 f 2〉2〈( f ∗)2〉, (B3)

with equality for f = f ∗. Moreover, we observe that

〈 f ∗〉 = 〈( f ∗)2〉 = 〈 f ∗〉2/〈( f ∗)2〉. (B4)

Thus,

〈 f 〉2/〈 f 2〉 � 〈 f ∗〉2/〈( f ∗)2〉, (B5)

and, by simple algebra,

〈 f 〉2/Var f � 〈 f ∗〉2/Var f ∗. (B6)

Moreover, we observe that 〈| f ∗|〉 = dTV(p, p̃) and
| f ∗| � 1.

From Eq. (29) with f ∗ we thus find

�σ + D(pXfin‖pXini ) � 2〈 f ∗〉patanh

( 〈 f ∗〉p

dTV(p, p̃)

)
. (B7)

Although this is true for any constant-rate Markov chain,
we consider it for a stationary Markov chain where the ther-
modynamic uncertainty relation applies and states:

�σ � 2
〈 f ∗〉2

Var f ∗ = 2
〈 f ∗〉

1 − 〈 f ∗〉 . (B8)

This relation is proved [19] to be the tightest in the limit of
short time intervals, where it simplifies to

�σ � 2〈 f ∗〉. (B9)

Comparing Eq. (B7) (derived from our thermokinetic
relation) with Eq. (B9) (the best possible thermodynamic un-
certainty relation) is now easy, as they only differ by the atanh
factor, which extends from 0 to infinity. We thus see that no
relation is always better than the other.

In particular, that when pe/pe → ∞ or 0 for every
transition (infinitesimal-time trajectory) e, we find that
f ∗ → sgn(pe − pe) and 〈 f ∗〉 → 〈| f ∗|〉 = dTV(p, p̃), thus the
thermokinetic relation (B7) correctly predicts an infinite
entropy production, unlike the thermodynamic uncertainty
relation (B9) which remains bounded.

Inversely when pe ≈ pe, then f ∗  sgn(pe − pe), and
〈 f ∗〉 → 〈| f ∗|〉  dTV(p, p̃), thus Eq. (B7) is looser than
Eq. (34).

Note in passing that from Eqs. (B4), (B5), and (B7) we
also obtain the following variant of thermodynamic uncer-
tainty relation, valid for constant or time-symmetric rates, for
stationary or nonstationary state distributions, and arbitrary
antisymmmetric observables f :

�σ + D(pXfin‖pXini ) � 2
〈 f 〉2

〈 f 2〉atanh

( 〈 f 〉2/〈 f 2〉
dTV(p, p̃)

)
. (B10)

APPENDIX C: OPTIMAL TRANSPORT THEORY

In this Appendix we provide a brief summary of the prob-
lems solved by general optimal transport theory, in relation
with the problem solved in this article and in Ref. [5].

The question of optimal transport was pioneered by Monge
in 1781 and formalized in modern terms by Kantorovich in
1942.

The formal definition proposed by Kantorovich is the fol-
lowing. Consider � = Xini × Xfin, for some probability spaces
Xini (with a given distribution pini) and Xfin (with a given dis-
tribution pfin). Also consider a cost function A : � → R+ ∪
{+∞}.

We now consider all distributions p on � such that pXini =
pini and pXfin = pfin. We can see those p as “probabilistic
maps” from Xini to Xfin, transporting the distribution pini to
pfin. To such a distribution p we can associate the expected
transport cost 〈A〉p = ∑

ω∈� A(ω). As in the rest of this paper,
this sum could be an integral depending on the context. Here
ω is simply a pair (xini, xfin).

The optimal transport problem is then to find a probability
distribution p∗ on � such that the expected cost 〈A〉p∗ is
minimum. This minimum cost 〈A〉p∗ , we denote it KA, and call
it Kantorovich cost (although many names are encountered in
the literature, e.g., optimal transport cost, earth mover’s cost,
Monge-Kantorovich-Rubinstein cost, etc.). Formally:

p∗ = argminp such that pXini =pini and pXfin =pfin
〈A〉p, (C1)

KA(pini, pfin) = 〈A〉p∗ . (C2)

In case where Xini and Xfin are finite sets, this problem is
also called the optimal assignment problem, or minimum cost
matching problem.

In Monge’s work, the motivation was to move earth to
transform a pile of earth of a given shape into another pile of
earth of another given shape. Kantorovich’s main motivation
was to allocate resources from production sites (e.g., coal
mines) to places where they are useful (e.g., factories).

Another important situation is when Xini = Xfin = X is a
metric space with distance d (., .). Then we can define, for any
k � 1, the cost function A(xini, xfin) = d (xini, xfin)k . Then K1/k

A
happens to define a distance between probability spaces on X ,
called the k-Wasserstein distance.

In this article, we consider the case where Xini = Xfin = X
is a state space. We consider � as a set of abstract trajectories
ω, each relating a initial state to a final state xini, xfin. We con-
sider a cost A(ω) on each trajectory ω. The optimal transport
problem is to find a p∗ on � minimizing the expected cost
〈p∗〉. Note that in this problem we do not impose p∗ to be
implementable as stochastic process of a certain class, e.g., a
continuous-time Markov Chain.

The slight difference with the standard setting described
above is that in our case � may be different from Xini × Xfin.
Thus, possibly many trajectories ω ∈ � go from xini to xfin.
This is an irrelevant difference however, as an optimal p∗ may
choose to concentrate probability from xini to xfin on a single
trajectory with smallest cost A(ω) relating these two states. If
no trajectory in � relates xini to xfin, this is interpreted as an
infinite transport cost from xini to xfin.
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We request that A is symmetric under time reversal, so that
the transport cost in our setting is symmetric:

KA(pini, pfin) = KA(pfin, pini ). (C3)

We also request that there is a zero-cost trajectory from
any state to itself, so that the cost from a distribution to itself
is zero:

KA(pini, pini ) = 0. (C4)

Nevertheless, we do not impose anything else, so that KA is
not necessarily a distance (satisfying the triangle inequality).

If X is endowed with a distance d (., .), and for any states
xini, xfin in X , the smallest cost A(ω) among all ω relating xini

to xfin is the distance d (xini, xfin), then KA is the corresponding
1-Wasserstein distance between pini and pfin.

Assume for example that A is the activity observable, as
defined in Sec. V, i.e., the cost of transport of a state to any
different state is one, thus is the discrete distance between
states. Thus, in this case the Kantorovich cost KA(pini, pfin) is
a 1-Wasserstein distance, which occurs to be the well-known
total variation distance dTV(pini, pfin).

A more general situation is the following. If we specify an
undirected, unweighted connected graph whose nodes are the
states of X , a set � of trajectories that can relate any state to
any state, and a cost function A : � → R+ that assigns to any
ω the distance between the extremities in the graph (number
of edges of the shortest path), then we find the specific 1-
Wasserstein distance on a graph used in Ref. [5].

If we now decompose trajectories into infinitesimal tra-
jectories where at most one jump occurs, and we assume
that these jumps necessarily occurs on an edge of the graph,
then

∫ 〈A〉p is again the total expected activity (number of
jumps) for a probability distribution p on trajectories �. In
this case, K∫

A(pini, pfin) is again the 1-Wasserstein distance
W1(pini, pfin) for the graph distance. Thus, the bound Eq. (39)
becomes

�σ �
∫

〈A〉p h∗
sym

(
W1(pini, pfin)∫ 〈A〉p

)

= 2W1(pini, pfin) atanh
W1(pini, pfin)∫ 〈A〉p

. (C5)

We see that Eq. (C5) is in general (for a given probability
distribution p on the trajectories) a tighter bound than Eq. (42)
(based on total variation distance) since W1 � dTV. It also re-
quires more knowledge on the distribution p, since it requires
to know that some jumps between states are impossible under
p. By contrast, the bound (42) assumes no knowledge on p
other than being time-varying Markovian.

Because the condition of flow conservation mentioned in
Sec. VI A is satisfied, the following bound is also verified for
nonadiabatic (excess) entropy production:

�σNA �
∫

〈A〉p h

(
W1(pini, pfin)∫ 〈A〉p

)
. (C6)

As mentioned in the text, this is a new relation that is the
counterpart for nonadiabatic entropy production of the bound
(C5) derived in Ref. [5].

Suppose now that we are given a weighted undirected
connected graph, with arbitrary nonnegative weights on the

edge. Then the Kantorovich cost is indeed the 1-Wasserstein
distance for the weighted distance between nodes of the graph
(i.e., the shortest total weight of paths relating two nodes in
the graph). In this case the cost of a trajectory (which is a
time-stamped walk in the graph) is

∫
A is the sum of costs

A(e) of all edges in the trajectory.
Even more general is when A(e), the weight of edge e, is al-

lowed to be time-dependent, in which case the cost K∫
A is not

even a distance in general (thus certainly not a 1-Wassertein
distance). We then obtain Eqs. (39) and (48) in their full
generality.

Similarly, if the time-varying weights on the edges satisfy
the flow conservation condition of Sec. VI A at all times,
we obtain Eq. (48) in full generality, provided that the flow
conservation condition of Sec. VI A is satisfied at all times.

APPENDIX D: OPTIMAL PROTOCOL
FOR THE ACTIVITY SPEED LIMIT

In this Appendix, we investigate conditions for which the
speed limits (38) and (39) are tight, i.e., satisfied with equality
for some Markov protocols. As a result, we find that the
activity speed limit (42) can be satisfied with equality. In fact,
we find that a slightly more general version than Eq. (42),
involving activity and a specific class of Kantorovich costs,
can be solved with equality. This reproduces the main result
of Ref. [5]. The present derivation avoids the duality theory of
optimal transport, and emphasizes the many degrees of free-
dom in the design of an optimal protocol, which is typically
far from unique.

We first find at what condition the inequality (38), con-
cerning constant-rate or symmetric-rate Markov chains, is in
fact an equality. This inequality is obtained from chaining the
inequalities (5) and (12). Looking at the conditions under
which these two inequalities are tight [as spelled out under
Eqs. (5) and (12)], we find that Eq. (38) is met with equality
every time that, for all non-zero-probability trajectories ω in
�, the cost function A takes either value 0 (and then p = p̃) or
value Amax (and then ln p

p̃ = c), for some constants Amax > 0
and c > 0. We can take Amax = 1 without loss of generality.
Note that A could take values that exceed Amax for zero-
probability trajectories ω, as those trajectories are irrelevant
to both sides of Eq. (38).

Let us spell out what this means for an infinitesimal time
interval dt , where one can consider that either zero or one
transition happens. This means that all the edges supporting
a nonzero probability flow have unit cost A = 1 (and their
reverse edge as well, out of symmetry of A). However, if no
transitions happen (constant trajectory, i.e., waiting on a state),
then A = 0 and p = p̃. Note that we can have other weights A
on a zero-flow pair of edges, as they are irrelevant to both sides
of Eq. (38). Then Eq. (38) is tight if on each edge with nonzero
flow, the ratio between probability flows in each direction is
ec or e−c, for some constant c > 0.

Suppose now, still along an infinitesimal interval dt , that
we wish to design a flow p supported by unit-cost edges,
with the constraint that we already know the reduced flow
pred(e) on each edge e [as defined above by Eq. (39)—in
other words we know the net flow that p must achieve on
each pair of edges] and the expected activity 〈A〉 = ∑

e p(e).
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This problem has infinitely many solutions for p, provided
that 〈A〉 >

∑
e pred(e). Among all those possible flows, we can

now design one with the smallest entropy production, which
satisfies Eq. (38) with equality. It suffices indeed to choose
c = 2 atanh

∑
e pred(e)∑

e p(e) = 2 atanh
∑

A|p(e)−p(e)|
2〈A〉p

. Then for each e

such that pred(e) > 0 we set p(e) = pred(e)
1−e−c and p(e) = pred(e)

ec−1 =
p(e)
ec . In words, we “thicken” the reduced flow pred to maintain

the same net flow on every pair of edges as in pred, along with
a constant forward/backward ratio on all pairs of edges.

Let us now assume that, in the above, pred(e) has been
chosen as the optimal transport flow p∗, minimizing 〈A〉p∗ over
flows with prescribed initial state distribution pini = p∗

Xt
and

final state distribution pfin = p∗
Xt+dt

.
Let us provide an example of optimal transport. If we allow

every possible transition (jumping directly from any state to
any state), with unit weight A(e) = 1 on each edge, then the
corresponding Kantorovich cost between pini and pfin is just
the total variation distance dTV(pini, pfin) = 1

2

∑
x | ṗX |dt , and

the optimal transport flow is any flow transporting probability
from “losing” states (those with a decreasing probability over
the time interval) to “winning” states in amounts compatible
with the prescribed pini and pfin.

Let us look at a more general case of optimal transport,
as already explained briefly in Appendix C . We can restrict
� (the set of trajectories allowed in the interval dt) to a
subgraph of the complete graphs, to model the fact that only
some transitions are physically possible in one direct jump,
and assign cost A = 1 to each transition. Equivalently, we can
keep � as the set of all possible transitions (from any state
to any other state), assign cost A = 1 to the transitions that are
physically possible in one jump, and a sufficiently large cost A
to the other transitions that cannot be achieved directly. In this
way the optimal transport (minimising the expected cost) will
be concentrated on unit-cost edges. Thus, the Kantorovich
cost is the minimum expected distance on the graph of allowed
(unit-cost) edges. This is the case considered in Ref. [5].

Of course this optimal flow has no cycle of edges with
nonzero flows, as one could then reduce the flow, if only by
a small amount ε, thus reducing the expected activity by a
multiple of ε with changing the state probability distributions.

A slightly more general property actually holds: assume
that we find a cycle of edges with a nonzero flow on each
edge or their reverse . This means that in this cycle e1e2 . . . en

(say), some edges ei support a nonzero flow, and some edges
e j have a zero flow, with a nonzero flow on ei. Then, we claim
that the cycle has an even number of edges, with a nonzero
flow on half of the edges, and a zero flow on the other half
(with a nonzero flow on the reverse edge).

Indeed suppose that along a cycle, one finds more non-
zero-flow edges than zero-flow edges. Then we can always
remove a (possibly small, but nonzero) amount of flow ε from
each edge ei with nonzero flow, and add a flow ε to each e j

with a nonzero flow. Since each edge has a unit cost A = 1,
this transfer of flow, which does not change at all the state
probability distributions (as the total net flow into each state is
unchanged), would have an overall smaller activity than 〈A〉p∗ ,
contradicting optimality of p∗. A symmetric argument holds
for the case where one would find less non-zero-flow edges
than zero-flow edges. The claim is proved.

This graph theoretic property on cycles has the interesting
following thermodynamic consequence. Let us design a min-
imum entropy production flow p from such transport-optimal
p∗ and a given expected activity 〈A〉p by “thickening” p∗ as
shown above. Then on each edge, the ratio of forward over
backward flow is either ec or e−c, for a given c. By the graph-
theoretic property above, along any cycle with nonzero flows,
the product of forward flows over backward flows is a product
of equally many factors ec and e−c, thus is one. This shows
that the householding entropy production is zero, i.e., the
associated stationary flow satisfies detailed balance. In other
words, this flow can in principle be achieved by conservative
forces.

In summary, in all cases considered in this section, 〈A〉 is
the expected activity, i.e., the average number of jumps over
an infinitesimal interval dt . So far we have proved how to
satisfy Eq. (38) with equality for any infinitesimal evolution
of the state distribution, for a given expected activity, by
an appropriate choice of flows. This solves the problem of
designing minimum entropy production Markovian protocols
given a certain expected activity over infinitesimal time inter-
vals. The solution happens to involve only conservative forces.

We now consider the case of a noninfinitesimal time inter-
val [τini, τfin]. Assume that we wish to drive a system from a
state distribution pini to a state distribution pfin over an interval
[τini, τfin]. Assume we are allowed a total expected activity
budget

∫
A.

First we solve the optimal transport problem, i.e., we find
the flow p∗

total on each (allowed) edge that minimizes the
total cost

∑
e p∗(e). Note that the optimal transport is here

a “one-step” protocol, not taking into account the need for
a continuous-time Markov solution. So the solution provides
for each edge the flow that must cross this edge over the
whole time interval. To transform this one-step solution into a
continuous-time solution, one can arbitrarily dispatch the total
flow into infinitesimal flows for each infinitesimal intervals dt .
For instance, a total flow p∗

total(e) over edge e can be achieved
uniformly over time by assigning a constant infinitesimal
flow p∗

t (e) = p∗(e)dt/(τfin − τini ) over each interval dt . This
choice is by no means unique, as any nonuniform spreading
over time is equally admissible. One can even spread the flow
over time differently for each edge, provided that the proba-
bility of each state at all times never dips below zero. For each
of those choices, KA(pini, pfin) = ∫

dKA = ∫
KA(pXt , pXt+dt ).

We now wish to achieve Eq. (39) with equality. Equa-
tion (39) is obtained from summing Eq. (38) (over an
infinitesimal interval) over the whole interval, exploiting the
convexity of h∗

sym. The equality in Eq. (38) for each infinitesi-
mal interval remains an equality in Eq. (39) if the argument
KA(pXt ,pXt+dt )

〈A〉p[t,t+dt]
is the same at all times t . Note that in this ar-

gument, both terms are infinitesimal quantities, proportional
to dt . Hence, this ratio reads as an instantaneous speed, as
the expected distance accomplished by transition. It is thus
optimal to keep a constant speed at all times.

Thus, for each time interval [t, t + dt], we assign an ac-

tivity “budget” 〈A〉[t,t+dt] equal to
∫ 〈A〉

K∫
A(pini,pfin ) KA(pXt , pXt+dt ).

With this budget, we apply the methodology above over each
infinitesimal time interval.
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In summary: we have shown how to choose an optimal
trajectory in the state probability space between pini and
pfin. We have shown that this can be done in many ways.

Once this trajectory (and its time parametrization) is cho-
sen, we choose the optimal flow for each time as shown
above.
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