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Energy conversion theorems for some linear steady states
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One of the main issues that real energy converters present, when they produce effective work, is the inevitable
entropy production. Within the context of nonequilibrium thermodynamics, entropy production tends to ener-
getically degrade human-made or living systems. On the other hand, it is not useful to think about designing
an energy converter that works in the so-called minimum entropy production regime since the effective power
output and efficiency are zero. In this paper we establish some energy conversion theorems similar to Prigogine’s
theorem with constrained forces. The purpose of these theorems is to reveal trade-offs between design and the
so-called operation modes for (2 × 2)-linear isothermal energy converters. The objective functions that give
rise to those thermodynamic constraints show stability. A two-mesh electric circuit was built as an example to
demonstrate the theorems’ validity. Likewise, we reveal a type of energetic hierarchy for power output, efficiency,
and dissipation function when the circuit is tuned to any of the operating regimes studied here. These are
maximum power output (MPO), maximum efficient power (MPη), maximum omega function (M�), maximum
ecological function (MEF), maximum efficiency (Mη), and minimum dissipation function (mdf).

DOI: 10.1103/PhysRevE.109.014107

I. INTRODUCTION

Since Prigogine formulated his principle of minimum
entropy production in 1947 [1], also known as Prigogine’s the-
orem, it has been subject to several controversies [2–7]. This
theorem states that “in the linear regime, where the Onsager
reciprocal relations are valid [8], all steady states in which
unconstrained thermodynamic flows vanish are characterized
by the following extremum principle: In the linear regime,
the total entropy production in a system subject to flow of
energy and matter, diS/dt = ∫

σdV , reaches a minimum value
at the non-equilibrium stationary state...” [9]. Despite the crit-
icism received, Prigogine’s theorem has prevailed mainly due
to its experimental verification; for example, in the case of
heat conduction in metallic rods [10,11], as well as computer
simulations of the same system [12].

In their paper, to demonstrate the validity of Prigogine’s
theorem [12], Lurié and Wagensberg took as the only fixed
force the temperature gradient F0 = T −1

h − T −1
0 , i.e., they

considered extreme thermal reservoir temperatures of the
rod. The rest of the (n − 1) slices temperatures of their
discrete model are used to construct the free forces Fj for
j = 1, 2, . . . , (n − 1). Under this assumption, they arrive to
the minimum entropy production regime by following all the
steps of the Prigogine procedure. It is important to note that
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in Ref. [12], the so-called phenomenological coefficients L
were used to represent the Fourier law in the one-dimensional
form J (x, t ) = LX , where L = κT 2. That is, the thermal con-
ductivity κ depends on T −2, although, as was asserted by
Jaynes [3], there is no known substance which obeys this
relation. This obstacle was surmounted by Lurié and Wa-
gensberg by considering that for small-enough temperature
gradients the effects of taking L = κT 2 are not important.
This claim works reasonably. However, in Ref. [9], by means
of the Euler-Lagrange formalism, the authors arrive at the
function T (x), which minimizes the entropy production and is
linear with respect to x variable, by taking L = κT 2 ≈ κT 2

av,
where Tav is the average temperature of the rod. If the tem-
perature gradient is small enough in the rod one will have
that T (x) = Tav[1 + ε(x)] with |ε(x)| � 1 [4]. For example,
in Ref. [11] the corresponding experiment was performed for
�T = 341.5 K − 250 K = 51.5 K and for each case |ε(x)| ∼
10−4 so that the above-mentioned approximation holds. More
strong support of Prigogine’s theorem was offered by Klein
and Meijer, who proved it by using statistical mechanics meth-
ods [13]. They assumed a process consisting of mass and
energy fluxes through a narrow tube that connects two con-
tainers of an ideal gas such as occurs when a gas is enclosed
by rigid adiabatic walls, which at the same time is connected
by means of a diathermic piston with a reservoir of both
temperature and pressure. This type of systems reaches the
final equilibrium state with their respective reservoirs without
performing work. Something analogous happens in processes
leading towards the steady state described in the previous
heat conduction examples. In the case of the aforementioned
gas interacting with the temperature and pressure reservoir,
using the concept of thermodynamic availability and coupling
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with a second system gives rise to the maximum useful work
theorem [14,15]. Similarly, within the context of linear ir-
reversible thermodynamics (LIT), a large number of steady
states arise from the coupling of spontaneous processes and
nonspontaneous ones. These couplings can exist in both living
and human-made systems. Remarkably, this coupling concept
can lead us to describe energy conversion processes in sys-
tems with constrained forces solely [16–18]. Caplan and Essig
[17] developed a theory based on LIT for the study of linear
biologic energy converters that work in steady states. These
authors introduced concepts such as power output and effi-
ciency to optimize the energy conversion process. Likewise,
they took the usual notion of entropy production. Later, Stucki
[16] used those ideas in the analysis of oxidative phosphory-
lation to establish other working regimes different than the
minimum entropy production. In addition, Arias-Hernandez
et al. [18] used concepts from finite-time thermodynamics
to analyze the above-mentioned energy conversion process.
It is clear that in heat conduction experiments subjected to
small temperature gradients, the systems evolve towards a
final steady state of minimal entropy production. Yet, as sev-
eral authors have shown [16–20], in the case of two or more
coupled processes, there are other steady states where certain
quantities of interest to be optimized may come from natural
or artificial needs.

The foregoing can translate into different proposals of
trade-offs through characteristic functions, which are de-
scribed in Sec. II of this article, i.e., thermodynamic mech-
anisms can be assumed whose goals are to maximize some
energetic objective functions. Thus, at least five theorems
similar to Prigogine’s can be stated (Sec. III) whose purpose
is to show physical restrictions for (2 × 2)-linear isother-
mal energy converters to operate in some optimal and stable
regimes. In Sec. IV, we design a two-mesh electrical circuit to
exhibit nonzero energy conversion when the coupling of elec-
trical currents meet the physical constraints imposed by these
“energy conversion theorems” and experimental verification
thereof is presented. Finally, our conclusions are exposed in
Sec. V.

II. STEADY STATES WITHOUT MINIMUM
ENTROPY PRODUCTION

Several phenomena in nature that are related to the trans-
port of mass, charge, and energy have been described with a
good approximation in the linear regime [8,21–23]. In general,
the characteristic functions that have been defined to study
nonequilibrium processes in a variety of human-made and
living systems can be expressed in terms of sums of conju-
gate fluxes (Ji’s) and forces (Xi’s) [16–20,24,25]. The Ji’s are
the so-called thermodynamic fluxes, such as the strain rate,
reaction speed, electrical current, rate of muscle contraction,
etc. The Xi’s are defined as the thermodynamic forces, such as
the stress tensor, reaction affinities, electrochemical potential,
muscle tension, etc.

Most of the previous simple linear relations are well
known, for example, Ohm’s law for electrical current, Fick’s
law for diffusion, the Fourier law for heat flow, etc. The
main feature of these uncoupled processes promoted by un-
constrained forces is their indisputable contribution to the

FIG. 1. Sketch of a simple isothermal energy converter (two cou-
pled fluxes promoted by two conjugated forces), where X1 < 0 is the
force associated with the nonspontaneous flux, while X2 > 0 is the
other one related to the spontaneous flux.

increase of the system’s entropy and a decrease in its free
energy, i.e., the unconstrained and spontaneous fluxes em-
ulate simple diffusive and noninteracting processes [26,27].
However, there are other cases characterized by multiple in-
teracting fluxes subjected to constrained forces. These types
of phenomena involve energy conversion processes that can
be classified into two sets of fluxes (see Fig. 1): the one
associated with an entropy increase (spontaneous) and the
one associated with a decrease of entropy (nonspontaneous)
[18,28–30]. As an example to illustrate this, we can mention
the transport of an ion across a cell membrane, which may be
influenced not only by its electrochemical gradient but also by
the influence of another gradient, such as an external pressure.

In general, to characterize the type of processes that occur
in open thermodynamic systems one uses the so-called steady
states. These steady states are typical of systems whose pro-
cesses are kept constant on time, so the entropy created by the
steady flow is more relevant than the entropy transferred to the
surroundings [17,20,31,32],

dST

dt
= dSint

dt
+ dSext

dt
> 0, (1)

where Ṡint ≡ σ = Ĵ : X̂ is usually called the entropy pro-
duction while Ṡext = 0, since the entropy flux from the
surroundings is equal to the entropy flux toward the system.
That is, internal irreversibilities are responsible for the total
entropy increments of the thermodynamic universe.

In the case of (2 × 2)-isothermal linear energy converter
models, the entropy production is also a positive semidefinite
quadratic form [8,9,17,18,20,21,28,33]:

σ = J1X1 + J2X2

= (L11X1 + L12X2)X1 + (L12X1 + L22X2)X2

= [X1, X2]

[
L11 q

√
L11L22

q
√

L11L22 L22

][
X1

X2

]
> 0, (2)

014107-2



ENERGY CONVERSION THEOREMS FOR SOME LINEAR … PHYSICAL REVIEW E 109, 014107 (2024)

FIG. 2. Characteristic loops of power output versus efficiency
of the (2 × 2)-energy converter for different values of the coupling
coefficient q; for the ideal case q = 1 a curve analogous to those
of endoreversible thermodynamics (ET) is obtained (see Fig. 3 of
Ref. [34]). Also, over the loop with q = 0.97 the points for the
regimes maximum power ouput (MPO, red circle), maximum effi-
cient power (MPη, purple diamond), maximum omega function (M�,
black square), maximum ecological function (MEF, green inverted
triangle), maximum efficiency (Mη, brown spade), and minimum
dissipation function (mdf, blue star) are marked from top to bottom
along the loop. In addition, for the smallest loop (solid orange loop),
with q = 0.7, it is observed that the model predicts an operating
regime with almost no economic zone of interest; in the limit q → 0
the EZI is null.

where the coefficient matrix L̂ of this quadratic form is sym-
metric and q is given by

q = L12√
L11L22

, (3)

defined as the “degree of coupling” which fulfills q2 ∈ [0, 1],
with L11 > 0 and L22 > 0. The practical interval of q is
[qmin, 1] where qmin guarantees the energy conversion and its
quality [see the cross terms of Eq. (2) and Fig. 2] [16–18].

Since the purpose of those models is to describe energy
conversion phenomena, three energetic functions (process
variables) with extreme conditions can be defined: the dissi-
pation function (� ≡ T σ , with T = const the absolute tem-
perature of the converter), the power output (PO ≡ −T J1X1),
and the efficiency (η ≡ PO/PI = −T J1X1/T J2X2) [16–18],

� = (x2 + 2qx + 1)T L22X 2
2 , (4a)

PO = −x(x + q)T L22X 2
2 , (4b)

η = − (x + q)x

qx + 1
. (4c)

Here we have introduced a performance parameter,

x =
√

L11

L22

X1

X2
, (5)

called the force ratio [35]. It measures the cross effect between
the two potentials [17,18].

Under this linear energy converters scheme (see Fig. 1)
[17,18,23], X1 can be defined as the driven force while X2 is
the driver force, that is, X1 = X1(q, X2). Figure 3 shows the ex-
tremes in the three functions (�, PO, and η) at different values
of (X1, X2), which are associated to three different operation
modes: the minimum dissipation function (mdf), maximum
power output (MPO), and maximum efficiency (Mη). The
optimal values adopted by x [Eq. (5)] for each of the process
variables in Eq. (4) are

xmdf = −q, (6a)

xMPO = −q

2
, (6b)

xMη = − q

1 +
√

1 − q2
; (6c)

consequently, other objective functions expressing different
trade-offs between the energetic functions �, PO, and η can
be defined. They also have extreme values (see Fig. 4). The

FIG. 3. Energetic functions versus X1 (driven force) and X2 (driver force) for an isothermal linear energy converter. (a) Normalized dissipa-
tion function, (b) normalized power output, and (c) efficiency, all of them plotted for a fixed value of q = 0.97. They reach their extreme values
at X mdf

1 = −√
L22/L11 X2 q [dashed (small) blue line], X MPO

1 = −√
L22/L11 X2 q/2 [dashed (large) red line], and X Mη

1 = −√
L22/L11 X2 q/(1+

√
1−q2 )

[dashed (medium) brown line], respectively.
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FIG. 4. Objective functions versus X1 (driven force) and X2 (driver force) for an isothermal linear energy converter. Normalized ecological
function (a), normalized omega function (b), and normalized efficient power (c); all of them are plotted for a fixed value of q = 0.97. They
reach their extreme values at X MEF

1 (dotted green line), X M�
1 (dot-dashed black line), and X

MPη

1 (solid purple line), respectively.

objective functions that we will study in order to characterize
their optimal operation modes are [16,20,36]

EF = −(2x2 + 3xq + 1)T L22X 2
2 , (7a)

� = [ηM (qx + 1) − 2x(x + q)]T L22X 2
2 , (7b)

Pη = [(x + q)x]2

qx + 1
T L22X 2

2 , (7c)

where EF = PO − � is the ecological function [37]; � =
(2 − ηM/η)PO is the so-called omega function [36], with ηM

the value of efficiency under the conditions that maximize it,
i.e., Eq. (4c) evaluated at Eq. (6c); and Pη = ηPO is the effi-
cient power [16,38]. Each of the previous objective functions
[Eqs. (4) and (7)] give us optimal performance modes, such as
maximum ecological function (MEF), maximum �-function
(M�), and maximum efficient power (MPη). For a linear
energy converter their optima x values are

xMEF = −3q

4
, (8a)

xM� = −q(4 − q2 + 4
√

1 − q2)

4(1 +
√

1 − q2)2
, (8b)

xMPη = −4 + q2 −
√

16 − 16q2 + q4

6q
. (8c)

The above-mentioned physically accessible characteristic
points can be viewed in a PO vs η plane (see marked regions
over solid black loop for q = 0.97 in Fig. 2), similarly to the
behavior of heat engines that operate in cycles between two
thermal reservoirs [18,39].

A. Optimal performance modes within � vs η and PO vs η spaces

In describing the performance of a linear energy converter,
the process variables [Eqs. (4a)–(4c)] can define a configu-
ration space to display all physically possible realizations.
Then the parametric characteristic functions � = �(η) and
PO = PO(η), for q ∈ [qmin, 1], allow us to note that the dissipa-
tion function has an inverse decreasing monotonous behavior,
because when q decreases the limit value of � increases while
η diminishes [18]. From the parametric graphs depicted in
Refs. [18,30,40,41] and Fig. 2, we can observe that when the
quality of the coupling between spontaneous and nonsponta-
neous fluxes is low, entropy production increases. In addition,

the well-known loop-shaped curves for heat engines [42] arise
in LIT energy converters when PO = PO(η, q). These loops
intrinsically show the existence of extrathermodynamic con-
ditions (see p. 126 of Ref. [43]) that dynamically constrain
the processes of a linear energy converter. Each loop has two
optimal points of interest [18,30], the one that corresponds to
maximum-PO point and the other one to maximum-η point,
and between these two points the other performance regimes
can be achieved [44]. This economic zone of interest (EZI)
shows energy conversion with high power output, high effi-
ciency, and low dissipated energy (see Fig. 2, solid black loop
for q = 0.97).

When the operation modes associated with the three trade-
off functions are evaluated in the so-called process variables
(�, PO, η), the following hierarchies are established (see
Appendix):

�mdf < �Mη < �MEF < �M� < �MPη < �MPO, (9a)

Pmdf
O < PMη

O < PMEF
O < PM�

O < PMPη

O < PMPO
O , (9b)

ηmdf < ηMPO < ηMPη < ηM� < ηMEF < ηMη. (9c)

The optimal performance regimes located between
[PMη

O , PMPO
O ] can be reached when the force associated with

the driven flux is tuned. This is achieved by means of the cou-
pling coefficient and the force associated with the driver flux.
That is, operation modes are linked with objective functions,
which in principle can be built through the process variables.

III. ENERGY CONVERSION THEOREMS FOR SOME
LINEAR STEADY STATES

In general, the validity limits for the hypotheses of LIT
can be experimentally verified using several nonequilibrium
systems characterized by continuous variables [9,11,45,46].
In particular, the Onsager relations have been shown to reflect
the experimental results for small thermodynamic gradients,
that is, the postulates of LIT are valid in situations close to
some steady state [8,9,21,31,32].

In systems whose purely spontaneous processes are pro-
moted by constrained thermodynamic forces, the entropy
production will always adapt to a condition in which the
characteristic steady state causes the same systems to dissipate
the least energy possible to the surroundings (minimum en-
tropy production’s principle) [9,25,31,32]. On the other hand,
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energy converters open up a range of physically accessible
steady states that represent thermodynamic constraints un-
der boundary conditions that correspond to optimal operating
criteria [16,18–20,28,29]. These processes are characterized
by a set of fixed forces (Xi > 0), associated with sponta-
neous fluxes, and another set of constrained forces (Xj < 0),
subjected to an external condition and associated with non-
spontaneous fluxes.

For the case of energy converters with two constrained
forces and two coupled fluxes, a “constrained minimum en-
tropy production theorem” can be claimed in terms of the
dissipation function (�). This new proposal can be also
stated as the “minimum dissipation function theorem” (mdf-
THEOREM), as follows [33,41]:

mdf-THEOREM: When a nonequilibrium steady-state sys-
tem is characterized by two generalized forces X1 (associated
with driven processes) and X2 (associated with driver pro-
cesses), it reaches and remains in a steady-state if the force
X2 is fixed. Then, under the condition of minimum dissipation
function (mdf-regime), the driven flux J1 vanishes.

Proof. Let us take the mathematical expression for dissi-
pation function [Eq. (4a)]. By calculating the derivative of �

with respect to X1 assuming X2 fixed, we obtain(
∂�

∂X1

)
X2

= T [J1 + L11X1 + q
(√

L11L22
)
X2]

= 2T J1. (10)

By hypothesis ( ∂�
∂X1

)X2 = 0 and using the definition of J1

[Eq. (2)], we get

J1 = 0. (11)

�
In order to establish a trade-off between the design and the

operation mode of a linear energy converter, we will set out
the following corollary that results from canceling the driven
process.

mdf-COROLLARY: If the degree of coupling between the
processes of a nonequilibrium steady-state system is q =

L12√
L11L22

and it is operating under the mdf-regime, then the
cross effect between both generalized forces, given by the

performance parameter x =
√

L11
L22

X1
X2

, is xmdf = −q.

Proof. From the mdf-THEOREM, the constraint J1 = 0
leads us to write the force X1 as

X1 = −q

⎛⎝√
L22

L11
X2

⎞⎠. (12)

By using the definition for the performance parameter x
given by the Eq. (5) of Sec. II, we obtain

xmdf = −q. (13)

�
The steady states that can be identified within a linear

energy converter correspond to the coupling of two observable
processes, the so-called spontaneous and other nonsponta-
neous ones. This distinction was not fully addressed by
Prigogine, since in the statement of his minimum entropy pro-
duction principle, he made no distinction about the nature of

thermodynamic forces in energy transfer or energy conversion
processes. In this work, we propose, by means of a simple
step, the minimum dissipation function theorem for linear en-
ergy converters in steady state, i.e., the energetic version of the
“constrained minimum entropy production theorem.” In fact,
each of the optimization criteria presented in Sec. II satisfies
a variational principle and can be represented by specific flux-
force relations [27,47]. Thus, energy conversion processes can
be associated with different stationary solutions. When the
operation modes coincide, their steady states are adjusted to
the same initial condition (the same degree of coupling q).

A. Similar theorems to the “constrained minimum entropy
production theorem” for (2 × 2)-energy converters

As we have evidenced in Sec. II, in a large number of
nonequilibrium steady-state processes that are carried out
in both living and human-made systems, appropriate con-
straints (boundary conditions) can be found so that the energy
conversion takes place in particular operation modes. If the
purpose of the operation of an (2 × 2)-isothermal linear en-
ergy converter is to operate in optimal steady regimes with
power output greater than zero, then these steady states
can be established that lead the converter to the modes of
operation described in Sec. I (MPO, Mη, MEF, M�, and
MPη) [16,20,23,36,48] by choosing appropriate constrained
forces. Such steady states (which are not of minimum entropy
production) are identified by means of energy conversion the-
orems, as well as their corresponding corollaries, similarly to
that of Prigogine’s minimum entropy production. The optimal
regimes here analyzed were taken from the field of finite time
thermodynamics (FTT) [18,49].

MPO-THEOREM: When a nonequilibrium steady-state
system is characterized by two generalized forces X1 (asso-
ciated with driven processes) and X2 (associated with driver
processes), it reaches and remains in a steady state if the force
X2 is fixed. Then, under the condition of the maximum power
output (MPO-regime), the driven flux J1 is equal to −L11X1.

Proof. Let us consider the mathematical expression for
power output [Eq. (4b)]. The partial derivative of Pout with
respect to X1 assuming X2 fixed, is as follows:

(
∂PO

∂X1

)
X2

= −T (J1 + L11X1). (14)

By hypothesis ( ∂PO
∂X1

)X2 = 0 at maximum power output, then
we get

J1 = −L11X1. (15)

�
MPO-COROLLARY: If the degree of coupling between

the processes of a nonequilibrium steady-state system is q =
L12√
L11L22

and it is operating under the MPO-regime, then the
cross effect between both generalized forces, given by the

performance parameter x =
√

L11
L22

X1
X2

, is xMPO = − q
2 .
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Proof. From the MPO-THEOREM, we can substitute the
constraint J1 = −L11X1 into Eq. (2) and write the force X1 as

X1 = −q

2

⎛⎝√
L22

L11
X2

⎞⎠. (16)

By using the definition for the performance parameter x
[Eq. (5) of Sec. II], we have

xMPO = −q

2
. (17)

�
Mη-THEOREM: When a nonequilibrium steady-state sys-

tem is characterized by two generalized forces X1 (associated
with driven processes) and X2 (associated with driver pro-
cesses), it reaches and remains in a steady state if the force X2

is fixed. Then, under the condition of the maximum efficiency
(Mη-regime), the driven flux J1 is equal to −( 1−η

1+η
)L11X1.

Proof. Let us take the mathematical expression for effi-
ciency [Eq. (4c)]. By calculating the partial derivative with
respect to X1 assuming X2 fixed, we obtain(

∂η

∂X1

)
X2

= −PO

P2
I

(
∂PI

∂X1

)
+ 1

PI

(
∂PO

∂X1

)
, (18)

where PI is the rate of incoming energy per temperature unit,
this amount of energy being associated with spontaneous flux.
The derivative ( ∂PO

∂X1
) is given in the MPO-THEOREM, while

( ∂PI
∂X1

) is (
∂PI

∂X1

)
= T q

√
L11L22X2. (19)

Then, we can rewrite ( ∂η

∂X1
)X2 as follows:(

∂η

∂X1

)
X2

= − T

PI

(
PO

PI
q
√

L11L22X2 + J1 + L11X1

)
. (20)

By hypothesis ( ∂η

∂X1
)X2 = 0 and by using the definition of η

[Eq. (4c)], we get

η
(
q
√

L11L22X2 + L11X1 − L11X1
) + J1 + L11X1 = 0, (21)

so that, finally,

J1 = −
(

1 − η

1 + η

)
L11X1. (22)

�
Mη -COROLLARY: If the degree of coupling between the

processes of a nonequilibrium steady-state system is q =
L12√
L11L22

and it is operating under the Mη-regime, then the
cross effect between both generalized forces, given by the

performance parameter x =
√

L11
L22

X1
X2

, is xMη = − q

1+
√

1−q2
.

Proof. From the Mη-THEOREM, the constraint J1 =
−( 1−η

1+η
)L11X1 leads us to write the force X1 as

X1 = −q(1 + η)

2

⎛⎝√
L22

L11
X2

⎞⎠. (23)

By using the definition for x [Eq. (5)], as well as Eq. (4c),
we have

xMη = − q

1 +
√

1 − q2
. (24)

�

1. Energy conversion theorems for trade-off functions

MEF-THEOREM: When a nonequilibrium steady-state
system is characterized by two generalized forces X1 (asso-
ciated with driven processes) and X2 (associated with driver
processes), it reaches and remains in a steady state if the
force X2 is fixed. Then, under the condition of maximum
ecological function (MEF-regime), the driven flux J1 is equal
to − 1

3 L11X1.
Proof. Let us consider the mathematical expression for the

so-called ecological function [Eq. (7a)]. The partial derivative
with respect to X1 assuming X2 fixed, is(

∂EF

∂X1

)
X2

= −T (J1 + L11X1 + 2J1). (25)

By hypothesis ( ∂EF
∂X1

)X2 = 0, we get

J1 = − 1
3 L11X1. (26)

�
MEF-COROLLARY: If the degree of coupling between

the processes of a nonequilibrium steady-state system is q =
L12√
L11L22

and it is operating under the MEF-regime, then the
cross effect between both generalized forces, given by the

performance parameter x =
√

L11
L22

X1
X2

, is xMEF = − 3q
4 .

Proof. From the MEF-THEOREM, the constraint J1 =
− 1

3 L11X1 leads us to write the force X1 as

X1 = −3q

4

(
L22

L11
X2

)
. (27)

By using the definition for x, we have

xMEF = −3q

4
. (28)

MΩ-THEOREM: When a nonequilibrium steady-state
system is characterized by two generalized forces X1 (asso-
ciated with driven processes) and X2 (associated with driver
processes), it reaches and remains in a steady state if the
force X2 is fixed. Then, under the condition of maximum
omega function (MΩ-regime), the driven flux J1 is equal to
−( 2−ηMη

2+ηMη )L11X1.
Proof. Let us take the mathematical expression for the so-

called omega function [Eq. (7b)]. By calculating the partial
derivative of � with respect to X1 and by assuming X2 fixed,(

∂�

∂X1

)
X2

= −T [(2 + ηMη )J1 + (2 − ηMη )L11X1]. (29)

By hypothesis ( ∂�
∂X1

)X2 = 0. Then we obtain

J1 = −
(

2 − ηMη

2 + ηMη

)
L11X1. (30)

�
MΩ-COROLLARY: If the degree of coupling between the

processes of a nonequilibrium steady-state system is q =
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L12√
L11L22

and it is operating under the MΩ-regime, then the
cross effect between both generalized forces, given by the per-

formance parameter x =
√

L11
L22

X1
X2

, is xM� = − q(4−q2+4
√

1−q2 )

4(1+
√

1−q2 )2
.

Proof. From the M�-THEOREM, the constraint J1 =
−( 2−ηMη

2+ηMη )L11X1 leads us to write the force X1 as

X1 = −q(2 + ηMη )

4

⎛⎝√
L22

L11
X2

⎞⎠, (31)

and by using the definition for x and ηMη = η[xMη(q), q], we
obtain

xM� = −q(4 − q2 + 4
√

1 − q2)

4(1 +
√

1 − q2)2
. (32)

�
MPη-THEOREM: When a nonequilibrium steady-state

system is characterized by two generalized forces X1 (asso-
ciated with driven processes) and X2 (associated with driver
processes), it reaches and remains in a steady state if the
force X2 is fixed. Then, under the condition of maximum
efficient power (MPη-regime), the driven flux J1 is equal to
−( 2−η

2+η
)L11X1.

Proof. Let us consider the mathematical expression for the
so-called efficient power [Eq. (7c)]. By calculating the partial
derivative of Pη with respect to X1 assuming X2 fixed,(

∂Pη

∂X1

)
X2

= −T PO

PI

[
PO

PI
L12X2 + 2(J1 + L11X1)

]
. (33)

By hypothesis ( ∂Pη

∂X1
)X2 = 0 and by using the definition of η,

we have

2J1 + 2L11X1 + η(L12X2 + L11X1 − L11X1) = 0. (34)

Finally,

J1 = −2 − η

2 + η
L11X1. (35)

�
MPη-COROLLARY: If the degree of coupling between

the processes of a nonequilibrium steady-state system is
q = L12√

L11L22
and it is operating under the MPη-regime,

then the cross effect between both generalized forces,

given by the performance parameter x =
√

L11
L22

X1
X2

, is xMPη =
− 4+q2−

√
q4−16q2+16
6q .

Proof. From the MPη-THEOREM, the constraint J1 =
− 2−η

2+η
L11X1 leads us to write the force X1 as

X1 = −q(2 + η)

4

⎛⎝√
L22

L11
X2

⎞⎠. (36)

By using the definitions for x and η, we get

xMPη = −4 + q2 −
√

q4 − 16q2 + 16

6q
. (37)

�

TABLE I. Physical constraints on linear energy converters so that
two or more steady states coincide with the minimum dissipation
function condition.

Boundary Conditions q

�mdf (q) = �MPO(q) 0
�mdf (q) = �Mη(q) 0 and 1
�mdf (q) = �MEF(q) 0
�mdf (q) = �M�(q) 0
�mdf (q) = �MPη

(q) 0

As has been pointed out in some works [50,51], a bound-
ary condition that at the same time is linked to a particular
dynamic performance mode has several stable steady solu-
tions. The energetic optimization criteria presented in Sec. II
can be equivalent when the degree of coupling between the
flows adopt particular values. For instance, the steady state
associated with the minimum dissipation function condition is
identical to the other extreme criteria. In Table I these values
of q are displayed. Other constraints can also be established
using the previous corollaries and evaluating q in the charac-
teristic functions presented in Sec. II.

All of the above energetic trade-offs fulfill the condition
� > 0, since the nonequilibrium steady states associated with
them only appear when external thermodynamic forces are
linked under an extreme condition. Thus, the operation modes
involve the maintenance of steady states for coupled processes
that waste free energy at different rates.

B. Temporal evolution of the characteristic functions and
stability of their steady states

The analysis of external perturbations on different types
of thermal cycle models has been topic of interest [52–55].
Since thermal engines operate with many cycles per unit
time, the effect of noisy perturbations forces us to have a
well-design systems guaranteeing stability in their operating
regimes (steady-state regimes) [56–58]. In several analyses on
LIT [9,31,59–61], it has been shown that spontaneous fluctu-
ations on a particular steady state drive the system backs to its
condition of minimum entropy production. In this subsection
we show that the stability of linear steady states can be also
attained for the constrained cases.

1. Temporal evolution of the dissipation function

For the case of (2 × 2)-isothermal energy converters, let us
consider the dissipation function � = �(Xi, Ji ) in a arbitrary
nonequilibrium steady state. As � = T

∫
V (J1X1 + J2X2) dV ,

the time variation of � can be written as

d�

dt
= T

∫
V

(
J1

dX1

dt
+ J2

dX2

dt

)
dV

+ T
∫

V

(
X1

dJ1

dt
+ X2

dJ2

dt

)
dV

≡ dX �

dt
+ dJ�

dt
, (38)

where dX �/dt is the time variation of thermodynamic forces
associated with spontaneous and nonspontaneous fluxes and
dJ �/dt is the temporal change of these conjugated fluxes. In the
linear regime, where the Onsager reciprocal relations (Li j =
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Lji) are fulfilled, a general property has been stated [9,31,59].
Then form Eq. (38) can be write as

dJ�

dt
= T

∫
V

[
2∑

k=1

(
X1L1k

dXk

dt
+ X2L2k

dXk

dt

)]
dV

= T
∫

V

(
J1

dX1

dt
+ J2

dX2

dt

)
dV = dX �

dt

= 1

2

d�

dt
. (39)

If we assume hereinafter homogeneity and unitary volume,
then the time derivative of each Xi can be written by consid-
ering that extent variables (ak) of the thermodynamic system
can evolve in time,

dXi

dt
=

∑
k

(
∂Xi

∂ak

)
dak

dt
. (40)

Thus, from Eqs. (38) and (39) several authors shown (see
Refs. [9,31,32]), that

d�

dt
= 2T

[
J1

2∑
k=1

(
∂X1

∂ak

)
Jk + J2

2∑
k=1

(
∂X2

∂ak

)
Jk

]
< 0. (41)

In this inequality we separately show the contributions to the
temporal evolution of dissipation, the one associated with the
managed flow and the one associated with the driving flow,
considering the Onsager reciprocity relations and the defini-
tion of dak/dt ≡ Jk . Since J2 > J1 � 0 and each Jk is in general
a linear combination of these, the sign of the terms in Eq. (41)
depends on the signs of the partial derivatives ∂Xi/∂ak. It can be
ensured that ∂X2/∂ak is negative, because the equilibrium state
is an attractor and in its neighborhood the time evolution of
the converter is in the direction of the decrease in force X2.
On the other hand, since PO � 0 then it is guaranteed that
|∂X1/∂ak| � |∂X2/∂ak| and inequality Eq. (41) is fullfiled. This
means that in any operation regime the temporal evolution of
the dissipation function is decreasing.

2. Temporal evolution of the power output

In the same way, given an arbitrary volume, let us now
consider the power output for a (2 × 2)-isothermal energy
converter PO = PO(Xi, Ji ). Then, the time variation of PO is

dPO

dt
= −T

(∫
V

J1
dX1

dt
dV +

∫
V

X1
dJ1

dt
dV

)
≡ −

(
dX PO

dt
+ dJPO

dt

)
(42)

and under the same mathematical assumptions of
Refs. [9,31,59], we can find that

dJPO

dt
<

dX PO

dt
, (43)

and by using the condition given by Eq. (40) in Eq. (42), we
have

dPO

dt
= −d�

dt
+ T

(
J2

dX2

dt
+ X2

dJ2

dt

)

= −T

[
(J1 + L11X1)

2∑
k=1

(
∂X1

∂ak

)
Jk

+ (J2 − L22X2)
2∑

k=1

(
∂X2

∂ak

)
Jk

]
. (44)

Therefore, as |L11X1| < |L22X2| then (J1 + L11X1) > (J2 −
L22X2). In the neighborhood of the equilibrium state, it is also
fulfilled that

dPO

dt
< 0. (45)

This new constraint guarantees the stability of a steady state
linked to the power output regime.

3. Temporal evolution of the efficiency

For the case of the efficiency in this type of linear energy
converters, η = η(Xi, Ji ). The temporal evolution of η can be
written analogously to � and PO as

dη

dt
≡ − 1

P2
I

[
PI

d�

dt
− �

(
dX PI

dt
+ dJPI

dt

)]
; (46)

since PO = −� + PI . Now the following mathematical con-
straints give rise:

|PO| < |PI |, (47a)

dX PI

dt
<

dJPI

dt
, (47b)

and by considering Eq. (40),

dη

dt
= − 1

P2
I

{
PI

(
d�

dt

)

− �

[
(J1 − L11X1)

2∑
k=1

(
∂X1

∂ak

)
Jk

+ (J2 + L22X2)
2∑

k=1

(
∂X2

∂ak

)
Jk

]}
, (48)

since L12X2 = J1 − L11X1, in the neighborhood of the equilib-
rium state:

dη

dt
< 0, (49)

because of (J1 − L11X1) < (J2 + L22X2). Once again, this new
constraint describes the stability of a steady state with respect
to this energetic function.

4. Temporal evolution of the trade-off functions

Finally, let us take the mathematical expressions of the
three objective functions ecological function, omega function,
and efficient power in order to analyze the effect of the fluctu-
ations around their respective stable state.

a. Temporal evolution of EF . For the (2 × 2)-linear system,
in the ecological regime EF = EF (Xi, Ji ), its temporal evolu-
tion when it is disturbed, can be studied from

dEF

dt
= −T

[
2

(
dX PO

dt
+ dJPO

dt

)
+ dX PI

dt
+ dJPI

dt

]
. (50)
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By Eqs. (39) and (43), we can state that

dJEF

dt
<

dX EF

dt
, (51)

and by using the definition of Eq. (40) as well as Eqs. (41) and
(44),

dEF

dt
= −T

[
(3J1 + L11X1)

2∑
k=1

(
∂X1

∂ak

)
Jk

+ (3J2 − L22X2)
2∑

k=1

(
∂X2

∂ak

)
Jk

]
. (52)

Then, in the vicinity of the equilibrium state,

dEF

dt
< 0. (53)

b. Temporal evolution of �. Now let us consider the omega
function � = �(Xi, Ji ); its temporal variation is

d�

dt
= −T

[
2

(
dX PO

dt
+ dJPO

dt

)
+ ηM

(
dX PI

dt
+ dJPI

dt

)]
.

(54)

Equations (39) and (43) allow us to establish that

dJ�

dt
<

dX �

dt
, (55)

then, taking the expressions given by Eqs. (40) and (44),

d�

dt
= −T

{
[(2 + ηM )J1 + (2 − ηM )L11X1]

2∑
k=1

(
∂X1

∂ak

)
Jk

+ [(2 + ηM )J2 − (2 − ηM )L22X2]
2∑

k=1

(
∂X2

∂ak

)
Jk

}
.

(56)

Once again, in the zone near the equilibrium state

d�

dt
< 0. (57)

c. Temporal evolution of Pη. Finally, let us use the mathe-
matical expression for the efficient power Pη = Pη(Xi, Ji ). The
temporal evolution of this objective function is

dPη

dt
= T PO

P2
I

[
2PI

(
dX PO

dt
+ dJPO

dt

)
− PO

(
dX PI

dt
+ dJPI

dt

)]
.

(58)

Due to the validity of Eqs. (39) and (43), we can state that

dJPη

dt
<

dX Pη

dt
, (59)

by taking into account the constraints [Eqs. (44) and (47)], in
the neighborhood of the equilibrium state:

dPη

dt
< 0. (60)

Inequalities (52), (57), and (60) express new constraints
that describe the stability of three steady states associated with
three different objective functions.

FIG. 5. Two-mesh resistive electric circuit, modeled as a (2 × 2)-
simple isothermal energy converter. In this case, the voltage source
X1 is associated with the nonspontaneous flux J1 (electric current),
while the fixed voltage source X2 is related to the spontaneous flux J2

(electric current).

The above-mentioned conditions ensure the stability of
isothermal energy converters, whose energetic processes
occur in the linear regime when small perturbations are con-
sidered. As the so-called characteristic functions are positive
and also their respective temporal variation are negative, they
constitute the so-called Lyapunov conditions [60] and guar-
antee the stability of any dynamic state. Those states are
considered simple attractors when the systems experience en-
ergetic fluctuations.

IV. AN APPLICATION OF ENERGY THEOREMS:
ELECTRIC CIRCUIT WITH RESISTIVE ELEMENTS AND

TWO COUPLED FLUXES

In this section, we apply the previous results, associated
with steady states without minimum entropy production, to
study the energetics for a (2 × 2)-isothermal linear energy
converter consisting of an electric circuit of two meshes with
passive elements (resistors) and powered by two dc voltage
sources (see Fig. 5). Through Kirchhoff’s equations that de-
scribe the energy conservation between the meshes, within
the context of generalized flows and forces, we found the
so-called cross effect (L12 = L21) is fulfilled. Then, from the
parameters related to its design (q) and its operation modes
(x), we can characterize all the optimal operating criteria that
correspond to particular stationary states.

A. Dynamic equations of the resistive circuit

Let us consider that the electric currents involved are time
independent, with J1 the driven flux that flows through the
mesh 1 and J2 the driver flux that flows through the mesh 2.
In addition, X1 and X2 are the dc voltage sources that promote
the fluxes. As the circuit phenomenological equations can be
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associated with the Kirchhoff laws, then for the mesh 1 (left
side in Fig. 5) we have

X1 = (R1 + R2)J1 − R2J2, (61)

while for the mesh 2 (right side of Fig. 5)

X2 = (R2 + R3)J2 − R2J1. (62)

In order to study the phenomenological equation of this
system in the Onsager context, we must reverse Eqs. (61) and
(62), i.e., writing (J1, J2) in terms of (X1, X2). Hence,(

J1

J2

)
=

(R2+R3
�

R2
�

R2
�

R1+R2
�

)(
X ′

1
X ′

2

)
, (63)

where � = R1(R2 + R3) + R2R3 and X ′
1,2 = X1,2/T . Note that

the system of equations [Eq. (63)] represents the generalized
Onsager equations whose equality in the crossed coefficients
represents the contribution of each force Xi with the flux Jk 
=i.
In this case, the parameter q is related to the intrinsic features
of the circuit, and it can be rewritten in terms of the resistive
elements nominal values as follows:

q = L12√
L11L22

= R2√
� + R2

2

. (64)

The force ratio x which has all the extrathermodynamic
information of the system takes the mathematical expression:

x =
√

L11

L22

X1

X2
=

√
R2 + R3

R1 + R2

X1

X2
. (65)

In the following, we will study every optimization criteria
in terms of arbitrary values that the resistors can adopt, with
the aim not only of characterizing the steady state related to an
optimal coupling in the circuit’s stable configuration but also
of ensuring that the system adapts to the selected operating
regime.

B. Steady state of minimum dissipation function (mdf)

From the mdf-THEOREM it follows that xmdf = −q can
be rewritten by substituting Eq. (64) into Eq. (65) to get

xmdf = − R2√
� + R2

2

. (66)

Then, the force X1 is rewritten in this regime as

X mdf
1 = − R2

R2 + R3
X2. (67)

Thus, the energetics under mdf operation regime is

�mdf = T X 2
2

R2 + R3
, (68a)

Pmdf = 0, (68b)

ηmdf = 0. (68c)

C. Steady state of maximum power output (MPO)

By applying the MPO-THEOREM to the circuit of Fig. 5,
we find that xMPO = − q

2 can be written as

xMPO = − R2

2
√

� + R2
2

, (69)

and thereby the force X1 acquires the form

X MPO
1 = − R2

2(R2 + R3)
X2. (70)

The energetics beneath MPO operation regime is

�MPO =
[

4� + R2
2

4(R2 + R3)�

]
T X 2

2 , (71a)

PMPO =
[

R2
2

4(R2 + R3)�

]
T X 2

2 , (71b)

ηMPO = R2
2

4� + 2R2
2

. (71c)

D. Steady state of maximum efficiency (Mη)

By taking the Mη-THEOREM, we have that xMη is given
in terms of the resistors values as

xMη = − R2√
� + R2

2 + √
�

, (72)

so that the force associated with the driven flux X1 takes the
form:

X Mη

1 = − R2

(R2 + R3) +
√

�
R1+R2

X2. (73)

Therefore, the energetics that results in the Mη-regime is

�Mη = 2T X 2
2

(R2 + R3)(1 + √
�)

, (74a)

PMη = T X 2
2 R2

2√
(R2 + R3)

(
� + R2

2

)
�(1 + √

�)2
, (74b)

ηMη = R2
2

√
C

2(1 + √
�)(R1 + R3) + R2

2

√
�

, (74c)

with
√

� =
√

�

�+R2
2
.

E. Steady state of maximum ecological function (MEF)

From the MEF-THEOREM, it can be shown that xMEF =
− 3

4 q is given in terms of the circuit elements [Eq. (64)] as

xMEF = − 3R2

4
√

� + R2
2

, (75)

and then the force X1 associated with the nonspontaneous flux
is

X MEF
1 = − 3R2

4(R2 + R3)
X2, (76)
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and the energetics corresponding to the MEF regime remains,

�MEF =
[

16� + R2
2

16(R2 + R3)�

]
T X 2

2 , (77a)

PMEF =
[

3R2
2

16(R2 + R3)�

]
T X 2

2 , (77b)

ηMEF = 3R2
2

4� + R2
2

. (77c)

F. Steady state of maximum omega function (M�)

By using the M�-THEOREM, it is derived that xM� =
− q(4−q2+4

√
1−q2 )

4(1+
√

1−q2 )2
[Eq. (32)] can also be written as

xM� = − R2(3 + � + 4
√

�)

4
√

� + R2
2(1 + √

�)2
, (78)

in order to characterize the force X1,

X M�
1 = − R2(3 + � + 4

√
�)

4(R2 + R3)(1 + √
�)2

X2. (79)

Thus, the energetics is evaluated in the M� regime as

�M� = (R1 + R2)T X 2
2

�

×
{√

� + (1 − �)

[
(3 + � + 4

√
�)2

16(1 + √
�)4

− 1

2

]}
,

(80a)

PM� = T X 2
2 R2

2(3 + � + 4
√

�)(1 + 3� + 4
√

�)

16(R2 + R3)�(1 + √
�)4

, (80b)

ηM� = R2
2(3 + � + 4

√
�)(1 + 3� + 4

√
�)

8(� + R2
2)(1 + √

�)4(1 + � − √
�)

. (80c)

G. Steady state of maximum efficient power (MPη)

Finally, by means of the MPη-THEOREM, the forces ratio

xMPη = − 4+q2−
√

q4−16q2+16
6q can be rewritten by using Eq. (64)

as

xMPη = −5 − � −
√

16� + (1 − �)2

6q
, (81)

from which X1 is given by

X MPη

1 = − (R1 + R2)[5 − � −
√

16� + (1 − �)2]

6R2
X2. (82)

Accordingly, the energetics of the system in the MPη

regime is

�MPη = (R1 + R2)T X 2
2

�

{
1 + (� + R2

2)[5 − � −
√

16� + (1 − �)2]2

36R2
2

− [5 − � −
√

16� + (1 − �)2]

3

}
, (83a)

PMPη = T X 2
2 (R1 + R2)[5 − � −

√
16� + (1 − �)2]

[
6R2

2 + �(
√

16� + (1 − �)2) − 4
]

36R2
2�

, (83b)

ηMPη = [5 − � −
√

16� + (1 − �)2]
[
6R2

2 + �(
√

16� + (1 − �)2) − 4
]

6R2
2[1 + � +

√
16� + (1 − �)2]

. (83c)

V. EXPERIMENTAL VERIFICATION OF THE
THEORETICAL ENERGETIC HIERARCHY FOR A

(2 × 2)-ELECTRIC CIRCUIT

Just as the steady state characterized by Prigogine is asso-
ciated with the production of entropy at a minimum constant
rate in a system, it also represents the only thermodynamic
state whose useful energy to perform work against the sur-
roundings is zero. When we make a distinction between
spontaneous and nonspontaneous processes, we can introduce
one more constraint to the system that is related to the ex-
trathermodynamic conditions (operation modes). Then all of
existing steady states laying between the maximum power
output regime and the minimum dissipation regime (minimum
entropy production) can be physically attainable.

The validity of the energy conversion theorems as well as
their corollaries enunciated and developed in Sec. III is proved
through the electric model with resistors previously proposed.

Taking into account the operating conditions imposed by
the well-known operating regimes (mdf, MPO, Mη, MEF,
M�, and MPη), we measure the electric current (driven
flux J1) in mesh 1 of the scheme (see Fig. 5) to reproduce
the hierarchical behavior described in Sec. II [see Eqs. (9)].
That is, we are looking for the energetics of the system
for different values of the resistor R2 and, by transitivity,
for different values of q which always guarantee that
X mdf

1 [xmdf (q), q] < X Mη

1 [xMη(q), q] < X MEF
1 [xMEF(q), q] <

X M�
1 [xM�(q), q] < X MPη

1 [xMPη (q), q] < X MPO
1 [xMPO(q), q].

The nominal resistance values R2 were calculated to check
the existence of the optimal operation regimes by considering
10 different values of q ∈ [0.950, 0.995], taken in steps of
0.05 (see Table II). This interval is used in analogy to the
results reported by Stucki [16], in which he considered that
values of q ∈ [0.95, 0.97] that offer the optimal economic
degrees of coupling. For this reason R1 and R3 were fixed at a
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(a) (b) (c)

FIG. 6. Graphs of X1 (source voltage), J1 (driven flux), and J2 (driver flux) vs q. The points associated with the experimental measurements
for each regime are shown with red circles for MPO, purple diamonds for MPη, black squares for M�, green inverted triangles for MEF, brown
spades for Mη, and blue stars for mdf, while theoretical models are depicted by the following curves: dashed (large) red curve for MPO, solid
purple curve for MPη, dot-dashed black curve for M�, dotted green curve for MEF, dashed (medium) brown curve for Mη, and dashed (small)
blue curve for mdf. In (a) a hierarchy between the different values of X1 is displayed: (from bottom to top) X MPO

1 < X
MPη

1 < X M�
1 < X MEF

1 <

X Mη < X mdf
1 . In (b) and (c) there are also trends between the operation regimes. They are expressed as the energy consumption in each mesh.

constant value of 100 ohms. By using Eq. (64), we estimated
the R2 values for each q.

The next thing was to consider the triad of values for
resistors R1, R2, and R3 (see Table II) and a fixed value
of X2 = 12 V for the dc voltage source related to the driver
flux with the purpose of having completely characterized the
steady states. From Eqs. (67), (70), (73), (76), (79), and (82),
the values of X1 were found as a function of any operation
mode. Thus, with the values of the resistors Ri and the ad-
justed values for the dc voltage sources Xk , the assembled
electric circuit was put inside a container with dielectric oil
to emulate its conditions as an isothermal energy converter
and then measure the values of the driven and driver fluxes
(electric currents) by considering a long-enough relaxation
time (each 5 min approximately) to guarantee their stability
(steady states).

In Fig. 6, we display the theoretical and experimental
trends that the voltage source X1, as well as the electron
fluxes J1 and J2, present according to the operating regimes.
In the case of X1 values, they have as upper bound X2 =

TABLE II. Resistor Ri (in ohms) and phenomenological coeffi-
cients Ljk (in siemens) values that correspond to each of the given q
values.

q R1 R2 R3 L11 L12 L22

0.950 100 1900.00 100 0.005128 0.00487 0.005128
0.955 100 2122.22 100 0.005115 0.00488 0.005115
0.960 100 2400.00 100 0.005102 0.00489 0.005102
0.965 100 2757.14 100 0.005008 0.00491 0.005008
0.970 100 3233.33 100 0.005007 0.00492 0.005007
0.975 100 3900.00 100 0.005006 0.00493 0.005006
0.980 100 4900.00 100 0.005005 0.00494 0.005005
0.985 100 6566.67 100 0.005003 0.00496 0.005003
0.990 100 9900.00 100 0.005002 0.00497 0.005002
0.995 100 19900.00 100 0.005001 0.00498 0.005001

12V (the value of the fixed force). It is important to note
that the X1 values in MPO-regime are almost halved with
respect to X2. The purpose of the above-mentioned graphs
(Fig. 6) is to compare the behavior of (J1, J2, X1) that
the linear energy converter model predicts with direct mea-
surements of electric current and voltages through a digital
multimeter.

The percentage errors in the measurements for every pro-
cess variable can be estimated. In the case of power output, the
maximum percentage error is calculated for the Mη regime, its
average is 〈�PMη

% 〉 ≈ 6.18%. The efficiency presents a max-
imum mean percentage error when the system works in the
M� regime, which is 〈�ηM�

% 〉 ≈ 2.75%. Finally, the dissipa-
tion function has the same maximum error in the M� regime,
whose value is 〈��M�

% 〉 ≈ 7.98%. In general, the foregoing
shows that the fluctuations produced by the disturbance of the
system (interaction with the measuring instruments) are small.
This fact guarantees that the electric circuit reaches a steady
state.

Finally, in Fig. 7 the behavior predicted by the theorems
proved in Sec. III is depicted for the three process variables.
Thus, all the physically attainable operation modes for an
isothermal linear energy converter are bounded between the
maximum power output and minimum dissipation function
regimes, while the optimum operation ones lies between the
maximum power output and the maximum efficiency regimes.

VI. CONCLUSIONS

Among the whole set of phenomena that can be described
by the so-called steady states, few of them have simple un-
coupled processes, i.e., a large number of phenomena have
the characteristic of being spontaneous and noninteracting
(symmetry principle of Pierre Curie [9]). In fact, living and
human-made systems characterized by a single process could
be said to undoubtedly satisfy Prigogine’s theorem, since
this extremal principle considers unconstrained forces and
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(a) (b) (c)

FIG. 7. Graphs of the three process variables vs q. The points associated with the experimental measurements for each regime are shown
with red circles for MPO, purple diamonds for MPη, black squares for M�, green inverted triangles for MEF, brown spades for Mη, and blue
stars for mdf for (a) power output, (b) efficiency, and (c) dissipation function, while the trend given by the theoretical models are depicted by
the following curves: dashed (large) red curve for MPO, solid purple curve for MPη, dot-dashed black curve for M�, dotted green curve for
MEF, dashed (medium) brown curve for Mη, and dashed (small) blue curve for mdf.

therefore systems reach a diffusive regime when energy trans-
fer processes are carried out.

There is a divided opinion on the validity of the minimum
entropy production theorem and the principle of maximum
entropy production, which largely explains all the processes
that occur near the equilibrium state. In our opinion, if it is
desirable to obtain a useful energy available through certain
coupled processes (energy conversion), and that can be mod-

FIG. 8. Graphic sketch of the proper subspace H(X1,X2 ) for dif-
ferent values of A′ = A

√
L11/

√
L22, where X1 and X2 are the so-called

generalized thermodynamic forces. An order from left to right is
noted for the six operation regimes as follows: dashed (small) blue
curve for mfd, dashed (medium) brown curve for Mη, dotted green
curve for MEF, dot-dashed black curve for M�, solid purple curve
for MPη, and dashed (large) red curve for MPO. All lines were
depicted under the normalization condition A′ and with q = 0.97.

eled to a large extent by means of so-called energy converters
within the context of LIT, then one cannot expect a minimum
entropy production. Furthermore, we have established opti-
mization criteria that are associated with characteristic steady
states that are delimited between the MPO and Mη operation
regimes. That is, other energy conversion theorems can be
stated as long as the trade-off between the process variables
of the energy converter is well specified.

In the simple experiment that was designed, we show, on
the one hand, that the way in which voltage sources (ther-
modynamic forces) are tuned lead us to establish a unique
performance and, on the other hand, that the steady states
associated with an energetic objective function are physically
accessible. Furthermore, the state described by the minimum
dissipation function leads to zero energy conversion.
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APPENDIX: SOME ALGEBRAIC PROPERTIES OF THE
OPTIMAL PERFORMANCE REGIMES

From the definition of entropy production as a function of
the force associated to spontaneous flux and the force associ-
ated with nonspontaneous flux, the surface � characterized by
an ordered pair (X1, X2) leads us to define a vector space given
by the basis vectors X = {(X1, 0), (0, X2)}. As it is possible to
express X1 as a function of X2, then

H(X1,X2 ) := {(X1, X2)|X1 = AX2, with A a constant

and X2 an arbitrary force ∈ R} (A1)
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defines the proper subspace of such vector space [62]. An
energy converter delimits the vector space of these linear
irreversible processes in the region with X1 < 0 and X2 > 0.
From Eqs. (6) and (8), we note that these optimal operation
modes lie in the subspace H(X1,X2 ). That is, according to the
physical information of A, a linear energy converter can access
different physical realizations as long as the thermodynamic
forces are tuned under the respective constraints.

Since the restriction XY
1 = AY X2, with Y the optimal opera-

tion mode, is associated with a particular extrathermodynamic
condition. In Fig. 8 we can observe the geometric representa-
tion of proper subspaces of X , restricted to the physical region
of linear energy converters given by the Eqs. (6) and (8).

The order displayed in Fig. 8 for each operating regime,
can be viewed as the availability of a linear energy converter
to locate physical realizations when thermodynamic forces
are associated in such a way as to achieve a particular goal
in energy conversion. That is, if we measure the distance
between an arbitrary point (X1, X2) and the equilibrium state
(0,0) for each proper subspace,

d (0, X ) = || X − 0|| = X2

√
1 + (AY )2, (A2)

then we observe that AMPO[xMPO(q), q] <

AMPη[xMPη(q), q] < AM�[xM�(q), q] < AMEF[xMEF(q), q] <

AMη[xMη(q), q] < Amdf [xmdf (q), q] and therefore the
distances reveal the same order as inequalities [see Eq. (9)].
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