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Martingale drift of Langevin dynamics and classical canonical spin statistics
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A martingale is a stochastic process that encodes a kind of fairness or unbiasedness, which is associated with a
reference process. Here we show that, if the reference process xt evolves according to the Langevin equation with
drift a(x) and if a(xt ) is a martingale, then its amplitude is the Langevin function, which originally described the
canonical response of a single classical Heisenberg spin under static field. Furthermore, the asymptotic limit of
xt/t obeys the ensemble statistics of such a Heisenberg spin.
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I. BACKGROUND

Langevin derived in 1905 what we nowadays call the
Langevin function [1], which gives the canonical equilibrium
response of paramagnetism under static magnetic field. It
was based on the Boltzmann-Einstein statistics and explained
Curie’s law, which Pierre Curie had established experimen-
tally 10 years before [2]. In modern language, a classical
three-dimensional Heisenberg spin under a uniform magnetic
field along an axis undergoes thermal fluctuation according
to the Boltzmann weight, or the relative probability, ex cos θ ,

where θ is the polar angle of the spin relative to the field
axis and x is the strength of the magnetic field scaled by the
temperature and magnetic moment of the spin. The mean po-
larization of the spin is given by the average of cos θ weighted
by the above probability and integrated over the solid angles.
The result is the Langevin function, coth x − 1

x [1]. That it
behaves like 1

3 x for small |x| explained Curie’s law.
Three years after Einstein [3] formulated Guoy’s qualita-

tive idea of Brownian motion [4,5], Langevin introduced, in
1908, the first stochastic differential equation that is nowadays
called the Langevin equation [6]. In modern language a simple
and generic form of the Langevin equation in d dimensions
reads

d�xt

dt
= �a(�xt ) + �ξt , (1)

which contains the drift �a(�xt ) and the white Gaussian noise �ξ,

with the zero mean and the unit diagonal covariance 〈�ξt , �ξs〉 =
1δ(t − s), where 1 is the unit tensor. While we now know
how this equation admits the first [7,8] and second [9,10]
laws of thermodynamics, it was Langevin who revolution-
ized the notion of the evolution equation as a mapping
between the path ensembles. In the 1900s, however, no link
between the Langevin function and the Langevin equation was
known, to the author’s knowledge.
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Around 1940 Viller and Doob modernized the historically
old notion of a martingale as a powerful concept of modern
probability theory; see, for example, Chap. 1 of [11] for a his-
torical review. The martingale is the mathematical expression
of the idea of the fairness for the future: The continuous-time
stochastic process �Yt is said to be a martingale associated with
the stochastic process { �Xs} if (i) �Yt is causally determined by
{ �Xs}0�s�t and (ii) its conditional expectation for the future
shows the fairness:

〈 �Yt |{ �Xu}0�u�s〉 = �Ys ∀ t � s, (2)

in addition to the other rigorous mathematical conditions.
Here { �Xu}0�u�s denotes the history of �Xu over the period
0 � u � s, and 〈R|cond〉 indicates the expectation of the ran-
dom variable R under the condition. For later convenience
we introduce the differential version which follows from (2)
applied to Yt+dt as well as to Yt :

〈d �Yt |{ �Xu}0�u�s〉 = 0 ∀ t � s. (3)

As probability theory provides many useful theorems about
martingales, efforts have often been made to convert a refer-
ence process of interest into a martingale process to discover
new properties of Xt . The population dynamics or mathemati-
cal finances have developed that approach since longtime [11].
In the stochastic thermodynamics people recently recog-
nized that exponentiated entropy production is the martingale
process of the category called the path-probability ratio or
Radon-Nikodym density process [12,13].

A distinct type of martingale other than the path-
probability ratio has also been found in what we call
progressive quenching [14–17]. Starting from an equilibrium
many spin system, we fix the spins, one after another, in
the instantaneous state they take. Through such an unbiased
protocol, the martingale process was found not in the pro-
gressively fixed spins, but in the mean spin to be fixed. Those
already fixed spins influence the latter through the molecular
field. We have coined the name “hidden martingale” for it
because, in its continuous-time counterpart, it is not �xt in (1),
but the drift �a(�xt ), that should be the martingale—this is the
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starting point of the present study. In Sec. II we show that,
if the drift �a(�xt ) in (1) is a martingale associated with the
process (1) itself, then the drift is the Langevin function [18].
The emergence of a spin-related function is surprising because
the Langevin equation (1) works in a noncompact space. How-
ever, a further surprise in Sec. III is that the canonical statistics
of such a spin emerges in the ensemble of the long-time
asymptotes of xt/t .

II. LANGEVIN FUNCTION AS SELF-HARMONIC DRIFT

A. Family of harmonic functions associated with a drift

When the process �Yt = �h( �Xt ) is a martingale associ-
ated with the process { �Xs}, the function �h is said to be
harmonic [11]. In particular, if the process { �Xs} = {�xt } is gen-
erated by (1) and �h(�xt ) takes a value in the same space as �xt

does, the condition for the harmonicity reads

(�a · ∇)�h + 1
2��h = 0. (4)

To see this, it suffices to develop d �h(�xt ) up to the order O(dt ),
that is,

d �h(�xt ) = (d�xt • ∇)�h + 1
2 (d�xt • ∇)2�h, (5)

where • is the Itô-type product [11]. We substitute into (5)
the stochastic differential version of (1),

d�xt = �a(�xt )dt + d �Wt , (6)

where �Wt is the d-dimensional standardized Brownian motion,
i.e., the Wiener process, such that d �Wt d �Wt = 1dt , with 1
being the unit tensor. The imposition of the martingale condi-
tion (3) on �Yt = �h(�xt ) then leads to (4). The form (4) explains
the denomination “harmonic” because, in the absence of drift,
�a ≡ 0, Eq. (4) is the vector Laplace equation.

Given a drift �a, we can conceive the family of harmonic
functions associated with the process obeying (1), We shall
denote this family by H�a:

H�a =
{
�h ; (�a · ∇)�h + 1

2��h = 0
}
. (7)

B. Langevin function as fixed point

Among the families associated with different drifts, the
self-referential condition

�a ∗ ∈ H�a ∗ (8)

defines the special drift �a ∗ as a kind of fixed point, which
we shall call the self-harmonic drift when it exists. More
concretely,

(�a ∗ ·∇)�a ∗ + 1
2��a ∗ = �0. (9)

This is the key equation of the present paper.
Asymmetric solutions of (9) are possible. Apparently, the

cylindrical lift-up of the solution for lower dimensions is an
anisotropic solution. Nevertheless, we here seek the solutions
which are isotropic with respect to the origin, �x = 0. (Note
that the process �xt can, nevertheless, start from any �x off the
origin.)

We then assume the form [19]

�a ∗(�x) = Ld (‖�x‖)x̂, (10)

where x̂ ≡ �x/‖�x‖ is the unit vector along �x and the suffix d
stands for the space dimension. Then (9) implies

L′′
d (x) + 2Ld (x)L′

d (x) + d − 1

x

(
L′

d (x) − Ld (x)

x

)
= 0. (11)

In the two-dimensional family of solutions of (11) the invari-
ance under the similarity transformation Ld (x) → αLd (αx)
provides one parameter. If we write the first integral
of (11) as

L′
d (x) + [Ld (x)]2 + d − 1

x
Ld (x) = α2, (12)

then we can reduce the problem to finding Ld (x) for (12)
with α = 1. Then in the remaining one-parameter family of
solutions for (12), some analysis using Mathematica indicates
that, at least for d =2, 3, and 4, there is a unique solution
which does not diverge at x = 0. For example, in d = 3, the
solution L(β )

3 (x) ≡ coth(x + β ) − 1
x is regular only with β =

0. For d = 1 we can solve (9) directly so that α = 1 in (12)
and we can appropriately choose the origin. Altogether, the
solutions thus identified are

L1(x) := tanh(x),

L2(x) := I1(x)

I0(x)
,

L3(x) := coth x − 1

x
,

L4(x) := x[I0(x) + I2(x)] − 2I1(x)

2xI1(x)
(13)

for x �= 0 and Ld (0) = 0 for any dimension d, where In(x) are
the nth modified Bessel functions of the first kind. A standard
but inspiring approach to obtain these solutions from (12) with
α = 1 is to use the (Riccati) transformation

Ld ≡ Z ′
d

Zd
= d

dx
[ln Zd (x)], (14)

which renders (12) to the linear equation,

d2Zd

dx2
+ d − 1

x

dZd

dx
= Zd . (15)

By noticing the radial part of the Laplacian operator on the
left-hand side of (15), we find

Zd (‖�x‖) ∝
∮

‖Ŝ‖=1
eŜ·�xd�S, (16)

which is the partition function for a single classical
Heisenberg spin under the nondimensionalized external field
�x. Through (14) the drift is therefore the canonical average
of the spin Ŝ under this field. All Ld (x) are odd in x, and their
graphs look similar to the simplest one, L1(x), and the original
Langevin function, L3(x). They also have the unique limit
limx→∞ Ld (x) = 1. We may call Ld (x) the d-dimensional
Langevin function. In any case the Langevin equation meets
here with the Langevin functions in the context of the mar-
tingale. For completeness we give Zd (x) with the numerical
coefficient so that Zd (0) is the surface area of a d-dimensional
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unit hypersphere:

(Z1, Z2, Z3, Z4)

=
(

2 cosh(x), 2π I0(x), 4π
sinh(x)

x
, 4π2 I1(x)

x

)
. (17)

Remark on the solution family. The change in the units of
length and time causes the rewriting of (6). If we introduce �y
and τ through �x = α�y and t = α2Cτ, then (1) with (10) for
�a(�xt ) leads to

d�yτ = Cα Ld (α‖�yτ‖)ŷτ dτ +
√

Cd �Wτ , (18)

where ŷτ ≡ �yτ /‖�yτ‖ and we have used the statistical equiva-
lence d �Wκt � √

κ d �Wt for the standard d-dimensional Wiener
process. In (18) we see that, apart from the flexibility of the
self-harmonic function αLd (α‖�yτ‖), there is a specific scale
relationship between the drift and diffusion for the drift to be
a martingale. See Appendix A for more discussion.

III. STATISTICAL PROPERTY OF THE ASYMPTOTIC
LIMITS : MICROSCOPE

In general the Langevin functions Ld (x) can appear to be
unrelated to the canonical statistics of a Heisenberg spin. For
example, L2(x) has appeared to be the (1+1)-dimensional
nucleation-controlled polymer crystal growth rate [20,21],
with no relevance to the XY spin. In this section we show
that the statistics of a Heisenberg spin indeed appears in
the asymptotic behavior of the Langevin dynamics with self-
harmonic drift.

A. Convergence of the self-harmonic drift and asymptotic
behavior of the Langevin process

Since the velocity d�xt/dt is, on average, oriented along �xt

[see (10)] and Ld (‖�xt‖) is non-negative for any nonzero �xt , we
may expect that �xt most likely grows unbounded for a long
time. However, further details are not clear at first glance.
We therefore focus first on the evolution of the drift �a ∗(�xt ).
Because of the martingale condition (9) the development of
d�a ∗(�xt ) contains no (drift) term for O(dt ) [see (5)], and the
result reads

d�a ∗(�xt ) = d �Wt • (∇�a ∗), (19)

∇�a ∗ = dLd (χ )

dχ
â∗â∗ + Ld (χ )

χ
(1 − â∗â∗), (20)

where â∗ ≡ �a ∗/‖�a ∗‖ and χ is inversely determined so that
Ld (χ ) = ‖�a ∗‖. Thus, (∇�a ∗) is a function of �a ∗. The process
generated by d�at = d �Wt • M(�at ), with M(�a) being any rank-
2 tensor as a function of �a, is a martingale associated with
the Wiener process, �Ws (0 � s < ∞). The self-harmonic drift
�a ∗ defined above, however, has several additional particular
properties, which we will discuss below.

We notice that �a ∗(�xt ) of each realization converges for t →
∞ and the limit �a ∗

∞ ≡ limt→∞ �a ∗(�xt ) is on the hypersphere,
‖�a ∗

∞‖ = 1. The case of d = 1 is particularly simple: Eqs. (19)
and (20) read

da∗
t = (

1 − a∗
t

2) • dWt (21)

�2 �1 1 2

�2

�1

1

2

(a)

�20 �10 10 20

�20

�10

10

20

(b)

FIG. 1. Two-dimensional trajectories from �x0 = (0, 0).
(a) Close-up view near the origin. (b) Whole trajectories up to
t = 16. The corresponding curves for different magnifications are
identifiable by their color and/or thickness.

because (tanh x)′ = 1 − tanh2 x. The multiplicative noise
term on the right-hand side causes, as the second order effect
of dWt , a drift of the empirical probability density P(α, t ) :=
δ(a ∗

t − α), which reads dP(α, t ) = −∂α[P(α, t )(1 − α2)] •
dWt + (1/2)∂2

α[P(α, t )(1 − α2)2]dt, where Itô’s formula has
been used. Therefore, the Fokker-Planck (FP) equation for
〈P(α, t )〉 equivalent to (21) has the potential ln[(1 − α2)2],
which causes drift, and the diffusion coefficient 1

2 (1 − α2)2.

The variable a ∗
t should be pushed towards ±1 and held there.

In fact, the singular densities δ(a∗
∞ ∓ 1) and their linear com-

binations are all stationary solutions of that FP equation.
While the behavior of �a ∗(�xt ) for d > 1 is less clear

than that for d = 1, the fact that ∇a∗ vanishes on the hy-
persphere ‖�a ∗‖ = 1 (i.e., at χ = +∞) indicates that the
hypersphere is the natural absorbing boundary for the evolu-
tion of �a ∗(�xt ). A more formal and general argument for the
existence of the limit is provided by the convergence theorem
of (sub)martingales (see, e.g., Sec. 4.1.5 of [11]). According
to this theorem, because �a ∗(�x) is bounded, i.e., ‖�a ∗‖ � 1, the
martingale process �a ∗(�xt ) should have a limit:

�a ∗
∞ ≡ lim

t→∞ �a ∗(�xt ). (22)

On the other hand, if the limit �a ∗
∞ were not on the natural

boundary, the noise for �xt could still relocate it. Therefore,
‖�a ∗

∞‖ = 1 is concluded.
Next, we consider the trajectory of �xt that leads to

limt→∞ �a ∗(�xt ) = �a ∗
∞. Figure 1 shows three samples with d =

2, starting from the origin, �x0 = 0. Figure 1(a) is a close-up
view of the initial part of the trajectories, and Fig. 1(b) shows
the entire trajectory up to t = 16, including Fig. 1(a) [22]. In
the early stage with ‖�xt‖ � 1, the noise term �ξt dominates
over the drift; then there is a slow crossover to the long-time
ballistic behavior. Using this observation together with (1)
or (6), we understand that �xt becomes asymptotically ballistic
in the sense that

lim
t→∞

�xt

t
= �a ∗

∞, (23)

which also implies limt→∞ ‖�xt ‖
t = 1. In Appendix B we

show (23) in more detail. Note that each realization of the
trajectory ends up with a particular orientation of �a ∗

∞.
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(a) x0 = 0 (b) x0 = 1

(c) x0 = 2 (d) x0 = 4

FIG. 2. Two-dimensional trajectories from �x0 = (x0, 0+) with
(a) x0 = 0, (b) x0 = 1, (c) x0 = 2, and (d) x0 = 4. In all cases the
duration is up to t = 40, and we used the identical set of noise
histories for �ξt in (1), identifiable by the circled numbers (0–9).

B. Distribution of trajectories at t → ∞ as a spin microscope

Each trajectory of �xt or of �a ∗(�xt ) has the limiting value
�a ∗
∞ as a random variable, and by the definition of self-

harmonicity, we have the martingality:

〈�a ∗
∞|�x0〉 = �a ∗(�x0). (24)

This is a constraint on the statistics of �a ∗
∞. However, it is only

for d = 1 that the probability of realizing a∗
∞ = ±1 and the

initial data a∗(x0) are trivially related by (24),

Prob(a∗
∞ = s) = 1 + s a∗(x0)

2
, s = ±1.

By contrast, the statistics of �a ∗
∞ on the (d >1)-dimensional

hypersphere surface is by no means trivial. Figure 2 gives
a qualitative idea of how the trajectories of �xt up to t = 40
depend on the initial data, �x0. Roughly, the larger is ‖x0‖ is,
the more polarized the orientation of �xt is.

We shall parametrize the orientation of �a ∗
∞ by its orthog-

onal projection, cos θ ≡ �a ∗
∞ · (�x0/‖�x0‖), onto the axis along

�x0, where 0 � θ � π. When �x0 = 0, the distribution of �a ∗
∞

through (23) must be isotropic, and the cumulative probability
distribution of cos θ should rigorously obey Prob(can)(cos θ <

χ ) = 1
π

∫ χ

−1
dξ√
1−ξ 2

= 1 − 1
π

arccos χ. In Fig. 3 the top orange

dashed curve represents this formula. The train of blue dots
along this curve shows the results obtained from the numer-
ical data over 3000 trajectories, where �a ∗

∞ = limt→∞ �xt
t is

approximated by �xt
t |t=40. The deviations from the theoreti-

cal curve show the errors due to the finiteness of sampling.
The other three trains of blue dots in Fig. 3 represent the
numerically obtained cumulative probabilities cos θ for x0 =
1, 2, and 4, respectively, in descending order. (Note that we

FIG. 3. The two-dimensional orientational distributions of
limt→∞(�xt/t ) = �a ∗

∞ for the different starting points, x0 = 0, 1, 2, and
4, from top to bottom. We represent the orientation of �a ∗

∞ using cos θ,

where θ is the angle between �a ∗
∞ and �x0 = (x0, 0), and we show

the distributions by the empirical cumulative probability (trains of
blue points). Numerically, the ensemble of �a ∗

∞ is approximated by
3000 realizations of �xt/t |t=40. The orange dashed curves represent
the canonical equilibrium distribution of a single unitary spin under
the nondimensionalized field �x0 [see (25) in the main text].

took the cumulative probability because it can be empirically
reconstructed just by plotting the normalized rank r/3000
vs the corresponding value of cos θr without any binning or
smoothing.)

Quite surprisingly, the results almost surely obey the
canonical statistics of a Heisenberg spin under the nondimen-
sionalized field, �x0 = (x0, 0), which leads to the cumulative
probability,

Prob(can)(cos θ < χ |�x0) = 1

π I0(x0)

∫ χ

−1

ex0ξ dξ√
1 − ξ 2

. (25)

This formula is shown by the dashed orange curves in Fig. 3.
Thus, the thermal distribution of the (fictitious) spin orienta-
tions that would yield the expectation �a ∗(�x0) has been mapped
onto the static distribution of the “spin” �a ∗

∞ characterizing
the trajectory of �xt in the limit of t → ∞. Being consistent
with (24), our proposition for the probability density ρ(�a ∗

∞) is
therefore

ρ(�a ∗
∞) = e�x0·�a ∗

∞

Zd (‖�x0‖)
, �a ∗

∞ ∈ Sd−1, (26)

where �a ∗
∞ means limt→∞ �xt

t and Sd−1 is the (d − 1) sur-
face of the d-dimensional unit sphere. This mapping from
�x0 to the distribution of limt→∞ �xt

t serves as a microscope,
which allows us to assess �x0 through the repeated measure-
ments of �xt at sufficiently large t . Notice that the mapping
�x0 �→ Prob(can)(cos θ < χ |�x0) is asymptotically independent
of micro-macro ratios such as ‖�x0‖/‖�xt‖. This is in contrast
to the case of assessing the initial position �x0 of a Brownian
particle from its position at a later time �xt . In the latter case the
signal-to-background ratio lessens with time. See Appendix C
for further explanation.

IV. DISCUSSION

The present work leads to two things. First, we have found
a connection between the Langevin equation and the Langevin
functions through the martingale process. Usually, the
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relationship between the Langevin equation and the canonical
distribution is through Einstein’s relation by which the sta-
tionary state of the Langevin equation becomes canonical (if
the drift has a potential). In the present case, however, neither
the evolution of �xt nor that of �a(�xt ) has regular stationary
density; �xt grows unboundedly, while �a(�xt ) is trapped asymp-
totically at a point on the surface of the unit hypersphere.
Nevertheless, the canonical spin statistics, which could give
the Langevin function as a response, emerges in the distri-
bution of the asymptotic limit of �xt/t . Second, our report is
another example in which the self-referential or fixed-point
condition leads to a nontrivial outcome. We note that the
celebrated diagonal arguments by Cantor and by Gödel were
later reformulated from a unified viewpoint using the self-
reference and fixed points [23,24]. Usually, the martingale
process Yt is constructed from a reference process Xt so that
we can apply useful theorems of the martingale theory to the
former and, eventually, we gain insights about the reference
process. The present setup asks, instead, with what drift �a ∗
defining the reference process Xt does the former play the
role of Yt . The underlying physics by which the martingale
brings the Langevin function is unknown. That the linearizing
transformation of the Riccati equation, Ld (x) = Z ′

d (x)/Zd (x),
takes the form of the canonical response might be a clue to this
mystery. Also unknown is how the martingale constraint trans-
mits the initial molecular field �x0 to the asymptotic distribution
of spin �a ∗

∞. In short, the present findings bring us questions,
rather than answers, about the relevance of martingales in
physics beyond being a mere mathematical tool. We therefore
would like to conclude our paper with several open questions:
Can the space-time harmonic function (see, e.g., Sec. 3.2.5.3
of [11]) also be a fixed point? Can the microscope idea de-
veloped below (26) be generalizable to nonmartingale drift?
Are there links to the stochastic thermodynamics [25–27]?
Can there be a parallel framework for the state space with
topologies other than the Euclidean one? Will there be a
quantum counterpart? Does the self-harmonic drift optimize
some physical entity or information?
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APPENDIX A: FAMILY OF SELF-HARMONIC DRIFTS
OBTAINED BY RESCALING

For different interpretations of �xt the self-harmonicity of
the drift implies different constraints between the drift and
noise terms. For example, when �yt represents a position of
a particle in a heat bath of temperature T and friction coeffi-
cient γ , the choice (α,C) = (1, 2D), with D = kBT

γ
in (18),

leads to

d�yτ = 2kBT

γ
Ld (‖�yτ‖)ŷτ dτ +

√
2kBT

γ
d �Wτ . (A1)

Since Ld (‖�yτ‖)ŷτ = ∇ ln Zd (‖�y‖), this equation describes the
motion in the potential [−2kBT ln Zd (‖�y‖)]. To ensure the
self-harmonicity the energy scale of the potential is thus
constrained.

Another case to apply (18) is through an analogy with
the progressive quenching of d-dimensional Heisenberg spins
on a complete network [14–17], which we mentioned in
the last paragraph of Sec. I. In this context the appropri-
ate choice is (α,C) = ( J

kBT , kBT
J ), which brings (18) into the

following:

d�yτ = Ld

(
J‖�yτ‖
kBT

)
ŷτ dτ +

√
kBT

J
d �Wτ . (A2)

In this picture we regard Ld (J‖�yτ‖/kBT )ŷτ on the right-hand
side of (A2) as the equilibrium mean of a Heisenberg spin
under the molecular field J�yτ , with J being a spin-spin cou-
pling constant and kBT being the temperature. Then a new
fragment of spin d�yτ appears at every interval dτ and joins the
quenched part �yτ . While the conditional mean of d�yτ follows
the canonical statistics, there is a Wiener noise ∝ d �Wτ on top
of it. To ensure the self-harmonicity the amplitude of the noise
must be

√
kBT /J.

APPENDIX B: LONG-TIME CONVERGENCE OF�xt/t

In the main text we saw that, for every particular trajec-
tory of �a ∗(�xt ) starting from xt = x0, there is a limit �a ∗

∞ with
‖�a ∗

∞‖ = 1. Below we will see that the ratio �xt/t also converges
to �a ∗

∞.

Once we admit the existence of the limit �a ∗
∞, a u exists

such that ‖�a ∗(xt ) − �a ∗
∞‖ < ε ∀ t � u for a given constant ε

(>0). When we integrate (6) over the interval [u, t] as

�xt = �xu +
∫ t

u
�a ∗(�xs)ds +

∫ s=t

s=u
dWs, (B1)

we see that �xu/t ∼ t−1 and
∫ s=t

s=u dWs/t ∼ t−1/2 for t → ∞.

We therefore focus on
∫ t

u �a ∗(�xs)ds, which reads

∫ t

u
�a ∗(�xs)ds = (t − u)�a ∗

∞ +
∫ t

u
[�a ∗(�xs) − �a ∗

∞]ds.

While the magnitude of the integrand on the right-hand side is
already bounded by ε, we expect the integrand to decay
almost like s−1 because for large �xs the Langevin equa-
tion (1) means roughly d�xs/ds � [1 − O(1/‖�xs‖)]x̂s + d �Wt ,
where we notice Ld (x) = 1 − O(x−1) for x → ∞. Therefore,
the time integral on the right-hand side is dominated by (t −
u)ε. Dividing each term in (B1) by t, we reach the claimed
result:

lim
t→∞

�xt

t
= �a ∗

∞, lim
t→∞ �a ∗(�xt ) = �a ∗

∞.
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APPENDIX C: INFERRING THE INITIAL POSITION OF A
BROWNIAN PARTICLE A POSTERIORI

When a Brownian particle starts from �x0, its position at
time t, that is, �xt = �x0 + �Wt , is a martingale associated with
the Wiener process �Wt . While the mean 〈�xt |�x0〉 remains �x0, the
variance 〈(�xt − �x0)2|�x0〉 grows linearly in time. Therefore, un-
like the case of self-harmonic drift, the inference of �x0 through
the observations of �xt at a “macroscopic” distance R (�
‖�x0‖ � 0) is hard to realize under the signal-to-background
ratio decaying with R. In fact, through the analysis of the exit
problem [28], the detected position on the circle, ‖�x‖ = R,

obeys the cumulative probability

Prob(cos θ < χ ) = 1 − ε2

2

(
1√

1 − 2εχ + ε2
− 1

1 + ε

)

= 1 + χ

2

[
1 − 3(1 − χ )

2
ε + O(ε2)

]
,

(C1)

where ε ≡ ‖�x0‖/R. We see that the signal, the term − 3(1−χ )
2 ε,

vanishes in the macroscopic limit ε → 0.
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