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Nonequilibrium phase transitions in a Brownian p-state clock model
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We introduce a Brownian p-state clock model in two dimensions and investigate the nature of phase transitions
numerically. As a nonequilibrium extension of the equilibrium lattice model, the Brownian p-state clock model
allows spins to diffuse randomly in the two-dimensional space of area L2 under periodic boundary conditions.
We find three distinct phases for p > 4: a disordered paramagnetic phase, a quasi-long-range-ordered critical
phase, and an ordered ferromagnetic phase. In the intermediate critical phase, the magnetization order parameter
follows a power-law scaling m ∼ L−β̃ , where the finite-size scaling exponent β̃ varies continuously. These
critical behaviors are reminiscent of the double Berezinskii-Kosterlitz-Thouless (BKT) transition picture of the
equilibrium system. At the transition to the disordered phase, the exponent takes the universal value β̃ = 1/8,
which coincides with that of the equilibrium system. This result indicates that the BKT transition driven by the
unbinding of topological excitations is robust against the particle diffusion. On the contrary, the exponent at the
symmetry-breaking transition to the ordered phase deviates from the universal value β̃ = 2/p2 of the equilibrium
system. The deviation is attributed to a nonequilibrium effect from the particle diffusion.
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I. INTRODUCTION

Phase transitions and critical phenomena have been ex-
tensively studied in thermal equilibrium systems. Recently,
there has been renewed interest in these topics due to the
observation of diverse and complex collective behaviors in
nonequilibrium systems. In particular, there has been a grow-
ing interest in nonequilibrium active matter systems com-
posed of self-propelled particles. Active matter systems are
ubiquitous in nature, spanning from biological systems such
as swarming bacteria and migrating birds to synthetic mate-
rial systems such as Janus particles [1–3]. Particle motility
gives rise to a distinct collective phenomenon that cannot be
observed in equilibrium systems [4–10]. The Vicsek model
is a prototypical example exhibiting this property [11]. It
is comprised of self-propelled particles equipped with a lo-
cal velocity-alignment interaction in two dimensions. Despite
having a short-ranged interaction with continuous rotational
symmetry, the Vicsek model demonstrates a long-range or-
dered phase, which is prohibited in equilibrium systems due
to the Mermin-Wagner theorem [12].

In contrast to particles in equilibrium lattice models, self-
propelled particles exhibit persistent motion. In particular,
persistence makes them different from passive Brownian
particles. While the effects of mobility and persistence on col-
lective behaviors have been extensively studied, the exclusive
influence of mobility has received little attention. Recently,
we have investigated the nature of phase transitions in the
Brownian q-state Potts model in two dimensions [13]. In this
model, Potts spins perform a passive Brownian motion and
exchange a ferromagnetic interaction with local neighbors.
The passive Brownian motion disturbs the propagation of the
spin-spin correlations, which prohibits a phase coexistence.
As a result, the Brownian Potts model undergoes a continuous
phase transition even for q > 4 [13]. This study motivates

us to investigate the phase transition in the Brownian p-state
clock model, in which clock spins are allowed to move freely
in the two-dimensional space.

The equilibrium p-state clock model on the two-
dimensional lattice [14,15] is defined by the Hamiltonian

Heq = −J
∑
〈i, j〉

cos(θi − θ j ), (1)

where θi = 2πki/p is the clock spin variable with ki =
0, 1, · · · , p − 1 at lattice site ri, J > 0 is a ferromagnetic
interaction strength, and 〈· · · 〉 denotes a pair of nearest-
neighbor sites. The model reduces to the XY model with the
continuous rotation symmetry in the limit p → ∞ [16]. On
the symmetry basis, the p-state clock model can be regarded
as the XY model perturbed with a potential −hp

∑
i cos pθi of

discrete p-fold symmetry [17].
The equilibrium model has been investigated thoroughly

using the renormalization group (RG) theory [17], which
predicts a high-temperature disordered phase, an inter-
mediate quasi-long-range-ordered (QLRO) phase, and a
low-temperature ordered phase separated by the Berezinskii-
Kosterlitz-Thouless (BKT) transitions for p > 4 [16–19]. In
the QLRO phase, spin wave excitation results in a power-
law decay of the spin-spin correlation function, 〈ei(θi−θ j )〉 ∼
|ri − r j |−(d−2+η) with the correlation exponent η varying con-
tinuously within the range

4

p2
� η � 1

4
. (2)

There also exists a topological excitation, vortices, and an-
tivortices. They form bound pairs in the QLRO phase. It is the
unbinding of the vortex-antivortex pairs that drives the tran-
sition to the disordered phase, known as the BKT transition
[16,18]. At the transition, η takes the universal value 1/4. The
p-fold clock symmetry is broken spontaneously in the ordered
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phase. The symmetry-breaking transition also belongs to the
BKT transition universality class, at which η = 4/p2 [17].
The RG scenario has been confirmed in numerical Monte
Carlo simulation studies [20–23].

We generalize the equilibrium p-state clock model on a
lattice by allowing the clock spins to diffuse freely in the
continuous two-dimensional space of area L2. In Sec. II, we
introduce the model and explain the time evolution rule. With
extensive Monte Carlo simulations, we investigate the phase
diagram and the critical behavior. We have performed the
Monte Carlo simulations at several values of p � 4 for the
phase diagram. We have investigated the critical behavior in
greater detail at p = 8 with a focus on similarities and differ-
ences between the equilibrium clock model on a lattice and
the Brownian clock model. The main numerical results will
be presented in Sec. III. Finally, we conclude the paper with a
summary and discussions in Sec. IV.

II. BROWNIAN p-STATE CLOCK MODEL

The Brownian p-state clock model is composed of N =
ρL2 particles of density ρ diffusing in the two-dimensional
continuous space of area L × L under periodic boundary con-
ditions. A particle i carries a clock spin ui = (cos θi, sin θi )
with θi ∈ {0, 2π/p, · · · , 2(p − 1)π/p}. Particles interact fer-
romagnetically with the others within a unit distance r0 = 1.
The spin-spin interaction is represented with a Hamiltonian

H[{ri}, {θi}] = −K
∑

|ri−r j |<r0

cos (θi − θ j ), (3)

where ri denotes the position of particle i and K > 0 repre-
sents the ferromagnetic interaction strength.

Positions and spins are updated at discrete time steps ac-
cording to the following rule: (i) A particle performs a jump
of length l0 in a random direction. (ii) A particle i attempts
a spin flip θi → θi + �θ , which is accepted with the proba-
bility pacc. = min[1, exp(−�iH)] where �iH is the change
in the Hamiltonian under a spin update θi → θi + �θ while
keeping all the other spins fixed. For p � 8, we choose �θ

among {0,±2π/p} randomly and independently. When p >

8, �θ is chosen among multiples of 2π/p within the inter-
val [−π/4, π/4]. As in Ref. [13], we adopt parallel update
dynamics.

The spin dynamics obeys the local detailed balance with
respect to the Hamiltonian H. The particle diffusion, however,
breaks the detailed balance. The Brownian clock model could
be regarded as being in thermal contact with two distinct
heat baths, each coupled to the spin and position degrees of
freedom, respectively. Those heat baths will be referred to
as the spin bath and the diffusion bath, respectively. We can
generalize the model by adopting a stochastic particle hopping
dynamics with the Metropolis rule with the probability ph =
min[1, e−a�hH] accepting a particle hopping. Here, �hH de-
notes the change in the Hamiltonian (3) upon a hopping.
Then, the parameter a corresponds to the ratio of the spin bath
temperature and the diffusion bath temperature. In this study
with a = 0, particle hoppings are always accepted as if the
system were in contact with an infinite temperature diffusion
bath. Thus, the Brownian clock model is driven out of equilib-
rium. As a nonequilibrium effect, we will examine the energy

flow between the two baths through the Brownian clock spin
system in Sec. III C. When a = 1, the dynamics satisfies the
detailed balance condition and the model corresponds to an
equilibrium annealed clock model. An equilibrium annealed
diluted XY model in two-dimensional lattices has been stud-
ied in Ref. [24], which demonstrates intriguing dynamical
behaviors caused by particle hoppings. The equilibrium limit
of the Brownian clock model (a = 1) is out of the scope and
will not be studied in this work.

When l0 = 0, particles do not move and the Brownian
clock model reduces to the equilibrium clock model with
quenched disorder in the particle position. In the opposite
limiting case with l0 = ∞, we expect that the model can be
described by the mean-field theory. In this work, we focus on
the case with finite nonzero l0.

It is worthy to mention the difference between the Brown-
ian clock model and the other active spin models such as the
active Ising model [25–27], the active Potts model [28,29],
and the active clock model [30,31]. In the latter, spins in-
teract ferromagnetically and point toward the direction of
self-propulsion. On the contrary, the Brownian clock model
consists of passive particles. They move independently and
randomly irrespective of their spin state. Our study aims at
filling a gap between ordering phenomena of spins frozen in
lattices and of self-propelled active particles. We also expect
that a Brownian spin model can be applied to investigate opin-
ion dynamics in complex systems consisting of mobile agents
[32] and can be a starting point for the study of multispecies
active particle systems [33,34].

We have performed Monte Carlo simulations at various
values of p with fixed interaction range (r0 = 1) and the hop-
ping length (l0 = 0.5). Varying the particle density ρ and the
coupling strength K , we have measured the magnetization

m ≡
〈∣∣∣∣∣ 1

N

N∑
i=1

ui

∣∣∣∣∣
〉
, (4)

as an order parameter. The angular bracket 〈·〉 denotes a time
average in the steady state. The maximum system size is L =
512 at which simulations were run up to 4 × 108 time steps.

Typical configurations at three different values of K at
p = 8 and ρ = 2 are shown in Fig. 1. A phase diagram can
be obtained from the finite-size scaling analysis of the order
parameter. Figure 2 shows a phase diagram at ρ = 2, which
consists of three distinct phases: a disordered phase, a QLRO
phase, and an ordered phase. It has the same overall structure
as the phase diagram of the equilibrium system. Details of the
phase diagram and the nature of the phase transitions will be
presented in the following section.

III. NUMERICAL RESULTS

In this section, we present the numerical results for the
critical behavior of the Brownian p-state clock model. We
have investigated the critical behavior at several values of p
and obtained the similar results. Thus, we only present the
results at p = 8.

014105-2



NONEQUILIBRIUM PHASE TRANSITIONS IN A … PHYSICAL REVIEW E 109, 014105 (2024)

FIG. 1. Typical configurations of the Brownian clock model with
p = 8, ρ = 2, and L = 128 in the disordered phase [(a) and (b) with
K = 0.5], the QLRO phase [(c) and (d) with K = 0.6], and the
ordered phase [(e) and (f) with K = 1.5]. In (a), (c), (e), each dot
represents a particle whose spin state is color coded according to the
chart in (e). Spin configurations inside the square boxes are coarse
grained and shown in (b), (d), (f), where each arrow represents an
average direction of spins in a 4 × 4 square cell. Blue and red squares
in (b) and (d) represent vortices and antivortices, respectively, which
will be defined in Sec. III B.

A. Finite-size scaling of the order parameter

Figure 3 shows the order parameter m(K, ρ; L) as a func-
tion of K or ρ. When K or ρ is large, the order parameter
converges to a finite value as L increases. It signals a long-
range ordered phase where the p-fold clock symmetry is
broken spontaneously. In the opposite case, the order parame-
ter decays to zero as L increases.

Interestingly, the system undergoes phase transitions even
when the ferromagnetic spin interaction is infinitely strong
(K = ∞). Without particle diffusion, it corresponds to the
trivial zero-temperature limit. In the Brownian clock model,
however, the particle diffusion generates a temporal fluctua-
tion: It may turn on and off the interaction between particles.
It also mixes particles from different magnetic domains. Con-
sequently, the spin ordering cannot be perfect and the system

0.1 0.2
1/p

0.0

0.2

0.4

0.6

0.8

1.0

e−
K

Disorder

QLRO

Order

K1

K2

FIG. 2. Phase diagram of the Brownian p-state clock model with
fixed particle density ρ = 2. Lines are guides to the eyes.

can undergo phase transitions as one varies, e.g., the particle
density.

At criticality, the order parameter follows a power-law
scaling

m ∼ L−β̃ (5)

with the finite-size scaling exponent denoted as β̃. We can
characterize the finite-size scaling behavior of the order
parameter and locate the critical point using an effective ex-
ponent

β̃eff (K, ρ; L) ≡ − ln[m(K, ρ; 2L)] − ln[m(K, ρ; L)]

ln 2
. (6)

It will converge to the scaling exponent β̃ as L increases in the
critical phase. On the other hand, it will converge to 0 in the
ordered phase [m = O(L0)] and to 1 in the disordered phase
[m = O(L−1)]. The effective exponent for the data in Fig. 3(b)
is presented in Fig. 4. We can identify three distinct phases:
(i) When ρ < ρ1(	 0.76), the effective exponent tends to
1 as L increases. This region corresponds to the disordered
phase. (ii) When ρ1 < ρ < ρ2(	 0.94), the effective exponent
converges to a nontrivial value β̃ that varies continuously with
ρ. This region corresponds to the critical QLRO phase. (iii)

0.5 1.0
K

0.0
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0.4

0.6
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1.0

m

(a)
ρ = 2

32
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128

256

512

0.6 0.8 1.0
ρ

(b)
K = ∞

FIG. 3. The order parameter m of the Brownian eight-state clock
model as a function of the coupling constant K with fixed ρ = 2 in
(a) and the particle density ρ with fixed K = ∞ in (b) at several
values of 32 � L � 512.
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FIG. 4. Finite-size scaling analysis for the order parameter at
K = ∞. (a) Effective exponent β̃eff vs ρ at several values of L. The
effective exponent converges to a nontrivial value β̃ when ρ1 � ρ �
ρ2 with ρ1 	 0.76 and ρ2 	 0.94. Its value is in agreement with
1/8 (solid line) at ρ = ρ1 and with 2/p2 = 1/32 (dashed line) at
ρ = ρ2. In (b) and (c), we present the L dependence of the order
parameter and the effective exponent at selected values of ρ. The
solid and dashed lines in (c) represent the reference values 1/8 and
1/32, respectively.

When ρ > ρ2, the effective exponent converges to 0. This
region corresponds to the ordered phase. When the particle
density is low, a dynamic interaction network, composed of
edges between particles whose distance is smaller than r0,
cannot form an infinite percolation cluster [13]. Thus, the
particle density should be larger than a threshold value for the
ordered and the QLRO phases even with K = ∞.

The finite-size scaling behavior of the Brownian clock
model reminds us of the double BKT transition picture of
the equilibrium clock model on the lattice. As introduced in
Sec. I, the equilibrium p-state clock model (p > 4) has the
intermediate QLRO critical phase, which is separated from
the disordered phase and the ordered phase with the BKT
transitions [17]. In the QLRO phase, the spin-spin correla-
tion function decays algebraically as C(r) ∼ r−(d−2+η) with
the continuously varying exponent η within the range shown
in Eq. (2). The power-law decay of the correlation function
implies that the order parameter follows the power-law scaling
m ∼ L−β̃ with β̃ = (d − 2 + η)/2. With d = 2, the finite-size
scaling exponent also varies continuously in the range

2

p2
� β̃ � 1

8
. (7)

The Brownian clock model also has the QLRO phase with
the continuously varying finite-size scaling exponent β̃. Fur-
thermore, in Fig. 4, we find that β̃ is close to the universal
value 1/8 at the transition point to the disordered phase and
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FIG. 5. Finite-size scaling analysis of the order parameter at ρ =
3. (a) The effective exponent β̃eff is plotted as a function of K . The
vertical lines at K1 (solid, red) and K2 (dotted, blue) indicate the phase
transition points. Also drawn are the horizontal lines at β̃eff = 1/8
(solid) and 1/32 (dashed), which represent the universal values at the
BKT transitions of the equilibrium system. (b) Enlarged plot for the
region inside the dotted box in (a). (c) β̃eff of the equilibrium model
on the lattice as a function of J/kBT .

2/p2 = 1/32 at the transition point to the ordered phase. This
agreement suggests that the BKT transition may be robust
against the particle diffusion.

We have also performed the finite-size scaling analysis
at other parameter values. Figure 5(a) presents the effective
exponent plot as a function of K at fixed ρ = 3. There are
three regions, which correspond to the disordered phase (K <

K1), the QLRO phase (K1 � K � K2), and the ordered phase
(K > K2), respectively. In the QLRO phase, the effective ex-
ponent converges to a finite-size scaling exponent β̃ whose
value varies with K . At the transition point to the disordered
phase (K = K1), the exponent is in agreement with the uni-
versal value 1/8 of the BKT transition [see Fig. 5(b)]. On the
other hand, at the symmetry-breaking transition (K = K2), its
value is significantly smaller than the universal value 2/p2 =
1/32. This is in sharp contrast to the equilibrium model on
the lattice. In Fig. 5(c), we present the effective exponent
plot for the equilibrium model with the Hamiltonian (1). The
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FIG. 6. (a) The phase diagram of the Brownian eight-state clock
model in the (ρ, e−K ) plane. (b) shows the finite-size scaling ex-
ponent β̃ evaluated at the transition points K = K2(ρ ) between the
QLRO phase and the ordered phase. Deviation from the universal
value 1/32 of the equilibrium model becomes large as ρ increases.

finite-size scaling exponent takes the universal values 1/8 and
2/p2 = 1/32 at each BKT transition point. Repeating the
finite-size scaling analysis, we obtain the phase diagram of
the Brownian (p = 8)-state clock model in the (ρ, e−K ) plane,
which is shown in Fig. 6(a). Along the boundary between the
disordered and the QLRO phases, β̃ is in agreement with the
universal value 1/8 of the BKT transition up to a numerical
accuracy. On the other hand, along the boundary between the
QLRO and the ordered phase, β̃ deviates from the universal
value 2/p2 of the equilibrium system [see Fig. 6(b)]. The
discrepancy is minimum at K = ∞, and becomes large as
ρ increases. Both the coincidence with and the discrepancy
from the equilibrium theory at either boundary of the QLRO
phase are puzzling. We will address this issue in the upcoming
sections.

B. BKT phase transition between the QLRO phase
and the disordered phase

In the equilibrium model, the BKT transition from the
QLRO phase to the disordered phase is driven by the unbind-
ing of vortex-antivortex pairs. These topological excitations
are also present in the Brownian clock model. In order to iden-
tify them, we divide the two-dimensional plane into a regular
array of (L/b)2 cells of size b2 and assign a cell spin sα =∑

i∈α ui with azimuthal angle θα = argsα to each cell α =
1, · · · , (L/b)2. These cells form a square lattice. The vorticity
can be defined at each elementary square. Let (s1, s2, s3, s4)
be four cell spins enclosing an elementary square in the coun-
terclockwise direction. The vorticity at an elementary square
is defined by the winding number given by

v = 1

2π
(�θ12 + �θ23 + �θ34 + �θ41), (8)

where the angle difference �θαα′ ≡ θα′ − θα is measured in
the range −π < �θαα′ � π [35,36]. A nonzero value of v

indicates a vortex (v = +1) or an antivortex (v = −1) core.
Figures 1(b), 1(d), and 1(f) display a typical cell spin

configuration in each phase. We also depict the vortex and
antivortex cores identified with the vorticity in Eq. (8).
In the QLRO phase, there are only a few vortices and
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FIG. 7. (a) The spin-spin correlation function and (b) the corre-
lation length near the disordered-QLRO phase transition point K =
K1 = 0.558 at p = 8 and ρ = 2. The correlation function follows a
power law C(r) ∼ r−η in the QLRO phase (K � K1) with η = 1/4
at the transition point. (b) The correlation length estimated using
Eq. (11) grows as K approaches the transition point and saturates
to an O(L) value when the correlation length exceeds the system
size. The solid line is a curve 1.58e0.611|K−K1|−1/2

that fits the data
at L = 512 best.

antivortices, which form bound pairs [see Fig. 1(d)]. The dis-
ordered phase is more abundant in the topological excitation.
More importantly, there appear free vortices and antivortices.
This qualitative feature supports that the transition from the
QLRO phase to the disordered phase belongs to the BKT
transition universality.

The universality is further confirmed with the correlation
function. We construct the cell spins sα = ∑

i∈α ui with b = 1
and measure the correlation function C(r)

C(r) = [〈(sα − s̄) · (sα′ − s̄)〉]rα′ −rα=r, (9)

where s̄ = 1
Ld

∑
α sα , the angular bracket denotes the steady-

state time average, and the square bracket denotes the average
over all pairs of cell spins displaced by r. Figure 7(a) presents
the correlation function near K = K1 	 0.558 at ρ = 2. Inside
the QLRO phase (K > K1), the correlation function decays
algebraically with the distance. The decay exponent at the
transition point is in good agreement with the universal value
1/4 of the vortex-antivortex unbinding BKT transition [16].

Another hallmark of the BKT transition is the essential
singularity [16,17,19,20] in the correlation length

ξ (K ) ∼ ea|K−K1|−1/2
(10)

as the transition point is approached from the disordered
phase. The correlation length estimated as [20]

ξ =
√∑

r |r|2C(r)∑
r C(r)

(11)

is presented in Fig. 7(b). As K increases, the correlation length
increases until it saturates to a value O(L). It is not decisive yet
even at L = 512 whether the growth of the correlation length
follows the scaling form in Eq. (10). However, an upward
curvature in the correlation length plot in the log-log scale
suggests that the essential singularity would show up at larger
systems.
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Our numerical results coherently suggest that the vortex-
antivortex unbinding BKT transition is robust against the
particle diffusion. We present a theoretical argument for the
robustness. In order to understand the role of the particle
diffusion, we consider an effective dynamics of a vortex and
antivortex pair. Let r be the relative displacement between
the pair. In the equilibrium system, the pair interacts through
the attracting logarithmic potential V (r) 	 2πJ ln |r| with a
renormalized coupling constant J [16,19]. Thus, the time evo-
lution is governed by the Langevin equation in dimensionless
unit

ṙ = −∇V (r) +
√

2T ζth(t ), (12)

where ζth(t ) denotes the δ-correlated white noise of unit vari-
ance coming from stochastic thermal fluctuations of spins.
The Langevin equation results in the power-law distribution
Peq(r) ∼ e−βV (r) ∼ r−2πJ/T in equilibrium [16,19,37]. As a
result of the competition between the logarithmic attraction
and the thermal fluctuation, the pair forms a bound state with
finite 〈r2〉 at low temperatures (T < πJ/2) and becomes un-
bound at high temperatures. In the latter case, free vortices
and antivortices proliferate and destroy the criticality. The
binding-unbinding of the pair is the underlying mechanism
for the BKT transition [16].

The particle diffusion in the Brownian clock model in-
troduces an additional diffusion noise. Independent random
walks of particles will induce additional diffusion motions
of the vortex-antivortex cores. We note that spin fluctuations
and diffusive fluctuations are completely uncorrelated. Thus,
the effective Langevin equation for the vortex-antivortex pair
would be given by

ṙ = −∇V (r) +
√

2T ζth(t ) +
√

2Dζd (t ), (13)

where ζd (t ) is δ-correlated white noise of unit variance repre-
senting the diffusion noise and D ∝ l2

0 is a diffusion constant.
The thermal noise and the diffusion noise are uncorrelated
for the passive Brownian particles. Thus, their sum acts as sin-
gle thermal noise with an effective temperature Teff = T + D.
In this argument, the particle diffusion only modifies the effec-
tive temperature of the topological excitation. Therefore, we
conclude that the phase transition between the QLRO phase
and the disordered phase belongs to the BKT universality
class.

The Langevin equation in Eq. (13) predicts that the prob-
ability distribution for the displacement is given by P(r) ∼
e−V (r)/Teff ∼ r−δ where δ = 2πJ/Teff [16,19,37]. The expo-
nent δ depends on the microscopic model parameters such
as K and ρ. As a numerical evidence for the proposed
Langevin equation, we measure the number density of the
vortex-antivortex pairs as a function of the distance. We
coarse grain a spin configuration using b × b cells and count
the number of vortex-antivortex pairs per unit area. Under the
coarse graining, any vortex-antivortex pairs whose separation
is smaller than b are coarse grained out and invisible [see
Figs. 8(a)–8(c)]. Thus, the measured number density is given
by

npair (b) =
∫

|r|�b
P(r)d2r. (14)

b
=
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=

4
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FIG. 8. The part of the spin configuration shown in Fig. 1(c) are
coarse grained with cell sizes (a) b = 2, (b) 4, and (c) 8. As b
increases, vortex-antivortex pairs at shorter distances are coarse
grained out. (d) The number density npair (b) of vortex-antivortex
pairs multiplied with b2 is plotted as a function of the coarse-graining
cell size b in the log-log scale. The data b2npair (b) display the power-
law decay in the QLRO phase (K < K1 ∼ 0.558) while they increase
in the disordered phase (K > K1). These behaviors are consistent
with the theoretical prediction explained in the main text. All the
data were taken for the Brownian eight-state clock model with ρ = 2
and L = 1024.

Using P(r) ∼ r−δ with δ � 4 in the QLRO phase, we pre-
dict that npair (b) ∼ r−(δ−2) decays algebraically with b. In
Fig. 8(c), we present the numerical data obtained for the
Brownian eight-state clock model with ρ = 2 near the vortex-
antivortex unbinding transition point K = K1 	 0.558. The
number density follows the power law in the QLRO phase,
which justifies the Langevin equation proposed in Eq. (13).

C. Energy flow as a nonequilibrium effect
at the symmetry-breaking transition

As mentioned in Sec. II, the Brownian clock model could
be regarded as a system that is thermal contact with the spin
bath and the diffusion bath. In this section, we examine the
energy flow between the two baths through the Brownian
clock spin system near the symmetry-breaking transition.

We introduce a local energy ei of particle i:

ei ≡ −
∑
j∈Ni

cos(θi − θ j ), (15)

where Ni denotes the set of particles within the interaction
range r0 from i. Its value varies stochastically as spins flip and
particles move. In order to separate the effects of both dynam-
ics, we measure the probability distributions Ppost/pre(e; n) =
〈δ(ei − e)〉post/pre,n of the local energy of a particle having n
interaction neighbors right before (Ppre) and after (Ppost ) the
spin updates.

Figures 9(a) and 9(b) compare the probability distributions
at the symmetry-breaking transition point K = K2 when ρ =
3. A particle in a dense region (n = 11) loses an energy to the
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FIG. 9. Energy flow in the Brownian eight-state clock model
with L = 512. (a) Local energy distributions Ppre,post (e; n = 11) at
K = K2 = 0.56 when ρ = 3. (b) Ppre(e; n) − Ppost (e; n) when n = 11
and n = 4. Other parameters are the same as in (a). (c) Average
energy gain from the spin bath at the symmetry-breaking transi-
tion point K = K2 at different values of the overall particle density
ρ = 1, 2, 3. (d) Comparison of �β̃ = 2/p2 − β̃(K2) and the ratio
Qin/Qout .

spin bath while one in a dilute region (n = 4) gains an energy
from the spin bath. The average energy gain from the spin
bath, or equivalently the energy loss to the diffusion bath, is
given by

Q(n) =
∫

ePpost (e; n)de −
∫

ePpre(e; n)de. (16)

The energy gain spectrum Q(n) at the symmetry-breaking
transition point K = K2 is presented in Fig. 9(c). We notice a
qualitative difference in the energy gain spectrum depending
on the overall particle density. When ρ = 3, the system gains
an energy from the spin bath [Q(n) > 0] in dilute regions and
loses an energy to the spin bath [Q(n) < 0] in dense regions.
The energy flow from the spin bath should be compensated
by the counter energy flow from the diffusion bath. The sign
change in Q(n) indicates a spin energy transfer from the low-
density regions to the high-density regions with the help of the
diffusion bath. Such a spatial energy flow drives the system
out of equilibrium. On the other hand, when ρ = 1, particles
gain an energy from the diffusion bath and lose it to the spin
bath irrespective of the local density. Such an energy flow does
not necessarily accompany a spatial energy flow.

As an indicator of the nonequilibrium driving, we propose
to consider a ratio Qin/Qout, where Qin (Qout ) is the gross
amount of the energy gain (loss) of the system from (to) the
spin bath. They can be evaluated as

Qin =
∑

n

Q(n)�[Q(n)]PP(n; ρ)

(17)
Qout =

∑
n

|Q(n)|�[−Q(n)]PP(n; ρ),
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FIG. 10. The probability distribution of the relative angle of a
local field with respect to a central spin evaluated at the symmetry-
breaking transition point of the Brownian clock model (p = 8, ρ =
3, K = K2 = 0.56, L = 512) in (a) and of the equilibrium lattice
clock model (p = 8, J/kBT = 2.4, L = 512) in (b). The average
number of interaction neighbors is n0 = πr2

0ρ 	 9.4 in the Brownian
clock model. The local field in the equilibrium model is calculated
from eight spins from nearest and next-nearest neighbors of a central
spin.

where �(x) is the Heaviside step function and PP(n; ρ) =
e−n0 nn

0
n! is the Poisson distribution for the number of inter-

acting neighbors with the mean n0 = πr2
0ρ. Since particles

diffuse freely, the number of particles within a circle of ra-
dius r0 follows the Poisson distribution. In Fig. 9(d), we
compare the ratio Qin/Qout and the deviation �β̃ = 2/p2 −
β̃(K2) of the finite-size scaling exponent at the symmetry-
breaking transition point from the equilibrium value. There
is a positive correlation between them, which suggests that
the nonequilibrium energy flow is responsible for the quanti-
tative deviation of β̃(K2) from the equilibrium BKT transition
picture.

The energy flow disturbs a local field hi = ∑
j∈Ni

u j

around a spin ui from the corresponding equilibrium distri-
bution. We characterize the nonequilibrium effect using the
distribution function P(φ) = 〈δ(φi − φ)〉 of the relative angle
φi ≡ arg[hi] − θi of the local field. The distribution function
P(φ) evaluated at the symmetry-breaking transition point K =
K2 at ρ = 3 is compared with the distribution function in
the equilibrium lattice model in Fig. 10. The two distribution
functions have significantly different shapes, which signals
the nonequilibrium effect in the Brownian clock model. The
former is characterized with intermittent peaks and is more
widely distributed than the latter. Based on the complex distri-
bution function, we further speculate that the spin fluctuation
in the Brownian p-state clock model might be described with
an effective value peff , which is larger than the bare value p.
Were it true, the finite-size scaling exponent at the symmetry-
breaking transition would be given by β̃ = 2/p2

eff � 2/p2 as
found in the numerical study. It will be interesting to develop
a theory for P(φ) and peff , which is beyond the scope of the
present study.

IV. SUMMARY AND DISCUSSION

We have investigated the nature of the phase transitions
in the Brownian p-state clock model with extensive numeri-
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cal simulations. Our numerical results are summarized with
the phase diagram in Fig. 2. Despite the particle diffusion,
the phase diagram has the same overall structure as that
of the equilibrium model in the two-dimensional lattice. When
p � 4, the system undergoes a single order-disorder phase
transition. When 4 < p < ∞, there appears the QLRO phase
in between the ordered and disordered phases. The QLRO
phase is a critical phase where the correlation function and
the order parameter exhibit the power-law scaling C(r) ∼ r−η

and m ∼ L−β̃ with the continuously varying critical exponents
η and β̃ satisfying the scaling relation β̃ = η/2.

We found that the vortex-antivortex unbinding BKT tran-
sition is robust against the particle diffusion. Our numerical
results show that β̃ takes the universal value 1/8 at the tran-
sition to the disordered phase. We presented a theoretical
argument based on the effective dynamics of vortex-antivortex
pairs. The particle diffusion only modifies the effective tem-
perature for the topological excitations, hence it only shifts the
transition point and does not alter the transition nature.

On the other hand, it is questionable whether the
symmetry-breaking phase transition from the QLRO phase
to the ordered phase also belongs to the equilibrium BKT
universality class. The equilibrium theory predicts that β̃ takes

the universal value 2/p2 at the transition point. On the con-
trary, β̃(K2) in the Brownian clock model is nonuniversal:
It deviates from 2/p2 and the discrepancy increases system-
atically as the particle density increases [see Fig. 6(b)]. We
observed that the particle diffusion induces an energy flow
through the system, which drives the system out of thermal
equilibrium. Quantitatively, the energy flow is positively cor-
related with the discrepancy �β̃(K2) = 2/p2 − β̃(K2) [see
Fig. 9(d)]. Based on this observation, we conjecture that the
nonequilibrium heat flow is responsible for the nonuniver-
sal BKT transition to the ordered phase. The discrepancy
β̃(K2) < 2/p2 might indicate a change in the number of spin
states from the bare value p to a renormalized value peff . � p.
It would be interesting to examine such a possibility, which
we leave for a future work.
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