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We investigate the finite-size origin of the coherence time (or equivalently of its inverse, the emission
linewidth) of a spatially extended, one-dimensional nonequilibrium condensate. We show that the well-known
Schawlow-Townes scaling of laser theory, possibly including the Henry broadening factor, only holds for small
system sizes, while in larger systems the linewidth displays a novel scaling determined by Kardar-Parisi-Zhang
physics. This is shown to lead to an opposite dependence of the coherence time on the optical nonlinearity in
the two cases. We then study how subuniversal properties of the phase dynamics such as the higher moments of
the phase-phase correlator are affected by the finite size and discuss the relation between the field coherence and
the exponential of the phase-phase correlator. We finally identify a configuration with enhanced open boundary
conditions, which supports a spatially uniform steady state and facilitates experimental studies of the coherence
time scaling.
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I. INTRODUCTION

The statistical theory of critical phenomena in systems at
thermal equilibrium is considered one of the most successful
branches of theoretical physics [1,2]. The central result is that
at criticality the low-energy correlation functions are charac-
terized by universal exponents, insensitive to the microscopic
details of the system but only determined by dimensionality
and symmetries, in particular spontaneously broken ones. As
a result, seemingly distant phenomena such as the gas-liquid
transition and Ising ferromagnetism end up belonging to the
same universality class. While the general theory refers to a
spatially infinite setting, real systems necessarily have a finite
spatial extent, so that the study of finite-size effects is of great
importance in this context. In particular, finite-size scaling
methods [3,4] have been developed to obtain precise estimates
of the critical exponents from measurements on systems of
different sizes on the order of the correlation length. Such a
tool has turned out to be of tremendous utility in numerical
simulations.

Even though criticality is omnipresent also in out-of-
equilibrium systems, power-law correlators are present, for
instance, in avalanches, percolation, social networks, and
many other natural phenomena; here a general classification
scheme is still lacking. In contrast to equilibrium where scale
invariance only appears in the proximity of phase transitions
and requires a fine tuning of one or more parameters, in
nonequilibrium systems it can be observed without a fine
tuning of the parameters; as an emblematic example we men-
tion systems displaying self-organized criticality [5]. This
provides a further motivation to explore the interplay between
finite-size effects and universality in nonequilibrium systems.

In this work we study the coherence time of a
driven-dissipative one-dimensional (1D) quasicondensate.

Experimentally relevant platforms to investigate this physics
include lasing in 1D spatially extended systems such as pho-
tonic [6] or polariton [7] wires, discrete arrays of polariton
micropillars [8,9], or vertical-cavity surface-emitting lasers
(VCSELs) [10,11], or even the edge modes of 2D topological
lasers [12–15]. In all these systems, a natural and technologi-
cally very relevant observable is the inverse of the coherence
time, also known as emission linewidth, namely the spectral
width of the light emitted from a given point of the device.

Schawlow and Townes in their seminal work [16] predicted
that the ultimate linewidth of a single-mode laser is set by the
spontaneous emission and scales inversely to the number of
photons in the laser cavity. This scaling is accurate for the
simplest, textbook case of a zero-dimensional device where
the spatial dynamics of the light field is frozen and one can re-
strict to a single cavity mode. While in this zero-dimensional
case the diffusive dynamics of the global phase gives a linear
growth of the phase-phase correlator, a much richer physics
is found in the spatiotemporal phase-phase correlator of spa-
tially extended systems. As proven in a series of recent studies
[9,15,17–20], nonequilibrium 1D quasicondensates belong in
fact to the Kardar-Parisi-Zhang (KPZ) [21] universality class.

In a recent work [15], two of us recently remarked that
the finite value of the coherence time of a spatially extended,
yet spatially finite, laser device can be viewed as a finite-size
effect. Here we undertake a systematic study of this physics
in one dimension and we show that, for large enough systems,
signatures of the KPZ universal exponents remain visible, also
at very large times, in a peculiar dependence of the coherence
time on the spatial size of the device, well distinct from the
standard Schawlow-Townes scaling. Furthermore, as we show
below, KPZ corrections to the Schawlow-Townes scaling are
expected also in two dimensions; a logarithmic broadening
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due to the lack of long-range order was also reported for the
linewidth of noninteracting condensates, used to model lasing
in the fast thermalization limit [22]. Finally, the coherence
time of a flat band chain with lasing stabilized by quantum
geometry has been considered in Ref. [23]: remarkably, the
KPZ nonlinearity turns out to be zero in this case and, in
spite of the lack of long-range order, the Schawlow-Townes
scaling is observed. All these investigations provide an excit-
ing link between crucial concepts of nonequilibrium statistical
mechanics and an observable quantity of central importance in
the general theory of lasing as well as for applications.

The structure of this work is the following. In Sec. II
we start introducing the model for the quasicondensate and
reviewing the general KPZ theory of the phase dynamics.
In Sec. III we report numerical simulations of the stochastic
complex Ginzburg-Landau equation (CGLE) describing the
field evolution and we compare the result with the predictions
of the Kuramoto-Sivashynskii equation (KSE) describing the
phase dynamics and of the low-energy KPZ equation. For both
the full CGLE dynamics and the KSE, the numerical calcula-
tions clearly show that for small system sizes L the coherence
time scales linearly in L according to the Schawlow-Townes
prediction, while for large systems the scaling is instead pro-
portional to

√
L. For the low-energy KPZ evolution, only the

latter scaling is observed, as entailed by the universal 1D KPZ
exponents under a finite-size scaling hypothesis. The KPZ
scaling properties are then used to explore the effect of an
optical nonlinearity, namely a photon-photon interaction term,
on the line width: interestingly, this nonlinearity has opposite
effects in the two regimes, so the optimal coherence time is
obtained for an intermediate value of the interactions.

In Sec. IV we investigate the higher moments of the phase-
phase correlator, which are known to exhibit subuniversal
features [20,24]. In particular, we present numerical evidence
that, as a finite-size effect, the probability distribution for
the phase transits from a skewed distribution, as expected by
KPZ, to an approximately Gaussian distribution at large times.
A similar crossover has recently been the topic of intense
investigations in the context of the one-dimensional totally
asymmetric simple exclusion process (TASEP) [25–30]. In
particular, the Gaussian character of the phase fluctuations at
long times that was predicted in the context of the TASEP
plays a crucial role in our optical systems, since it entails
that reexponentiation of the phase-phase correlator is allowed
when calculating the temporal coherence function and, then,
the coherence time.

In view of facilitating experiments, in Sec. V we propose
a lattice configuration with enhanced open boundary con-
ditions: the spatially uniform profile of the steady state is
of great utility for the accurate extraction of the scaling of
the linewidth with L in experiments. Conclusions are finally
drawn in Sec. VI.

II. KPZ UNIVERSALITY IN ONE-DIMENSIONAL
NONEQUILIBRIUM CONDENSATES

We start by reviewing the theory of KPZ universality in
one-dimensional geometries [15,17–20]. Even though we will
focus on the case of a continuous wire, the main results also
apply to discrete lattices, e.g., the Lieb arrays of polariton

micropillars considered in [9] as well to the edge modes of
2D topological lasers [14,15]. Assuming that the reservoir of
carriers can be adiabatically eliminated, the field dynamics is
described by the stochastic partial differential equation

i∂tψ =
[
− 1

2m
∇2 + gn + i

2

(
P

1 + n/nS
− γ

)]
ψ +

√
2Dξ,

(1)
where ψ is the semiclassical field, m the photon mass,
g the strength of the Kerr optical nonlinearity, namely
the photon-photon interactions, and n = |ψ |2 the density.
The nonequilibrium features enter through the loss rate γ , the
effective pumping rate P, and the saturation density scale nS .
Finally, ξ is a Gaussian-distributed white noise term 〈ξ ∗(x, t )
ξ (x′, t ′)〉 = δ(x − x′)δ(t − t ′) and D is the noise strength
coefficient. For small density fluctuations around n0 the de-
nominator of the saturation term can be expanded at linear
order in the density; for this reason, Eq. (1) is also called lato
sensu a complex Ginzburg-Landau equation (CGLE) [31].

At mean-field level, the steady state above the condensa-
tion threshold P > Pth = γ is characterized by the density
n0 = nS (P/Pth − 1). Because of the U (1) symmetry of the
CGLE, the global phase of the steady state is spontaneously
selected and the Bogoliubov excitation spectrum (reviewed in
the Appendix) contains a gapless branch.

Upon inclusion of noise, provided density fluctuations are
small, one can focus on the phase dynamics, which occurs on
much longer timescales compared the density relaxation rate
� = γ (P−γ )

P . By adiabatically eliminating the density fluctu-
ations, the CGLE (1) reduces to the Kuramoto-Sivashinsky
equation (KSE)1

∂tφ = 1

2m

[
−�−1

2m
∂4

x φ + α∂2
x φ − (∂xφ)2

]
+

√
D(1 + α2)

n0
ξ1,

(2)

where the noise is now real with 〈ξ1(x, t )ξ1(x′, t ′)〉 = 1
2δ(x −

x′)δ(t − t ′) and where we have introduced the blue shift of
the unperturbed steady state μ = gn0 and the so-called Henry
factor α = 2μ/�: the fluctuations of the density determine a
local variation of the refractive index of the optical medium,
which results in an extra noise source in the phase equation,
the so-called Henry linewidth broadening effect [32].

Note that the phase φ indicates here an unwound phase
variable that is not restricted to the [0, 2π ] interval. As such,
the theory based on the KSE (2) does not capture the physics
of (spatiotemporal) vortices discussed in Refs. [9,33]: this
approximation is legitimate as long as noise D is sufficiently
weak and density fluctuations are small. In this small D limit,
the density of vortices is in fact exponentially small [33],
while, as we are going to show below, the characteristic length
scales for phase fluctuations grow at most as a power law of
1/D.

1Note how our Eq. (2) differs from the equation considered in
Ref. [17] in that we are not making the near-threshold approx-
imation α � 1. Some people would rather call this equation a
Golubović-Bruinsma equation, keeping the name KSE for the case
with destabilizing Laplacian.
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Measuring space, time, blue shift, and (unwound) phase
in terms of the characteristic scales defined in terms of the
microscopic parameters by

l∗ = [
(2m)4�3Dn−1

0

]−1/7
, t∗ = [

(2m)2�5
(
Dn−1

0

)4]−1/7
,

φ∗ =
[

2m(Dn−1
0 )2

�

]1/7

, μ∗ = 1

2

[
2m�6(Dn−1

0 )2
]1/7

(3)

leads to the adimensional form of the KSE,

∂t̃ φ̃ = μ̃∂2
x̃ φ̃ − ∂4

x̃ φ̃ − (∂x̃φ̃)2 +
√

1 + α2 ξ̃ , (4)

which, at large distances and long times, renormalizes to a
KPZ equation of the form [34]

∂t̃ φ̃ = ν∂2
x̃ φ̃ + λ

2
(∂x̃φ̃)2 +

√
Dξ1. (5)

In particular, the Galilean invariance of the KSE and KPZ
[24] dictates that the coupling of the nonlinear term does
not get renormalized and remains fixed to λ = −2 along the
renormalization flow.

Neglecting finite-size effects, it can be shown [21] that
the connected phase-phase correlator (corresponding to the
height-height correlator in the KPZ literature) defined as


φ̃2
x̃,t̃ ≡ 〈δφ̃2

x̃,t̃ 〉, (6)

with

δφ̃x̃,t̃ = φ̃(x̃, t̃ ) − φ̃(0, 0) − 〈φ̃(x̃, t̃ ) − φ̃(0, 0)〉 (7)

has the scalings 
φ̃2
x̃,0 ∼ x̃2χ and 
φ̃2

0,t̃ ∼ t̃2χ/z in space and
time, respectively. In one dimension the correlator is known
exactly [35], giving values χ = 1/2 and z = 3/2 for the so-
called roughness and dynamical exponents.

While a number of recent works have addressed the gen-
eral features of the spatial [36,37] and the spatiotemporal
coherence [9,15,17–20], in the following we will focus on the
long-time behavior of the temporal coherence, as described by
the first-order temporal coherence function of the field

g(1)(t ) = 1

n0
|〈ψ∗(0, t )ψ (0, 0)〉|. (8)

Several arguments support our choice. From a theoretical
point of view, while at short and intermediate times the KPZ
physics is visible in the spatiotemporal behavior of the phase-
phase correlations fluctuations, in the long-time limit of a
spatially finite system the spatial dependence is washed out
[15] and the coherence ends up being fully characterized by
the g(1)(t ) function only. From an experimental perspective,
this function is a key property of a coherent light emitter, as
it characterizes how slowly the emission phase diffuses over
time. In particular, its Fourier transform gives the spectrum of
the emitted light.

From Eq. (6) for the phase-phase correlation function, one
may be tempted to perform an exponentiation of the phase
variance to directly extract the field coherence

g(1)(t ) ∼ e− 1
2 
φ̃2

0,t̃ . (9)

However, as it was remarked in Ref. [20], this cumulant ap-
proximation procedure is not generally legitimate, since the

KPZ height profile at a given point is not a Gaussian random
variable, but is rather given by

φ(x, t ) − φ(x, 0) = v∞t + σ t1/3X + . . . , (10)

where X is a non-Gaussian random variable. For a system at
the steady state, the distribution of X is of the Baik-Rains
type [38]; under different initial or boundary conditions, the
distribution may fall in other KPZ universality subclasses, see
Ref. [24] for a review. We also mention that the fluctuation
statistics of both the stochastic and deterministic (chaotic)
KSE are a subject of active research, both at small [39] and
large times [40,41]. As we are going to see in what follows,
in spite of the non-Gaussianity of X , the reexponentiation
encoded in Eq. (9) can still be used in the very long time
regime to extract the emission linewidth.

III. SCALING OF THE COHERENCE TIME

While these universal features have been derived for the
case of spatially infinite systems, they provide an accurate de-
scription also for finite systems up to a saturation time scaling
as Lz. For longer times and/or shorter systems, the physics
is instead dominated by finite-size effects, which are also
expected [15] to display remarkable features in the coherence
time as we are now going to see.

If spatial fluctuations are neglected in a sort of single-mode
approximation, the long-time behavior of the correlation func-
tion is dominated by the diffusion of the phase. Since any
restoring force is forbidden by the microscopic U (1) sym-
metry of the model, the phase performs a random walk in
time. In this case, reexponentiation (9) is exact and yields an
exponential decay of the coherence function

g(1)(t ) = e− γST
2 |t |, (11)

at a rate

γST = D

n0L
(1 + α2). (12)

As it was first pointed out by Schawlow and Townes [16], the
coherence time τc ≡ 2/γST is proportional to the total number
Nph = n0L of photons present in the lasing mode. As this is
the result of a single-mode approximation, it does not take
into account any kind of spatial fluctuations, and the actual
dimensionality of the system does not enter this formula. In all
those cases when this scaling holds, we will refer to γST as the
Schawlow-Townes (ST) linewidth. The factor (1 + α2) was
later introduced by Henry to account for the additional broad-
ening due to refraction index fluctuations with no change in
the overall scaling [32].

For completeness, it is important to note that in our model
and for small density fluctuations, freezing out the spatial
fluctuations in Eq. (2) leads to a Gaussian dynamics for the
phase, hence to a perfectly Lorentzian line shape associated
to the exponential decay of (11). This Lorentzian line shape
is however not a general feature of single-mode lasers and
polariton condensates, where interparticle interactions can in
many cases give rise to nontrivial, in general asymmetric, line
shapes [42,43]. In all these models, however, the nontrivial
line shape originates from the short-time dynamics and an
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exponential decay of the coherence is recovered in the long-
time limit, which is the main focus of this work.

Ramping up in geometrical complexity, it is discussed in
detail in Refs. [15,17,19] that for spatially extended yet suf-
ficiently small systems, the spatial fluctuations of the phase
remain indeed weak, so one can neglect the nonlinear term
of the KSE and KPZ dynamics. As a consequence, the Bo-
goliubov theory of nonequilibrium condensates [36] can be
used and a single-mode dynamics can be isolated, so a ST
scaling holds [44]. Except at very short times when density
fluctuations are still important, the equal-space correlators
mostly probe the ST physics of the single condensate mode.

For larger systems, spatial fluctuations of the phase become
important and their coupling to the condensate mode due to
the KPZ nonlinearity significant. As a result, KPZ universality
can emerge in an intermediate temporal window. At very
long times, however, finite-size effects start to dominate and
a crossover occurs from KPZ physics back to an exponential
decay of coherence, the latter behavior taking over at times
longer than a characteristic saturation time proportional to Lz.
Nonetheless, as anticipated in Ref. [15], the nonlinearity of
the phase equation keeps having a key impact and results in a
stronger broadening of the linewidth compared to the standard
ST prediction. We therefore coin the expression generalized
Schawlow-Townes (gST) regime to indicate the long-time
behavior where g(1)(t ) decays exponentially but the standard
ST scaling τc ∝ Nph no longer holds. In the following, we
specifically investigate the dependence of the coherence time
τc on the system size L in one dimension and we highlight the
possibility of different scalings.

A. Noninteracting g = 0 case

We start from the noninteracting case g = 0 with parame-
ters that are chosen in a way to have relatively small density
fluctuations of the order of 10% but sizable spatial fluctuations
of the phase.

1. CGLE simulations

The coherence time extracted from an exponential fitting
g(1)(t ) ∼ e−t/τc of a numerical simulation of the CGLE is
reported in Fig. 1 as green squares. For small systems of
length up to L ∼ 5l∗, Bogoliubov theory holds and the effect
of the KPZ nonlinearity in the phase equation is negligible:
correspondingly, the coherence time scales as the system size,
as predicted by the ST formula (12). For longer systems with
L > 10l∗, the behavior changes and the scaling is well cap-
tured by a different scaling law, τc ∝ L1/2. At the crossover
between the two regimes, a peculiar nonmonotonic feature is
visible whose understanding remains an open question.

In order to understand the τc ∝ L1/2 scaling, we can put
forward the following argument based on a finite-size scal-
ing assumption. Since the KPZ equation is by itself scale
invariant, the only available length scale is provided by the
system size. On this basis, we can expect that the equal-space
correlator has the universal form


φ0,t ∼ t2χ/z f

(
t

Lz

)
, (13)

FIG. 1. Coherence time τc(L) of a one-dimensional condensate
plotted as a function of the system length L/l∗ measured in natural
units. The coherence time is here normalized to τc(l∗) as computed
for L = l∗. The three numerical data series correspond to the full
CGLE (green squares) and the KSE Eq. (4) (blue circles) and KPZ
Eq. (5) (red triangles) approximations. The interaction constant is
set to zero, g = 0, and the other CGLE parameters are γ = 0.1,
m = 10, P = 2γ , D = γ , nS = 1000. In the present g = 0 case, the
KSE has μ̃, α = 0. The parameters of the KPZ are chosen as D/2ν =
1.92, λ = 2, so to match the same universal long-wavelength physics
as the CGLE and KSE. For small sizes Bogoliubov theory holds
and the coherence time scales proportionally to the system length
as predicted by the Schawlow-Townes theory (black dashed line).
For longer systems, instead, the nonlinearity of the phase dynamics
determines a stronger broadening of the linewidth and a scaling
τc ∝ L1/2 [red line, see Eq. (19)].

where the function f must asymptotically recover the KPZ
result at small times, f (y → 0) ∼ 1, and the ST behavior at
long times, f (y → ∞) ∼ y1−2χ/z. In particular, in this latter
regime we have 
φ0,t ∼ t/Lz−2χ , which implies that

τc ∝ Lz−2χ (14)

and thus recovers the numerically observed scaling τc ∝ L1/2.
This finite-size scaling assumption is backed up by exact
results obtained in the context of the TASEP [25,26].

While spatial fluctuations are essential in driving global
phase fluctuations in time via the KPZ nonlinearity, it is im-
portant to recall that at very long times 
φx,t grows linearly
in time with a negligible dependence on space. This result
can be proven for small systems using Bogoliubov theory
[15], while for large systems it is supported by the exact KPZ
result of Ref. [30] and the CGLE simulations in Ref. [15].
As it was mentioned above, this space-independence of 
φx,t

at long times is another reason to focus here on the purely
temporal correlator. We refer the reader interested in the full
spatiotemporal phase distribution to the rich literature that is
available in the context of the TASEP [25–30].

In three (or higher) dimensions, long-range order of the
condensate is robust and a stable Gaussian fixed point exists
[45], so we can expect that spatial fluctuations of the phase
do not affect the long-time coherence. As a result, the simple
Schawlow-Townes scaling formula Eq. (12) should hold. The
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physics is more subtle in the intermediate 2D case. Here, we
can make use of the general KPZ result χ + z = 2 and the
known exponent χ � 0.387 [46,47] to predict τc ∼ L0.839. In
view of a numerical verification of this prediction, a chal-
lenging issue will be to properly isolate the KPZ physics
from competing effects related to the proliferation of vor-
tices [33,48,49] or thermal and relaxation effects, due, for
instance, to phonon scattering [22]. It is interesting to note
that a logarithmic correction to the Schawlow-Townes scaling
was anticipated also for a simplified model of noninteracting
2D condensate [22], while 3D atomic condensates obey the
Schawlow-Townes scaling [22,50].

Finally, a last important advance has been made in
Ref. [23]. Here, it is shown that quantum geometry can
stabilize lasing in an all flat band diamond chain of laser
resonators. Specifically, quantum geometry provides a finite
stiffness in the Laplacian of the phase equation, but there is
an exact nontrivial cancellation of the KPZ nonlinearity. Even
though such a laser does not display long-range order, the
Schawlow-Townes scaling is observed for all the system sizes
numerically considered. This highlights the centrality of the
KPZ nonlinearity in the linewidth broadening mechanism.

2. KSE and KPZ simulations

Coming back to the one-dimensional case, it is important
to verify that the behavior observed in Fig. 1 does not arise
from spurious physics related to the UV sector and/or to
density fluctuations nor from a violation of the cumulant ap-
proximation We have then directly simulated the KSE Eq. (4)
with μ̃ = 0. At long times, we observe that the phase-phase
correlator (6) grows linearly in time with a coefficient defined
as twice the inverse coherence time, 
φ̃2

x̃,t̃ ∼ 2t/τc.
In Fig. 1 we show as blue circles the coherence time pre-

dicted by the KSE for different system sizes. These points
show an excellent agreement with the predictions of the full
CGLE. This means that in the small density fluctuation regime
studied here, the KSE description can be considered an ac-
curate approximation for all system sizes and the cumulant
approximation is a legitimate approximation, at least for what
concerns the emission linewidth. Quite interestingly, also the
crossover behavior is very well reproduced by the KSE: this
suggests that the kink is determined by the renormalization of
the KSE (2) and occurs at the emergent length scale at which
the KSE flows into the KPZ.

Further insight on this is provided by numerical simu-
lations of the KPZ equation (5), whose predictions for the
coherence time is shown as red triangles in Fig. 1. The param-
eters D/2ν = 1.92, λ = 2 in the KPZ equation were chosen to
match the scaling function yielded by the CGLE and KSE for
large system sizes (see Fig 6(b) of Ref. [15], and notice that
the definition of D differs by a factor of 2). In other words,
the KSE renormalizes to a KPZ, whose parameters can be
obtained by extracting the scaling function from the numer-
ical data. Contrary to the KSE, the KPZ equation does not
capture the phase dynamics for small sizes, but the matching
is excellent for systems that are long enough for the dynamics
to be renormalized into the KPZ equation.

For the following, it is useful to obtain a precise expression
of the linewidth γKPZ of the pure KPZ equation in terms of the

parameters ν, λ,D. To this purpose, let us recall that the KPZ
equation

∂tφ = ν∂2
x φ − λ

2
(∂xφ)2 +

√
Dξ, (15)

with 〈ξ (x, t )ξ (0, 0)〉 = 1
2δ(x)δ(t ) is scale invariant and can be

rescaled through

x = ν3

λ2D y, t = ν5

λ4D2
s, φ = ν5

λ4D2
ϕ (16)

to an adimensional form

∂sϕ = ∂2
y φ − 1

2 (∂yϕ)2 + η, (17)

with 〈η(y, s)η(0, 0)〉 = 1
2δ(y)δ(s) and no free parameters.

From the previous argument on the scaling function, we
infer that the linewidth predicted by this equation for a system
of extension y ∈ [0,L] has the functional form

γKPZ (ν = 1, λ = 1,D = 1,L) = lim
s→∞

1

s
〈
ϕ2〉 = γ1√

L
.

(18)

The number γ1 = 2−5√π has been obtained (modulo a rescal-
ing, due to a different convention in the KPZ equation) from
the exact results for the height distribution in the very long
time limit, as proven in Theorem 1.5 of Ref. [30] and para-
graph 1.5.2 of Ref. [28]. This result is plotted as a solid red
line in Fig. 1 and is numerically confirmed by the red triangles,
obtained solving numerically the KPZ equation.

In terms of the physical variables (in particular the system
extension is x ∈ [0, L]) this reads

γKPZ(ν, λ,D, L) = lim
t→∞

1

t
〈
φ2〉 = λD3/2

ν3/2

γ1√
L

, (19)

where γKPZ only depends on the ratio D/ν. This form is
consistent with the fact that in the RG flow of the 1D KPZ
the two parameters D and ν separately diverge but the fixed
point is determined by their ratio D/ν and by the λ parameter,
which is also not renormalized. A most interesting feature
of Eq. (19) is that it allows us to predict the linewidth of an
arbitrary KPZ system, knowing analytically the constant γ1.

B. Effect of finite interactions g �= 0

Let us now investigate the effect of a finite interaction
constant, g �= 0. On the one hand, the effective noise on the
phase is enhanced via the same mechanism underlying the
Henry broadening of the linewidth in the single-mode laser,
as expressed by α in Eq. (12). On the other hand, for g �= 0
the Laplacian term in the microscopic phase equation (4)
is nonzero, which tends to stabilize the fluid phase by re-
ducing long wavelength fluctuations. As a consequence, the
Bogoliubov-Gaussian theory holds up to larger system sizes
and longer systems are needed to observe a clean KPZ scaling
[17].

The latter observation entails that the scaling of the
linewidth with g (or, more conveniently, with the adimensional
α = 2gn0/� parameter) in a long system may be different
from the standard Henry broadening Eq. (12) of short systems.
In the regime where the Laplacian term in KSE equation (4)
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FIG. 2. Coherence time in natural units τ̃c = (φ∗)2τc/t∗ as a
function of the Henry parameter α = 2gn0/� for three different
values of the system size. The numerical points are obtained from
simulations of the CGLE (1) using the same parameters as in Fig. 1
except for nS = 400. The dotted lines correspond to the Henry-
Schawlow-Townes formula Eq. (12), while the dashed lines represent
the KPZ scaling Eq. (20). These theoretical predictions hold, respec-
tively, for large α and small but finite α. At zero α, instead, one has
to consider the KSE (4) with μ̃ = 0, which renormalizes to a KPZ
with D/2ν � 1.92, λ = 2, whose coherence time is indicated by the
horizontal solid lines.

dominates over the quartic derivative term, one can in fact ap-
proximate the KSE with a KPZ with ν ∝ α and D ∝ 1 + α2.
The scaling with α can then be straightforwardly obtained
using formula (19), which yields

τ̃c = 2/γKPZ(μ̃, 2, 1 + α2, L/l∗) ∝ α3/2

(1 + α2)3/2

√
L. (20)

This scaling of the coherence time with α is reproduced by
numerical simulations of the CGLE for three different sizes,
as illustrated in Fig. 2. In these simulations, a smaller value of
nS is used to increase fluctuations and observe the physics of
interest within a feasible integration box.

In order to highlight the general trends, the coherence time
is plotted in natural units τ̃c = (φ∗)2τc/t∗. At very small α,
the same behavior studied in Fig. 1 for the g = 0 case is
recovered: in this case, the phase dynamics is described by
a KSE with negligible Laplacian term and Eq. (20) does not
apply. As a result, the coherence time tends to a finite value in
the α → 0 limit, signaled by the solid horizontal line.

At small but finite values of α, the Laplacian term starts
dominating over the quartic term and the points follow the
trend predicted by Eq. (20), the theoretical result being the
dashed lines. Finally, at larger interactions, the spatial fluctu-
ations are strongly suppressed by the Laplacian term, so the
physics turns out to be well described again by Bogoliubov
theory and the linewidth recovers the Henry scaling Eq. (12),
see the dotted lines. A smooth crossover separates the two
regimes predicted by Eq. (20) and Eq. (12).

It is interesting to note how the window in which KPZ
physics is observed gets wider in larger systems. In Fig. 2,
this is visible as a shift of the crossover towards larger α for

growing L/�∗. Another interesting feature visible in this plot
is that for a given finite size, the optimal coherence time is
achieved for intermediate values of the interaction constant g.
Comparing Eqs. (12) and (20) suggests that the scaling of the
optimal coupling with system size (or equivalently the one of
the crossover point between the KPZ linewidth and the ST
one) is given by α3

1+α2 ∼ L. This scaling is also consistent with
the numerical data.

IV. SKEWNESS AND CUMULANT APPROXIMATION

The analysis reported in the previous sections heavily relies
on the scaling behavior of the phase-phase correlator and the
results have been translated to the g(1) under the so-called cu-
mulant approximation mentioned in Eq. (9). More explicitly,
this approximation can be formulated as

|〈e−iφ(x,t )eiφ(x,0)〉| � e− 1
2 
φ2

x,t , (21)

which is actually exact if φ(x, t ) is a Gaussian random vari-
able and is a good approximation if the field φ(x, t ) is small: in
this regime, one can in fact expand the exponential to second
order in φ, compute the phase-phase correlator (also called the
second cumulant), and then reexponentiate the result.

However, in the KPZ regime the phase is not a Gaussian
random variable and has a more complex statistics given in
Eq. (10). For a limited temporal window, the fluctuations of φ

are small and one can recover the KPZ phase-phase correlator
by taking the logarithm of g(1)(x, t ) [15]. At longer times,
however, this procedure is no longer legitimate [9].

It is then even more remarkable to notice the excellent
agreement between the CGLE and KSE predictions for the
coherence time that is visible in Fig. 1. For this, we recall that
the fitted quantity in the first case is the logarithm of g(1)(t ),
while it is directly the phase-phase correlator in the second
case.

This result suggests that the finite system version of
Eq. (10) should have the long-time asymptotics

φ(x, t ) − φ(x, 0) = v∞t + (γct )1/2Y + . . . , (22)

where Y is now a Gaussian variable and the dots account for
non-Gaussian subleading that are subleading in the long-time
asymptotic regime (and such to yield the KPZ scaling at
intermediate times). The asymptotic form (22) has been math-
ematically proven in Ref. [30] for the field distribution of the
TASEP. According to this formula, the long-time decay of the
coherence function is proportional to ∝ exp{− γc

2 t + o(t ) . . . },
where the leading-order term is determined by the cumulant
of the Gaussian term of Eq. (22) and is safely obtained by
exponentiation; calculation of the subleading terms denoted
as o(t ) would instead require a very nontrivial reexponentia-
tion of the non-Gaussian fluctuations implied by the dots in
Eq. (22). When the logarithm of the numerically calculated
g(1)(t ) is fitted to extract the coherence time, no signatures of
a deviation from linear behavior are found: most likely, the
detection of the subleading terms would require extremely
clean data on a very broad temporal window, which goes
beyond our numerical possibilities.

Direct numerical evidence in support of Eq. (22) is dis-
played in Fig. 3, where, instead of computing field-field
correlators, we extracted the phase from our simulation of
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FIG. 3. Temporal evolution of the skewness skew(t ) of the phase
for different system sizes, from the CGLE with the same parameters
as in Fig. 1. The dotted line is the value expected from the Baik-Rains
distribution.

the g = 0 CGLE and computed the skewness of the phase
variation over different times and for several system sizes.
As usual, the skewness is defined as the normalized third
cumulant

skew(t ) =
〈
δφ3

0,t

〉
〈
δφ2

0,t

〉3/2 , (23)

with δφx,t = φx,t − φ0,0 − 〈φx,t − φ0,0〉, and is a measure of
the asymmetry of a distribution. Within the temporal window
corresponding to the KPZ regime, the skewness is finite and
has a magnitude comparable to the one expected from the
Baik-Rains distribution. As expected, it gets smaller at later
times, the crossover time depending on the system size. For
system sizes that are too small to support the KPZ regime,
the skewness remains always small. For the TASEP, the spa-
tiotemporal crossover from a Tracy-Widom or Baik-Rains
distribution (depending on the initial condition) to a Gaussian
one has been derived in Refs. [25,26] using Bethe ansatz
methods and expressed in terms of complicated summations
or integrations, which can be evaluated numerically. The
mathematical proof that the infinite time limit is indeed Gaus-
sian was given in Ref. [30].

Similarly to previous studies dealing with the KPZ subuni-
versality classes in polariton systems [20], the numerical load
of this calculation makes it difficult to obtain a clean measure-
ment of the skewness. Nevertheless, the available data confirm
the excellent agreement between the linewidth obtained from
log g(1)(t ) and 
φ2

x,t and further justify reexponentiation at
very long times.

V. ROLE OF BOUNDARY CONDITIONS

A crucial issue in view of experiments is to understand how
the boundary conditions affect the dynamics of fluctuations
and, then, the coherence time. To highlight the analogy with
the most promising device used in Ref. [9] and, at the same
time, avoid UV regularizations, in this section we focus on the
case of a discrete lattice of resonators with hopping J , whose
single-particle conservative Hamiltonian will be denoted Hlatt.
So far we were concerned with systems with periodic bound-
ary conditions (PBC), as in the top sketch of Fig. 4(a). While

(a)

(b)

FIG. 4. (a) Sketch of different boundary conditions for a discrete
lattice geometry. The color code indicates the spatial intensity profile
of the steady-state condensate: the enhanced open boundary condi-
tions (eOBC) introduced in Eq. (24) allow us to obtain a uniform
density. (b) Coherence time as a function of the system size in the
two cases of PBC (green) and eOBC (orange), plotted in the same
units as in Fig. 1. The system with eOBC supports Bogoliubov modes
with longer lifetime and, thus, displays an earlier departure from the
Schawlow-Townes scaling at smaller system sizes.

experimental implementation of a 1D device with periodic
boundary conditions is possible, it may be in practice not
straightforward [51].

Standard systems realize in fact open boundary conditions
(OBC). From the point of view of critical systems, this config-
uration presents serious drawbacks, since the uniform state is
no longer an eigenstate of HOBC

latt . This leads to a nonuniform
spatial shape of the condensate mode, involving reflection
from the two endpoints and complex interference phenomena,
as shown in the central sketch of Fig. 4(a).

A practical way around, adopted in several current exper-
iments, is to restrict pumping to the central part of a very
long lattice. In spite of the ensuing outward current [52],
this configuration allowed us to observe KPZ universality
[9] and address the linewidth problem. While flow can be
avoided by imposing an additional harmonic confinement, as
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numerically considered in Ref. [53], quantitative studies of
finite-size effects would still benefit from using a spatially uni-
form condensate and exploiting the full length of the available
device.

In what follows, we propose a configuration with enhanced
open boundary conditions (eOBC), which allows for a uni-
form condensate in a spatially finite system. In this scheme,
the energies of the two extremal resonators are lowered by
an amount J , so the Hamiltonian for the N-site lattice system
reads

HeOBC
latt = −J

N∑
i=2

[
ψ

†
i ψi−1 + ψ

†
i−1ψi

] − J
[
ψ

†
1 ψ1 + ψ

†
NψN

]
.

(24)
In such a configuration, it is straightforward to verify that the
uniform state is an eigenvector H eOBC

latt and a steady state for
the lasing system, as sketched in the last row of Fig. 4(a). We
expect that the required design of the endpoint resonators can
be straightforwardly realized in polariton micropillar systems.

Let us now consider the dynamics of fluctuations in these
eOBC systems. As it can be checked from numerical diag-
onalization, the second slowest Bogoliubov mode after the
Goldstone consists of a cosinelike wave function of wave-
length 2L. While such a wavelength would not fit in a PBC
system, it is allowed in our eOBC lattice thanks to the re-
laxed wavelength quantization constraint. As a consequence,
in eOBC one requires half the length L to display an equally
long-lived mode as in PBC. In particular, this reduction af-
fects the critical size at which the linewidth departs from the
Bogoliubov-Schawlow-Townes prediction and starts showing
KPZ features. In Fig. 4(b), the normalized coherence time is
plotted as a function of the system length in natural units.
Here, the prediction for the CGLE in PBC already shown in
Fig. 1 (green points) is compared to the one of the CGLE
with eOBC (orange points): in agreement with our expecta-
tions, the Bogoliubov-Schawlow-Townes theory breaks down
at a smaller size L/�∗ ∼ 2.5 for eOBC compared to the size
L/�∗ ∼ 5 for PBC. Beyond the crossover, KPZ physics sets in
in both cases and the universal properties are the same.

VI. CONCLUSIONS

In this work, we have studied the long-time decay of
the emission coherence of a one-dimensional nonequilibrium
condensate. An exponential decay always overtakes at long
enough times in finite-length systems, so that the emission
linewidth can be seen as a finite-size effect. Depending on
the system length, two regimes can be identified: for short
systems, one can apply a linearized Bogoliubov theory and
find the usual linear scaling of the coherence time with the
system size originally predicted by Schawlow and Townes.
On the other hand, for long wires the scaling of the linewidth
is dominated by effects beyond Bogoliubov and displays a
Kardar-Parisi-Zhang critical behavior, leading to a square-root
dependence on the length.

Markedly different roles of the optical nonlinearities on the
coherence time are highlighted. On the one hand, optical non-
linearities increase the damping rate of the Bogoliubov modes
belonging to the diffusive Goldstone branch and correspond-
ingly reinforce the Laplacian term of the KPZ equation: this

enhances the spatial stiffness of the phase dynamics and tends
to prolong the coherence time. On the other hand, the same
optical nonlinearities are responsible for a Henry broadening
effect, which reinforces noise and thus tends to reduce the
coherence time. The interplay of these effects leads to a very
nontrivial scaling of the linewidth with the optical nonlinearity
strength and the system size, the optimal coherence being
achieved for intermediate values of the nonlinearity.

This behavior was demonstrated numerically by solving
the full field equation in the form of a stochastic complex
Ginzburg-Landau equation, and then explained in terms of
a finite-size scaling hypothesis. Successful comparison of
our results with a simulation of the Kuratomoto-Sivashinsky
equation confirms that our conclusion are due to the phase
dynamics. We then show how the linewidth extracted from
the logarithm of g(1)(t ) matches with the diffusion rate in
the phase-phase correlator. This suggests that the cumulant
approximation is legitimate, at least at large times and is
explained by monitoring the temporal evolution of the skew-
ness of the phase, which is shown to decay in time. In other
words, we recover the picture outlined for the TASEP in
Refs. [25,26,30], namely that due to the finite-size of the
system, the phase distribution shifts from a Baik-Rains to a
Gaussian form at very long time, which justifies the accuracy
of the reexponentiation procedure.

We finally discuss the different experimental platforms
where our predictions can be investigated. In particular, lattice
geometries with enhanced open boundary conditions are pro-
posed, which support a spatially uniform steady-state lasing
mode and thus facilitate experimental investigations of the
scaling with the system size.

Open theoretical questions include a full understanding of
the nonmonotonic feature visible in Fig. 1 at the crossover
between the Schawlow-Townes and KPZ scaling, a general
study of the scaling of the coherence time with system size
in higher � 2 dimensions, the impact of multimode laser
operation on the linewidth, and the effect of non-Markovian
pumping mechanisms.
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APPENDIX: BOGOLIUBOV MODES

In this Appendix, we briefly review the Bogloliubov the-
ory of the collective excitations on top of a nonequilibrium
condensate [36,37]. The linearized perturbations on top of
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FIG. 5. Real (left) and imaginary (right) part of the Bogoliubov dispersion of collective excitations Eq. (A1) as a function of momentum
k. Blue (red) points refer to vanishing (finite) values of the optical nonlinearity g.

the spatially uniform mean-field steady state ψ = √
n0 have

a complex frequency dispersion

ω±(k) = −i
�

2
±

√
k2

2m

(
k2

2m
+ 2μ

)
−

(
�

2

)2

+ i0+ (A1)

as a function of momentum k. The real and imaginary parts
of the Bogoliubov spectrum are displayed in the left and right
panels of Fig. 5, respectively. For stronger optical nonlineari-
ties μ = gn0, the size of the diffusive region shrinks in k.

The soft mode with ω+(k = 0) = 0 is the Goldstone mode
associated to the spontaneous symmetry breaking mechanism
that fixes the condensate phase. The low-k long-wavelength
region of the Goldstone branch consists of phaselike modes
and recovers the linear part of the KSE (2), with the usual

Laplacian and quartic derivative terms. The amplitude mode
corresponds instead to density fluctuations and shows a finite
damping rate � in the k → 0 long-wavelength limit. The
amplitude and Goldstone branches merge at larger momenta
to yield single-particle-like modes with a parabolic dispersion
and a constant decay rate �/2.

As long as the Bogoliubov theory holds, only the free
diffusion of the Goldstone mode contributes to the linewidth.
All other modes have in fact a finite lifetime and do not play
any significant role at very long times [15]. On this basis, we
refer to the Schawlow-Townes linewidth (which only involves
the single condensed mode) as the Bogoliubov linewidth [44].
A geometric explanation of the Henry broadening is that the
nonlinearity α makes the Goldstone and amplitude modes
nonorthogonal [44].
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