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Controlling work output and coherence in finite-time quantum Otto engines through monitoring
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We examine the role of diagnostic quantum measurements on the work statistics of a finite-time quantum Otto
heat engine operated in the steady state. We consider three pointer-based measurement schemes that differ in the
number of system-pointer interactions and pointer measurements. We show that the coherence of the working
substance and the work output of the engine can be controlled by tuning the monitoring measurements. Moreover,
for a working substance consisting of a two-level system we show that while all three schemes reproduce the
predictions of the cycle without any monitoring for the average work in the limit of infinitely weak measurement,
only two of the schemes can reproduce the two-point projective measurement results in the limit of strong
measurement.
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I. INTRODUCTION

A central question in the study of quantum heat engines
(QHEs) [1–9] is whether genuine quantum effects can give
an advantage over classical counterparts in terms of perfor-
mance metrics like average work output and efficiency. In
this context, quantum coherence in the energy basis of the
working system is a genuine quantum resource that can be
expected to play a role in distinguishing QHEs [10]. Indeed,
it has been shown that an unconventional bath containing
quantum coherence can enhance the engine efficiency beyond
Carnot [11] in a model of continuous QHEs. However, for
cyclic QHEs it was initially thought that quantum coherence
in the working substance generated through the nonquasistatic
driving is detrimental to the performance of the quantum heat
engine and was termed as quantum friction [12–16]. Though,
in some recent works it has been observed that in certain cases
quantum coherence can be advantageous and has been termed
as quantum lubrication [10,17–21].

In early discussions of cyclic QHEs, typically work and
heat exchange was discussed at the level of averages by exam-
ining the internal energy changes in the strokes [1,22]. More
recently, there has been a sustained interest in exploring the
fluctuations as well as the statistical distribution of work and
heat in cyclic QHEs [23–35]. However, to study the work
and heat statistics for a quantum heat engine, one has to also
specify the monitoring or diagnostic scheme [36–38] used to
measure the thermodynamic variables. Invariably this moni-
toring will affect the underlying work and heat statistics due
to the measurement back-action on the system [39].

The most widely used monitoring scheme to evaluate
work/heat statistics is the two-point projective energy mea-
surement scheme (TPM) [36,37]. A key disadvantage of using
TPM scheme for defining work fluctuations is that it destroys
any quantum coherence present in the system state due to
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the strong measurement back-action. Thus, the invasive TPM
scheme cannot capture the effect of quantum coherence on
work fluctuations [38,39]. Some strategies that have been
employed to mitigate this issue is to replace the projective
measurements of TPM scheme with the weak energy mea-
surements [38,40,41] or propose different schemes to define
work distribution for a quantum system containing coher-
ence [42–48]. In particular, for the case of quantum Otto
engines (QOE) with multiple cycles, the effect of monitor-
ing on the performance of quantum heat engines has been
considered both including and without outcoupling1 [49,50].
There the diagnostic measurements were implemented using
a pointer interacting with the working system and different
schemes of measurement realized by varying the number of
system pointer interactions were considered. Remarkably, it
was shown that monitoring after some number of engine cy-
cles outperforms the scheme where the output is monitored in
every stroke in terms of average work output and reliability of
work output (relative fluctuations of work) [49].

In this paper we uncover the impact of monitoring quan-
tum measurements on the work output and coherences in
the steady-state operation (to be defined exactly below) and
work output of a finite-time QOE operated over one cycle.
In line with Refs. [40,49–51] we model the measurements by
coupling the working substance to a pointer system. More-
over, we consider three distinct schemes that differ in the
number of system-pointer interactions and hence in the extent
of back-action. We show that in all three distinct schemes, we
can control the extent of coherence retention by tuning the
pointer system to vary the measurement back-action strength.
While all three schemes reproduce the predictions of the un-
monitored QOE cycle for the average work in the limit of
infinitely weak measurement, only two of the schemes can
reproduce the TPM result in the limit of strong measurement

1Here, by outcoupling we refer to the scenario where the working
substance of the engine is allowed to deposit energy into an external
system like a load, flywheel, or charge a quantum battery.
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for the specific choice of working system. We note that our
work is complementary but distinct from Refs. [49,50] which
was concerned with a QOE run over many cycles. In a sense
our work is concerned only with the asymptotic limit of the
QOE after many cycles.

The article is structured as follows. We begin by intro-
ducing the setup for a finite-time Otto cycle consisting of a
general quantum mechanical working substance in Sec. II A,
followed by the description of the unmonitored QOE cycle in
Sec. II B and the pointer-system coupling paradigm to monitor
the system in Sec. II C. Subsequently in Secs. II D, II E, and
II F we describe in detail the three different measurement
schemes and present formal expressions for the associated
work and heat distributions. In Sec. III we illustrate our results
by considering a QOE with a two-level system (TLS) working
substance (see Sec. III A). In particular, we obtain analytical
results for the restricted scenario of a perfectly thermalizing
isochoric stroke in Sec. III B and present numerical results in
the more general protocols with a TLS working substance in
Sec. III C. We summarize our results and conclude in Sec. IV.

II. SETUP AND MEASUREMENT SCHEMES

A. Finite-time quantum Otto cycle

We consider a four-stroke finite-time QOE cycle consisting
of a quantum mechanical working substance described by
a time-dependent Hamiltonian Ĥ (t ). The four consecutive
strokes of the Otto cycles are compression work stroke (1 →
2), dissipative hot isochore (2 → 3), expansion work stroke
(3 → 4), and dissipative cold isochore (4 → 1). Briefly, the
system starts with the initial state ρ̂1 and the compression
work stroke (1 → 2) is carried out, while the system is
isolated from the baths, by changing a time-dependent con-
trol parameter λ(t ) that determines the working substance
hamiltonian. This can be described by unitary time evolution
operation ρ̂2 = Û1ρ̂1Û

†
1 . The expansion work stroke (3 → 4)

is carried out by varying the control parameter as λ̃(t ) in
a time-reversed manner with respect to the compression.2

In this case, the time evolution of the state is described by
ρ̂4 = Û2ρ̂3Û

†
2 , where Û2 is the time evolution operator corre-

sponding to the time-reversed protocol λ̃(t ). The dissipative
hot isochore (2 → 3) and cold isochore (4 → 1) are mod-
eled by completely positive trace preserving (CPTP) quantum
maps ρ̂3 = �βh (ρ̂2) and ρ̂5 = �βc (ρ̂4), respectively, acting on
the system density matrix, where βh and βc are the inverse
temperatures corresponding to the two heat baths (βc > βh).
While we keep the description of the thermalization CPTP
maps general in this section, in our discussion in Sec. III with
a TLS working substance, they will be generated from the
time-evolution given by a Gorini-Kossakowski-Sudarshan-
Lindblad (GKSL) master equation.

B. Unmonitored quantum Otto cycle

The entire QOE cycle, without considering any diagnostic
measurements, can be represented as a CPTP map acting on

2This is typical, though see Refs. [24,33,34,53] for exceptions.

the system’s density matrix [52],

�UM(ρ̂1) = �βc

[
Û2�βh (Û1ρ̂1Û

†
1 )Û †

2

]
. (1)

We will henceforth refer to this as the unmonitored Otto cycle.
Note that throughout our study, we will treat each of the Otto
cycle strokes as ones with a finite duration. For simplicity, we
assume that τu is the duration of each unitary work stroke, τb

is the duration of each dissipative stroke, and τ = 2(τu + τb)
is the total cycle time. Note that if all the strokes are of
finite time, then the system state after one complete cycle
ρ̂5 = �UM(ρ̂1) generally differs from the initial state ρ̂1 and
hence the cycle does not close. This leads to transient behavior
during a number of cycles until a steady state is reached [49].
The steady state is the fixed point of the cycle CPTP map
Eq. (1), satisfying

ρ̂ss
UM = �UM

(
ρ̂ss

UM

)
. (2)

In our study, we are specifically interested in the steady-
state operation of the Otto cycle and not the transient
dynamics over many cycles [49]. The existence of unique
invariants of the CPTP map guarantees monotonic conver-
gence to the fixed point independent of the initial state and
depends only on the system Hamiltonian and the unitary and
dissipative strokes [52]. Given the initial state of the system
ρ̂1, the CPTP map �UM completely describes the entire Otto
cycle and the final state after the completion of one cycle. The
energetics of the unmonitored cycle are described by defining
the average total work output and heat exchange by tracking
the average energy change of the working system [52].

C. Quantum measurement of energy using pointer systems

Recently, there has been significant interest in going be-
yond the average work output and heat and studying in general
the work and heat statistics of quantum heat engine cycles. A
key step in constructing the statistical distributions of process
dependent thermodynamic variables like work and heat in
quantum systems is the introduction of a diagnostic quantum
measurement scheme to read out the relevant energies. In
this context the most widely used scheme is the two-point
measurement (TPM) scheme [37]. In the TPM scheme, the
work or heat exchanged by the system is measured by mak-
ing a projective measurement of the system’s energy at the
beginning and after the completion of the process. One of
the disadvantages of the TPM scheme is that the projective
measurement is extremely invasive and kills the coherence (in
energy basis) present in the initial state [39]. In the context of
the QOE cycle, to construct the work and heat distribution,
one has to make projective measurements of the energy at
four points of the cycle and the back-action on the system
from this invariably destroys any coherence present before the
measurement. It has been shown that such residual coherence
can in fact enhance the engine performance [17]. Given that
coherence can be a thermodynamical resource in this sense,
it is desirable to understand how one can control the mea-
surement back-action to preserve coherence and conceivably
improve engine performance. One way to reduce the mea-
surement back action is to use a less invasive or weak energy
measurement as we describe next.
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Along this line, following Refs. [49–51], we model a weak
energy measurement by first coupling the system to a pointer
and then projectively measuring the pointer. Moreover, as
shown in Refs. [40,49–51] this approach can also be tailored
to measure the sums and differences of energy over quantum
processes and hence work and heat during thermodynamic
strokes. Such flexibility to measure different thermodynamic
quantities such as work during a stroke or sums of work in
different strokes is enabled by controlling the contact inter-
actions between the pointer and system as well as when the
pointer is measured. Consequently, the extent of measurement
back-action can also be controlled in this manner. In what
follows, we will discuss three distinct measurement schemes
that precisely do this. To set the stage, let us now discuss the
description of the pointer system common to all the schemes.
The pointer is taken as a particle in one dimension with X̂ , P̂
denoting the position and momentum operators, respectively,
with the standard commutation relation [X̂ , P̂] = ih̄I. We will
use bold fonts for pointer operators and normal fonts for
the system operators throughout the article. The interaction
between the system and pointer is of the form ĤI = λĤ ⊗ P̂
where λ is the interaction strength. Throughout, we will as-
sume that the dynamics of the pointer is solely generated by
the interaction with the system and ignore any dynamics gen-
erated by the free Hamiltonian of the pointer which we leave
unspecified. The coupling operator’s choice ensures that the
pointer’s position is shifted by an amount proportional to the
system’s energy. Moreover, since the interaction commutes
with the system’s hamiltonian, the average energy of the
system is unchanged by the pointer coupling. These general
features are desirable for any pointer scheme. We assume that
before the first interaction with the system, the pointer state is
initialized in a pure Gaussian state with zero mean and finite
variance σ 2,

ρ̂σ =
∫

dydy′ 1√
2πσ 2

e− 1
4σ2 (y2+y′2 ) |y〉 〈y′| . (3)

To measure the system’s energy we turn on the system-pointer
interaction for a time τp. During this time, the initial product
state of the system and pointer ρ̂ ⊗ ρ̂σ evolves to V̂ (ρ̂ ⊗
ρ̂σ )V̂ † where the unitary V̂ = e−iλτpĤ⊗P̂/h̄. Following this we
make a projective measurement of the position of the pointer.3

The shift of position of the pointer x after the interaction
with the system gives the unbiased value of the energy of the
system x = λ̃E , with λ̃ = λτp/h̄. We set h̄ = λ̃ = 1 in what
follows. The pointer measurement results in a nonnormalized
post-measurement state of the system conditioned on the out-
come x,

�x(ρ̂) = Trp[�xV̂ (ρ̂ ⊗ ρ̂σ )V̂ †�x], (4)

where �x = |x〉 〈x| is the projection operator of the pointer
and Trp denotes the partial trace over the pointer system. The

3Though for simplicity we have called this a projective measure-
ment of the pointer position, to avoid issues of infinite energy
associated with a precise measurement of a continuous quantum
observable the post-measurement state of the pointer should be un-
derstood as one with a nonzero finite spread much smaller than the
initial pointer spread σ and the other length scales of the system.

probability density of the outcome x is obtained by tracing
over the system density matrix as

p(x) = Trs[�x(ρ̂ )]. (5)

We can show from the fact that [Ĥ , ĤI ] = 0, the expectation
value of the system’s energy before measurement is given by
the average value of the pointer measurement outcomes, i.e.,
Tr[ρ̂Ĥ ] = ∫

xdxp(x). Simplifying Eq. (4) we get

�x(ρ̂) =
∑
m,m′

	mρ̂	m′e− 1
8σ2 (em−em′ )2

× Gσ (x − (em + em′ )/2), (6)

where Gσ (x − x0) is the normalized Gaussian function with
variance σ and mean x0. 	m = |m〉 〈m| is the projection op-
erator corresponding to the system Hamiltonian with energy
eigenstate |m〉 and eigenvalue em. Let us now examine the
post-measurement state in two extreme cases. When the ini-
tial pointer width is much smaller than the smallest energy
gap (i.e., σ � minm,m′ |em − em′ |), we have the precise pointer
limit where the measurement is able to resolve the individual
energies of the system. In an extreme version of this limit with
σ → 0, we recover the standard projective energy measure-
ment, i.e.,

�x(ρ̂)
σ→0≈ 	mρ̂	m,

with em = x. In contrast, when the pointer width is much
larger than the largest energy gap (i.e., σ 
 maxm,m′ |em −
em′ |), we obtain the imprecise pointer limit where the mea-
surement cannot resolve the individual energies of the system.
In the extreme limit of σ → ∞, we get a completely “undis-
turbed” post-measurement state:

�x(ρ̂)
σ→∞≈

∑
m,m′

	mρ̂	m′ = ρ̂,

and the pointer measurement does not give any information
about the energy of the system. In this manner we can control
the measurement back-action on the system by tuning the
parameter σ characterizing the initial state of the pointer.

In addition to controlling measurement back-action by
tuning the pointer state, we can also choose to measure the
sums/differences of the system energy (hence work or heat)
by multiple interactions and a single delayed measurement
as discussed in Refs. [40,49–51]. In some cases, this further
reduces the number of measurements and hence also reduces
measurement back-action on the system state. In particular,
we will next consider a finite-time Otto cycle with the diag-
nostic measurements made by measuring the pointer at each
point of the cycle, after the completion of each stroke, and
only after the completion of the full cycle. We will demon-
strate that these schemes have varying degrees of coherence
retention and hence work output and fluctuations.

D. Measurement scheme 1

In the first scheme, denoted S1, the work and heat statis-
tics for the Otto cycle are constructed by measurements of
the energy of the system at four points of the Otto cycle.
This requires four (distinct) pointers, each initialized in a
Gaussian state of width σk and four measurements at the
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FIG. 1. Schematic of the diagnostic measurement schemes S1, S2, and S3 (from left to right). The working system and pointer system
state at the four points of the cycle are represented by ρi and ρσi , respectively (i = 1, 2, 3, 4). Pointer measurement (denoted by magnifying
glass symbol) is carried out at four points of the cycle for S1, at points 2 and 3 for S2 and at points 3 and 4 for S3.

four end points of the cycle denoted by k = 1, 2, 3, 4 (see
schematic Fig. 1(a). The energy measurements are carried
out as described in the previous subsection. Let us denote by
Ĥk = ∑d

m=1 e(k)
m 	(k)

m the Hamiltonian of the system at the dif-
ferent points with 	(k)

m the projection operator corresponding
to the system energy eigenstates |e(k)

m 〉 with eigenvalues e(k)
m .

Moreover, in the notation of our finite-time QOE, we have
that Ĥ (t1) = Ĥ1 = Ĥ (t1 + 2τu + τb) = Ĥ4 and Ĥ (t1 + τu) =
Ĥ2 = Ĥ (t1 + τu + τb) = Ĥ3. The nonnormalized state of the
working substance system after one cycle conditioned on the
pointer measurement outcomes of �x = (x1, x2, x3, x4) reads
[49,50]

�S1,�x(ρ̂1) =
∑
�m, �m′

S �m, �m′
(ρ̂1)
 �m, �m′

S1

×
4∏

k=1

Gσk

(
xk − (

e(k)
mk

+ e(k)
m′

k

)/
2
)
, (7)

where

S �m, �m′
(ρ̂1) = �βc

[
	(1)

m4
U2	

(2)
m3

�βh

(
	

(2)
m′

2
U1	

(1)
m1

ρ̂1	
(1)
m′

1
U †

1 	
(2)
m′

2

)
× 	

(2)
m′

3
U †

2 	
(1)
m′

4

]
, (8)

with �m = (m1, m2, m3, m4), �m′ = (m′
1, m′

2, m′
3, m′

4) denote the
vector of eigenvalues of the respective Hamiltonians Ĥk at
four points of the Otto cycle and


 �m, �m′
S1 =

4∏
k=1

e
− 1

8σ2
k

(
e(k)

mk
−e(k)

m′
k

)2

.

The normalized state can be obtained by integrating out the
pointer variables as

�S1(ρ̂1) =
∑
�m, �m′

S �m, �m′
(ρ̂1)
 �m, �m′

S1 . (9)

Here �S1 is the CPTP map representing the full thermo-
dynamic cycle with measurements according to scheme S1
acting only on the density matrix of the system. As discussed
before the steady state that we are interested in, ρ̂ss

S1, is the
fixed point of the cycle CPTP map Eq. (9), i.e.,

ρ̂ss
S1 = �S1

(
ρ̂ss

S1

)
. (10)

In the steady-state operation we evaluate the joint proba-
bility of total work w and heat exchanged with the hot bath qh

as

pS1(w, qh) =
∫ 4∏

k

dxkTrs
[
�S1,�x

(
ρ̂ss

1

)]
δ[qh − (x3 − x2)]

× δ[w − (x4 − x3) − (x2 − x1)], (11)

One can equivalently compute the characteristic function
χS1(k1, k2) = ∫

dwdqh pS1(w, qh)eik1weik2qh for the joint work
and heat distribution which in this case can be evaluated as

χS1(k1, k2) =
∑
�m, �m′


 �m, �m′
S1 ei k1

2 w �m, �m′+i k2
2 q �m, �m′

h − k2
1
2

∑4
i=1 σ 2

i

× Trs
[
S �m, �m′(

ρ̂ss
S1

)]
e− k2

2
2 (σ 2

2 +σ 2
3 )+k1k2(σ 2

2 +σ 2
3 ),

(12)

where w �m, �m′ = ∑4
k=1(−1)k (e(k)

mk
+ e(k)

m′
k
) and q �m, �m′

h =
(e(2)

m3
+ e(2)

m′
3
) − (e(2)

m2
+ e(2)

m′
2
). From the characteristic

function one can obtain moments using 〈wnqm
h 〉 =

∂n∂m

∂ (ik1 )n∂ (ik2 )m χS1(k1, k2)|{k1=0,k2=0}. From the expression
Eq. (12) we can write down a simplified expression for
the joint work and heat distribution function as

pS1(w, qh) =
∑
�m, �m′

Trs
[
S �m, �m′(

ρ̂ss
S1

)]

 �m, �m′

S1

× GC
(
w − w �m, �m′

/2, qh − q �m, �m′
h /2

)
, (13)

where GC (w − w �m, �m′
/2, qh − q �m, �m′

h /2) is a two-variable
Gaussian function with mean values at 〈w〉 = w �m, �m′

/2 and
〈qh〉 = q �m, �m′

h /2 and covariance matrix

C =
(

σ 2
1 + σ 2

2 + σ 2
3 + σ 2

4 −(
σ 2

2 + σ 2
3

)
−(

σ 2
2 + σ 2

3

) (
σ 2

2 + σ 2
3

)
)

.

From Eq. (13) we see that the joint work-heat distribution
is sum of Gaussians centered around work values w �m, �m′

and
heat values q �m, �m′

h . In the limit σk → 0,∀k, each of the above
measurements becomes a projective energy measurement and
we recover the TPM scheme. This can be explicitly seen

by looking at Eq. (9) where 
 �m, �m′
S1

σk→0−→ 0 for all terms with
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�m �= �m′ and the corresponding CPTP map becomes

�TPM(ρ̂1) =
∑

�m
S �m, �m(ρ̂1). (14)

Consequently, the steady-state density matrix for the TPM
scheme is defined by

ρ̂ss
TPM = �TPM

(
ρ̂ss

TPM

)
. (15)

Taking the σk → 0 limit in Eq. (12), the characteristic func-
tion for the TPM case is given by

χTPM(k1, k2) =
∑

�m
Trs

[
S �m, �m(

ρ̂ss
TPM

)]
ei k1

2 w �m, �m+i k2
2 q �m, �m

h . (16)

The corresponding joint work and heat distribution becomes

pTPM(w, qh) =
∑

�m
Trs

[
S �m, �m(

ρ̂ss
TPM

)]
× δ(w − w �m, �m)δ

(
qh − q �m, �m

h

)
. (17)

In contrast, for the extreme version of the completely impre-
cise pointer limit, we get 
 �m, �m′

S1
σk→∞−→ 1 for all �m and �m′ and

the corresponding CPTP map and steady state become that
of the unmonitored Otto cycle Eq. (1). In fact, as we will
see in more detail with explicit examples in a later section,
once σk 
 maxi, j |e(k)

mi
− e(k)

mj
|, the probability distributions be-

comes broad with a very large variance such that it does not
give any useful information about the work (heat) statistics
beyond the mean values.

E. Measurement scheme 2

In the second measurement scheme S2, instead of measur-
ing the energies of the system we now measure the work done
during compression, w1, and expansion stroke, w3, and the
heat exchanged qh during the hot isochore. This requires three
pointers and measurements for measuring w1, qh, and w3,
respectively, as opposed to S1 which required four pointers
and measurements. For instance, as shown schematically in
Fig. 1(b), to measure the work during compression stroke w1

[40,49,50], we first connect the system with the pointer sys-
tem 1 with interaction unitary V̂1 = e−iĤ1⊗P̂1 , followed by the
unitary compression stroke on the working substance alone
and the second interaction unitary V̂2 = eiĤ2⊗P̂1 with the same
pointer, i.e., the total unitary evolution of the system and
pointer reads

V̂2Û1V̂1
(
ρ̂1 ⊗ ρ̂σ1

)
V̂ †

1 Û †
1 V̂ †

2 .

The pointer is measured after completion of the second inter-
action, actuated by the unitary V̂2, and before the beginning of
the next stroke. Here the first interaction shifts the position of
the pointer proportional to the negative of the energy of the
system and the second interaction shifts the pointer position
proportional to the positive value of the energy of the system,
allowing the readout of the difference between the two values,
i.e., the work. In a similar manner, we implement the pointer
interactions to measure qh and w3. After one complete cycle,
the nonnormalized state of the system conditioned on the

pointer measurement outcomes �x = (x1, x2, x3) reads

�S2,�x(ρ̂1) =
∑
�m, �m′

S �m, �m′
(ρ̂1)
 �m, �m′

S2 Gσ1

(
x1 − w �m

1 + w �m′
1

2

)

× Gσ2

(
x2 − q �m

h + q �m′
h

2

)
Gσ3

(
x3 − w �m

3 + w �m′
3

2

)
,

(18)

where w �m
1 = e(2)

m2
− e(1)

m1
, w �m

3 = e(1)
m4

− e(2)
m3

, q �m
h = e(2)

m3
− e(2)

m2

(similar definitions for the primed variables), and


 �m, �m′
S2 = e

− 1
8σ2

1
(w �m

1 −w �m′
1 )2− 1

8σ2
2

(q �m
h −q �m′

h )2− 1
8σ2

3
(w �m

3 −w �m′
3 )2

.

The normalized state of the system can be obtained by inte-
grating out the pointer variables leading to the cycle CPTP
map

�S2(ρ̂1) =
∑
�m, �m′

S �m, �m′
(ρ̂1)
 �m, �m′

S2 . (19)

The steady state for the above CPTP map with the measure-
ment scheme S2 is given by

ρ̂ss
S2 = �S2

(
ρ̂ss

S2

)
. (20)

With this steady state, we can write down the characteristic
function and work-heat probability distribution, respectively,
as

χS2(k1, k2) =
∑
�m, �m′

Trs
[
S �m, �m′(

ρ̂ss
S2

)]

 �m, �m′

S2 ei k1
2 w �m, �m′

× ei k2
2 q �m, �m′

h e− k2
1
2 (σ 2

1 +σ 2
3 )− k2

2
2 σ 2

2 (21)

and

pS2(w, qh) =
∑
�m, �m′

Trs
[
S �m, �m′(

ρ̂ss
S2

)]

 �m, �m′

S2

× G√
σ 2

1 +σ 2
2
(w − w �m, �m′

/2)Gσ2

(
qh − q �m, �m′

h

/
2
)
.

(22)

Comparing the expression of the CPTP map (19) with
Eq. (9), we see that the key difference between the two
measurements schemes is the term which exponentially sup-
presses the nondiagonal contributions �m �= �m′ [49]. In S1,
the nondiagonal terms with �m �= �m′ are suppressed by the
differences of individual energies at the four points of the
cycle. While in S2, the nondiagonal terms are exponentially
suppressed by the differences in work and heat values for
the individual strokes. For scheme S2, we again recover the
unmonitored Otto cycle case in the imprecise measurement

limit. More specifically, for σk → ∞, we get 
 �m, �m′
S2 → 1 and

the corresponding steady state tends to that of the unmon-
itored Otto cycle. In contrast, in the precise pointer limit
with σk → 0 we recover the TPM limit only for a working
substance system with nondegenerate work (heat) values, i.e.,
{w �m

1 − w
�m′

1 ,w �m
3 − w

�m′
3 , q �m

h − q �m′
h } �= 0 for all �m �= �m′ (except

for the trivial cases such as w �m
i = w

�m′
i = q �m

h = q �m′
h = 0). Note

that this condition of nondegenerate work (heat) values is
satisfied for the example of TLS working substance that we
will consider in this article. However, this condition will not
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hold in general for other working substances with multiple
energy levels. Finally, let us compare the expression for the
joint work-heat distributions of S2 and S1 in Eqs. (13) and
(22). We can see that the Gaussian appearing in the sum
for scheme S2 has reduced variance compared to S1. This
reduction in the variance is due to the reduced number of
measurements performed on the pointers in S2 compared to
S1. A more detailed comparison for the specific TLS working
substance will be made later.

F. Measurement scheme 3

In the third scheme S3, we measure the total work w =
w1 + w3 and heat exchanged during the hot isochore qh. For
this we only need two pointers and two measurements. For the
measurement of total work w, we need four interactions be-
tween system and pointer at four points of the Otto cycle and
one measurement at the end of the stroke (3 → 4) as shown
schematically in Fig. 1(c). In addition, for the measurement
of heat exchange qh, we need two interactions between the
system and pointer before and after the hot isochore (2 → 3)
followed by the measurement at point 3. After one complete
cycle, the conditional nonnormalized state of the system con-
ditioned on the two measurement outcomes �x = (x1, x2) reads

�S3,�x(ρ̂1) =
∑
�m, �m′

S �m, �m′
(ρ̂1)
 �m, �m′

S3

× Gσ1 (x1 − (w �m + w �m′
)/2)

× Gσ2

(
x2 − (

q �m
h + q �m′

h

)/
2
)
, (23)

with 
 �m, �m′
S3 = e

− 1
8σ2

1
(w �m−w �m′

)2− 1
8σ2

2
(q �m

h −q �m′
h )2

. The normalized
state of the system can be obtained by integrating out the
pointer variables leading to the CPTP map for scheme S3,

�S3(ρ̂1) =
∑
�m, �m′

S �m, �m′
(ρ̂1)
 �m, �m′

S3 , (24)

and the associated steady state,

ρ̂ss
S3 = �S3

(
ρ̂ss

S3

)
. (25)

The corresponding characteristic function and probability dis-
tributions for the work and heat probability read

χS3(k1, k2) =
∑
�m, �m′

Trs
[
S �m, �m′(

ρ̂ss
S3

)]

 �m, �m′

S3

× ei k1
2 w �m, �m′+i k2

2 q �m, �m′
h e− k2

1
2 σ 2

1 − k2
2
2 σ 2

2 (26)

and

pS3(w, qh) =
∑
�m, �m′

Trs
[
S �m, �m′(

ρ̂ss
S3

)]

 �m, �m′

S3

× Gσ1 (w − w �m, �m′
/2)Gσ2

(
qh − q �m, �m′

h

/
2
)
. (27)

From the expressions of the CPTP map and work and heat
probability distribution for the scheme S3, we see that here the
nondiagonal terms �m �= �m′ are suppressed by the difference
of total work values, i.e., w �m and w

�m′
and heat values, i.e.,

q �m
h and q �m′

h . Similar to the previous discussion, we recover
the unmonitored Otto cycle case in the imprecise measure-
ment limit (σk → ∞). While, however, the nondiagonal terms

�m �= �m′ with the same work output, i.e., w �m − w
�m′ = 0 will

not be suppressed in the limit σk → 0. Note that, unlike the
S2 scheme where this was not possible with a TLS system, ir-
respective of the spectrum of the working substance there will
be multiple processes where the work in the compression will
equal the negative of the work in the expansion. For instance
this is the case where total work is zero w �m = w

�m′ = 0 but
�m �= �m′. As a result, the steady state and the joint work-heat
distribution for scheme S3 differ from the TPM values even in
the limit σk → 0 in general. We will demonstrate with explicit
example working substance in the next section.

III. RESULTS

In the previous section we have discussed how the three
different measurement schemes (S1, S2, S3) lead to different
probability distributions for work and heat for a generic work-
ing substance. While this approach yields some insights, it is
not possible to obtain analytical expressions for the steady-
state density matrix of the cycle CPTP maps defined via
Eqs. (10), (20), and (25) for generic working substances. In
this section by choosing a specific working substance, namely
a two-level system, we will determine the steady states for
the different schemes (numerically) and thus quantitatively
demonstrate the impact of the measurement scheme choice
on the average work output of the quantum Otto heat engine.
We begin by describing the TLS and the protocol we use.

A. Two-level working substance

We consider a two-level system with time-dependent
Hamiltonian Ĥ (t ) which take the following general form
at the beginning of the compression and expansion stroke,
respectively:

Ĥ1 = e(1)
1

∣∣e(1)
1

〉 〈
e(1)

1

∣∣ + e(1)
2

∣∣e(1)
2

〉 〈
e(1)

2

∣∣ , (28)

Ĥ2 = e(2)
1

∣∣e(2)
1

〉 〈
e(2)

1

∣∣ + e(2)
2

∣∣e(2)
2

〉 〈
e(2)

2

∣∣ . (29)

Recall that during the compression stroke the hamiltonian is
changed over the time τu from Ĥ1 to Ĥ2 and the expansion
stroke is generated by the precise time-reverse of the com-
pression stroke. While we will present one realization of these
strokes for a particular choice of Ĥ1 and Ĥ2 in Sec. (III C), we
can in general write the unitary operators corresponding to
the compression (Û1) and expansion (Û2 = �̂Û †

1 �̂†, with �̂

the time-reversal operator) strokes as [49]

Û1 = √
1 − r

(∣∣e(2)
2

〉 〈
e(1)

2

∣∣ + ∣∣e(2)
1

〉 〈
e(1)

1

∣∣)
− √

r
(
eiφ

∣∣e(2)
2

〉 〈
e(1)

1

∣∣ − e−iφ
∣∣e(2)

1

〉 〈
e(1)

2

∣∣), (30)

Û2 = √
1 − r

(∣∣e(1)
2

〉 〈
e(2)

2

∣∣ + ∣∣e(1)
1

〉 〈
e(2)

1

∣∣)
+ √

r
(
eiφ

∣∣e(1)
2

〉 〈
e(2)

1

∣∣ − e−iφ
∣∣e(1)

1

〉 〈
e(2)

2

∣∣). (31)

Here the transition probability r ∈ [0, 1] and the associated
transition amplitude’s phase φ ∈ [0, 2π ] are determined by
the details of the protocol implementing the strokes. Note that
r → 0 corresponds to the quasistatic limit with no transitions
between the ground and excited states.

The dissipative dynamics is modeled in the limit of weak
system-bath coupling by a Gorini-Kossakowski-Sudarshan-
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(a) (b) (c)

FIG. 2. Comparison plot of average work for S1, S2, and S3 along with corresponding values for UM and TPM as a function of
thermalization time ω1τb (a)–(c) for fixed value of the unitary stroke time ω1τu = 3.5 for different values of σ . Other parameter values are
ω1 = 1.0, ω2 = 3.2, βc = 3.0, βh = 0.2, γh = 0.05, and γc = 0.05. Legends are common to all three panels (a)–(c).

Lindblad (GKSL) Markovian master equation,

d ρ̂

dt
= −i[Ĥi, ρ̂] + γi

(
n(i)

b + 1
)(

σ
(i)
− ρ̂σ

(i)
+ − 1

2

{
σ

(i)
+ σ

(i)
− , ρ̂

})

+ γin
(i)
b

(
σ

(i)
+ ρ̂σ

(i)
− − 1

2

{
σ

(i)
− σ

(i)
+ , ρ̂

})
, (32)

with σ
(i)
+ = σ

(i)†
− = |e(i)

2 〉 〈e(i)
1 | between eigenstates of the

Hamiltonian Ĥi (i = 1, 2). Note that {·, ·} denotes the anti-
commutator. The thermal occupation numbers for the hot and
the cold bath read n(2)

b = 1

eβh (e(2)
2 −e(2)

1 )+1
and n(1)

b = 1

eβc (e(1)
2 −e(1)

1 )+1
.

Integrating the master equation (32) gives a qunatum map
�βc (.) and �βh (.) corresponding to two temperatures βc and
βh. This CPTP map brings any initial system density matrix
to the respective Gibbs thermal state in the limit of long
thermalization strokes τb → ∞.

B. Perfectly thermalizing cooling isochore

With the choice of a TLS as a working substance hamil-
tonian and the compression and expansion work protocols
given by Eqs. (30) and (31) and the thermal strokes modeled
by Eq. (32), Eqs. (10), (20), and (25) reduce to fixed point
equations for the matrix elements of the steady-state density
matrix that parametrically depend on the system parameters
and the pointer widths σi. Even for the simple TLS working
substance case these equations are cumbersome and an exact
analytical solution is intractable. Before we present results
from numerical solutions, to obtain some analytical insights
we consider now a simpler scenario of the Otto cycle with
the cooling isochore 4 → 1 to be perfectly thermalizing [17].
This can be achieved for instance by considering a reason-
ably strong coupling between the working substance and cold
bath to achieve complete thermalization in a time scale much
smaller than τb or by allowing for long interaction times with
weak coupling to the cold bath. Without loss of generality
we take e1

2 = −e1
1 = ω1/2 and e2

2 = −e2
1 = ω2/2. Also from

this point on, for simplicity we take the pointer widths in the
different strokes to be uniform, i.e., σi = σ in all the schemes.

For a perfectly thermalizing cooling iscochore, the system
reaches a Gibbs state at the end of the cooling stroke. In

this case the Gibbs state ρ̂βc = e−βcĤ2

Zc
corresponding to the

inverse temperature βc becomes the steady state of the Otto
cycle. Note that the hot isochore is still of finite duration
and hence not perfectly thermalizing. Due to the imperfect

thermalization during the heating isochore, the coherence
generated in the nonquasistatic compression stroke does not
decay to zero. In this case, we can write down the analytical
expressions for the characteristic functions corresponding to
the different schemes. Since the exact expressions for the
characteristic functions are cumbersome and do not provide
insight, we directly analyze the average work output (and its
fluctuations) in the different measurement schemes next.

The average TPM and unmonitored work, 〈w〉TPM and
〈w〉UM, respectively, are given by

〈w〉TPM = (1 − e−γhτb )[(1 − 2r)ω1 − ω2]n(h)
b

+ [ω2(1 − 2r) − ω1]n(c)
b + r(ω2 + ω1)

− e−γhτb
[
r + (1 − 2r)n(c)

b

]
[ω2 − (1 − 2r)ω1],

(33)
〈w〉UM = 〈w〉TPM − 2e− 1

2 γhτbr(1 − r)ω1 cos (2φ + ω2τb)

× tanh

(
βcω1

2

)
. (34)

From the above equations, we see that while 〈w〉UM os-
cillates as a function of the hot isochore duration τb, 〈w〉TPM

is monotonic. As discussed in Ref. [17], it is evident from
Eq. (34) that this oscillation arises from a combination of
coherence generation in the work strokes that requires r �= 1
(non quasistatic) and imperfect thermalization engendered by
a finite duration γ τb of the hot isochore. Moreover, even
though these features are necessary for the oscillation they
are not sufficient as we can see that the projective energy
measurements kill the coherence in the TPM case. One of
the consequences of this is that the unmonitored work can be
lower or higher than the corresponding TPM value depending
on the duration of the heating isochore. More specifically from
Eq. (34) we see that 〈w〉UM > 〈w〉TPM for π � 2φ + ω2τb �
2π . The expression of average work for the schemes S1, S2,
and S3 can be written down as

〈w〉S1 = 〈w〉S2 = e− ω2
2

4σ2 〈w〉UM + (
1 − e− ω2

2
4σ2

)〈w〉TPM, (35)

〈w〉S3 = 〈w〉UM. (36)

From Eq. (35) we see that 〈w〉S1 and 〈w〉S2 interpolates be-
tween two limiting values 〈w〉UM and 〈w〉TPM as we tune
pointer width σ . More specifically for σ 
 ω2 we recover
the unmonitored limit, while for σ � ω2 we recover the TPM
limit. However, 〈w〉S3 is independent of the measurement and

014102-7



RAHUL SHASTRI AND B. PRASANNA VENKATESH PHYSICAL REVIEW E 109, 014102 (2024)

(a) (b) (c)

FIG. 3. Comparison plot (in semilog scale) of the relative entropy D(ρ̂ss||ρ̂ss
D ) between the steady state and its diagonal representation in

the energy eigenbasis for three measurement schemes S1, S2, and S3 as a function of thermalization time ω1τb (a), (b), and (c) for different
values of σ . Other parameter values are same as in Fig. 2 and legends are common to all three panels (a)–(c).

remains equal to 〈w〉UM. This can be reasoned as follows. In
S3 the measurement of total work is performed only after the
completion of the expansion work stroke 3 → 4. Although
there will be a measurement back-action due to the final
measurement, the final cooling stroke maps the resultant state
back to the Gibbs state. Also the measurement of heat after the
completion of stroke 2 → 3 does not affect the measurement
of work in this case. We note that this is because of the
special choice of the dissipative dynamics that uncouples the
evolution of populations and coherences [49].

Coming to the fluctuations of work in the different
schemes, we find that the second cumulant of work takes the
following form (compared to the TPM case):

〈w2〉S1
c = 〈w2〉TPM

c + 4σ 2

− e− ω2
2

4σ2
[
Aω2

1 − 2B〈w〉TPM + B2e− ω2
2

4σ2
]
, (37)

〈w2〉S2
c = 〈w2〉TPM

c + 2σ 2

− e− ω2
2

4σ2
[
Aω2

1 − 2B〈w〉TPM + B2e− ω2
2

4σ2
]
, (38)

〈w2〉S3
c = 〈w2〉TPM

c + σ 2

− [
Aω2

1 − 2B〈w〉TPM + B2], (39)

where A = 2e− γhτb
2 r(1 − r) cos(2φ + ω2τb) and B =

ω1 tanh( βcω1

2 )A. We can immediately see from the expressions
that the weak pointer-based measurements contribute
additional noise compared to the TPM. For large pointer
noise σ , the variance square of all three schemes is dominated
by the terms proportional to σ 2. In fact, the square of variance

is largest for S1 and smallest for S3. As discussed before for
the general measurement scheme setup, this additional noise
is coming from the number of pointer measurements done
in each scheme. In the precise measurement limit σ → 0,
the variance for S1 and S2 approaches the TPM value while
this is not the case for S3. More precisely the variance for
S3 in the limit σ → 0 deviates from the TPM values and it
can be larger or smaller depending on the duration of the
hot isochore τb and unitary stroke parameters r and φ. Also,
for finite but small values of σ , we have found by sweeping
over different parameter regimes and plotting in the different
parameter regimes that the variance of S1 and S2 are always
lower bounded by TPM value whereas the variance for S3
can take values smaller than TPM.

C. Numerics

In this section, we consider the Otto cycle with a TLS
working system and all four strokes of finite time. For the
unitary work strokes we choose a time-dependent protocol as
used in [17], namely,

Ĥ (t ) = λ(t )

2

[
sin

(
πt

2τu

)
σz + cos

(
πt

2τu

)
σx

]
, (40)

with λ(t ) = ω1(1 − t/τu) + ω2t/τu during compression and
its time reverse

Ĥ (t ) = λ(τu − t )

2

[
cos

(
πt

2τu

)
σz + sin

(
πt

2τu

)
σx

]
, (41)

during the expansion stroke. Note that in both strokes t ∈
[0, τu]. This means that the Hamiltonian is varied (taking

(a) (b) (c)

FIG. 4. Comparison plot of work distribution for different values of σ for S1 (a), S2 (b), and S3 (c) along with the TPM limit. Other
parameter values are ω1 = 1.0, ω2 = 3.0, βc = 3.0, βh = 0.2, γh = 0.05, γc = 0.05, τu = 3.5, and τb = 22.0. Legends are common to all three
panels (a)–(c).
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(a)

(b)

FIG. 5. Work distribution of S3 compared to TPM (for σ → 0)
for ω1τu = 3.5 (a) and ω1τb = 25.1 (b). Panel (a) shows the case in
which −〈w〉TPM > −〈w〉S3 while panel (b) shows the case for which
−〈w〉TPM < −〈w〉S3. Other parameter values are same as Fig. 4.

t1 = 0) from Ĥ (t1) = Ĥ1 = ω1
2 σx to Ĥ (t2) = Ĥ2 = ω2

2 σz. We
consider the Otto cycle operating as a heat engine with posi-
tive average work extraction (i.e., −〈w〉 > 0) and positive heat
absorption (i.e., 〈qh〉 > 0). The average values are normalized
by corresponding quasistatic limiting values for the cycle (i.e.,
τu → ∞ and τb → ∞) throughout the subsection. The key
numerical task after specifying the form of the hamiltonian
and the corresponding thermalization quantum maps via the
GKLS master equations [see Ref. (32)] is to construct the

cycle maps and numerically solve Eqs. (10), (20), and (25) for
the corresponding steady states in the different measurement
schemes. We have done this for some exemplary parameter
choices for the system and note that the results remain quali-
tatively the same for any parameter choice.

Figure 2 shows the plot of average work output as a
function of thermalization time τb (such that there is gener-
ation of coherence) for measurement schemes S1, S2, and
S3 along with UM and TPM values. The average work val-
ues for the three measurement schemes are plotted for few
different values of pointer width σ . In Figs. 2(a)–2(c) we
see that, the average work output for the UM Otto 〈w〉UM

shows damped oscillation as a function of thermalization time
τb. While, however, the average work output for TPM limit
〈w〉TPM does not show any oscillations. This behavior is in
agreement (qualitatively) with our discussion in the previous
subsection and as before the reason for the oscillations is
precisely the presence of energy coherence before the onset
of the isochoric strokes which is absent in the TPM scheme
due to the projective energy measurements. Note that while
with perfectly thermalizing cooling stroke, the oscillations
occur at a single frequency ωh, here we see a beating like
pattern with multiple frequencies. This is because here we
get is a combined effect of the damped oscillations coming
from imperfect thermalization during both the finite-duration
isochoric strokes.

Focusing on the work output for the measurement schemes
S1, S2 presented in Figs. 2(a) and 2(b), we see that the average
work output interpolates between the TPM and UM values as
σ is tuned from small to large values. In fact, we see that once
the pointer uncertainty exceeds the largest energy gap during
the engine cycle, i.e., σ > ω2 (note ω2 > ω1) the work output
in all three measurement schemes essentially overlap with the
UM value. In contrast, for measurement scheme S3 we see in
Fig. 2(c) that even in the limit of σ → 0 the average work does
not approach the TPM value. More specifically, the average
work shows oscillations as a function of thermalization time
even for very small σ . This is in line with our discussion in
Sec. II examining the work distribution from scheme S3 in
the limiting case of σ → 0. Moreover, this can be traced back
to the fact that the steady state of the Otto cycle still retains

(a) (b) (c)

FIG. 6. Comparison plot of average work (normalized by the TPM average work) for different values of pointer width σ and unitary
parameter r for S1 (a), S2 (b), and S3 (c) for the general two parameters unitary protocol (30) with Hamiltonian Ĥ1 = ω1

2 σz + ε

2 σx and
Ĥ2 = ω2

2 σz + ε

2 σx . Parameters values are ω1 = 1.0, ω2 = 3.2, ε = 1.0, φ = π

5 , βc = 3.0, βh = 0.2, γh = γc = 0.05, and τb = 30.0.
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(a) (b) (c)

FIG. 7. Comparison plot of the difference of variance of work for different values of pointer width σ and unitary parameter r for S1 (a),
S2 (b), and S3 (c) for the general two parameters unitary protocol Fig. 6.

some coherence even in the limit σ → 0 for measurement
scheme S3. To emphasize this point, we compute the relative
entropy D(ρ̂ss||ρ̂ss

D ), which is a measure of coherence [54],
and is defined as

D
(
ρ̂ss

∣∣∣∣ρ̂ss
D

) = Tr
[
ρ̂ss

(
ln ρ̂ss − ln ρ̂ss

D

)]
. (42)

Here ρ̂ss is the steady state of the Otto cycle and ρ̂ss
D

is its diagonal representation in the energy eigenbasis. In
Figs. 3(a)–3(c), we plot D(ρ̂ss||ρ̂ss

D ) for the three measurement
schemes as a function of thermalization time τb. We see that
the steady-state density matrix ρ̂ss becomes more diagonal in
the energy eigenbasis for schemes S1 and S2 as comparison
to S3 for very small pointer width σ . More specifically the
relative entropy D(ρ̂ss||ρ̂ss

D ) continues to oscillate and can be
larger for some values of τb for scheme S3 as compared to S1
and S2 as evident from Figs. 3(a)–3(c). This illustrates that
the steady state corresponding to S3 has more coherence as
compared to S1 and S2.

Going beyond the first moments, Fig. 4 shows the work
distribution corresponding to the schemes S1, S2, and S3 for
different values of the pointer width σ . The (discrete) work
distribution for the TPM scheme is also plotted for compar-
ison. We see that for very large pointer width σ , the work
distributions become a broad Gaussian for all the pointer-
based measurement schemes. Though we lose precision in
terms of work output in this limit, we still capture the unmon-
itored average work. As we decrease pointer width σ , we see
that the work distributions start to approach the TPM limit for
the schemes S1 and S2. In contrast, as we depict in Fig. 4(c)
the distribution corresponding to S3 does not approach the
TPM one in the σ → 0 limit. To see this more clearly we
construct the (discrete) work distribution for the scheme S3
with σ = 0 and plot its relative difference from the TPM
distribution in Fig. 5.

Finally, to demonstrate that our results are valid for more
general work protocols than the one in Eqs. (40) and (41),
in Fig. 6 we plot the work output in the different schemes
(in units of the TPM work) for the generic unitaries given in
Eqs. (30) and (31). We notice two features reinforcing our
previous conclusions. Firstly, as the work strokes are made
more nonquasistatic (r increased), leading to coherence gener-
ation the pointer-based schemes differ from the TPM scheme.
While the schemes S1 and S2 tend to the TPM in the small σ

limit, S3 does not. Finally, coming to the fluctuations of work,
in Fig. 7 we plot the variance of work (subtracting the TPM
variance for comparison) for different schemes. In agreement
with the discussion for the perfectly thermalizing cooling
stroke, we see that for large pointer width σ the variance in
all the pointer-based schemes always remains greater than the

(a)

(b)

FIG. 8. Comparison plot of average work schemes S1, S2, and
S3 (a) (normalized by the TPM average work) and difference of vari-
ance of work for schemes S1, S2, and S3 with TPM (b) as a function
pointer width σ for unitary parameter r = 0.07 for the general two
parameters unitary protocol Eqs. (30) and (31). Other parameters
values are ω1 = 1.0, ω2 = 2.0, ε = 1.0, φ = π

5 , βc = 3.0, βh = 0.2,
γh = γc = 0.05, and τb = 22.0.
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TPM values. Moreover, it is largest for S1 and smallest for S3.
In contrast for the limit of σ → 0, while the variances for the
schemes S1 and S2 approach the TPM value, the one for S3
can take values less than TPM values. Moreover, concurrently
we see that the average work from scheme S3 can be larger
than the TPM as evident by focusing on the top left corner
(small σ , large r) of Figs. 6(c) and 7(c). To highlight this
behavior in Figs. 8(a) and 8(b) we show the behavior of the
average work and fluctuations of the different schemes as a
function of σ for a fixed value of r. Thus, by a careful choice
of the measurement protocol we can obtain a higher work
output and lower fluctuations.

IV. CONCLUSION

Coherence is an important quantum resource that can affect
the performance of quantum heat engines in a positive manner
in certain settings. The standard way of assessing statistics of
work and heat via TPM with projective energy measurements
destroys coherence and hence cannot take advantage of this
resource. One way to mitigate this issue is to replace the
projective measurement by weak energy measurement. Along
this line, in this paper, we have considered the work and heat
statistics in the steady-state operation for a finite-time Otto
cycle with three pointer-based measurement schemes with
varying degrees of measurement back-action.

Using formal analytical expressions of the work and heat
statistics for arbitrary working system as well as analytical
and numerical results for a TLS working substance we have
shown that all of the measurement schemes produce the same

average work as the unmonitored case for weak measurement
strengths. In contrast in one of the measurement schemes
where only two pointers are used (scheme S3), unlike the
other two schemes, does not give results that approach the
TPM work statistics in the limit of infinitely precise initial
pointer states [49]. Moreover, we find that by the choice
of the measurement scheme as well as the strength of the
measurement (characterized by the initial pointer state im-
precision) we can control the extent of coherence retention
in the steady state of the working substance. Furthermore,
we have also identified a measurement scheme that can even
result in a larger average work with smaller fluctuations than
the standard TPM protocol. Thus, our results demonstrate an
ability to control the coherence and hence the work statis-
tics in quantum Otto heat engine cycle using measurements
extending and complementing the results in Refs. [49,50].
Our study also leads to some questions for future work. For
instance, while we have shown that in regimes where the
unmonitored work is larger than the TPM, by making the
pointer-measurement increasingly weak the average work can
approach the unmonitored value. Unfortunately, in this limit
the variance of the work diverges. It would be interesting to
identify measurement protocols where one can approach the
unmonitored work with a finite amount of variance.
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