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Even though strongly correlated systems are abundant, only a few exceptional cases admit analytical solutions.
In this paper we present a large class of solvable systems with strong correlations. We consider a set of N
independent and identically distributed random variables {X1, X2, . . . , XN } whose common distribution has a
parameter Y (or a set of parameters) which itself is random with its own distribution. For a fixed value of
this parameter Y , the Xi variables are independent and we call them conditionally independent and identically
distributed. However, once integrated over the distribution of the parameter Y , the Xi variables get strongly
correlated yet retain a solvable structure for various observables, such as for the sum and the extremes of X ′

i s.
This provides a simple procedure to generate a class of solvable strongly correlated systems. We illustrate how
this procedure works via three physical examples where N particles on a line perform independent (i) Brownian
motions, (ii) ballistic motions with random initial velocities, and (iii) Lévy flights, but they get strongly correlated
via simultaneous resetting to the origin. Our results are verified in numerical simulations. This procedure can be
used to generate an endless variety of solvable strongly correlated systems.
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I. INTRODUCTION

The study of the statistics of functions of independent
random variables is central to the foundations of probability
theory. In fact, the central limit theorem, which describes the
sum of independent random variables, long predates modern
probability theory and has led to innumerable applications
and results [1]. Another observable of much interest is the
statistics of the maximum (or the minimum) of a set of ran-
dom variables. This is usually referred to as “extreme value
statistics” (EVS). The EVS of independent random variables
are also well understood [2–6] and are of a particular prac-
tical interest since, although rare, being extreme by nature
these events may lead to devastating consequences. Indeed,
in many contexts, such as engineering [2], environmental
sciences [7], computer science [8–12], finance [13,14], or
physics [4,15,16], to cite but a few, the understanding of
extreme events is a matter of crucial importance. For example,
in engineering and environmental sciences the statistics of
rare events, such as weak components or natural disasters,
may be of major importance to the endeavor at hand. Inter-
estingly, many of. these statistics tend to universal asymptotic
forms in the limit of large number of variables. Examples
are, of course, the central limit theorem and the Lévy limit
distributions for the sums of independent random variables. In
parallel, one of the most important contribution to the field of
extreme-value theory was the Fisher-Tippett-Gnedenko the-
orem, which universally characterized the EVS of a set of
identically distributed independent random variables. The dis-
tribution of the maximum in the large-N limit converges to the
one of the three possible limiting forms: Gumbel, Fréchet, or
Weibull according to the behavior of the tail of the distribution

of the variables. These results have been generalized for non-
identically distributed independent variables [17–21] and for
a large set of weakly correlated identically distributed random
variables, where the results, in the large-N limit, reduce to
the independent case [22]. However, only rare and punctual
results are known for the statistics of strongly correlated ran-
dom variables [11,22–31]. Yet many physical systems present
strong correlations and a lack of universal characterization for
such systems greatly hinders progress in this area.

In a recent paper [32] we introduced a model of N non-
interacting Brownian motions on the line that are subjected
to simultaneous resetting to the origin. This simultaneous
resetting makes the N particles strongly correlated, yet it re-
tains an exactly solvable structure. Indeed, many observables
including the EVS have been computed explicitly for this
model [32]. This straightforward mechanism of generating
strong correlations via simultaneous resetting can actually
be generalized to a wider class of systems, as we show in
this paper. The EVS of strongly correlated variables are, in
general, very hard to solve and there exist only few exactly
solvable cases [22–31]. This generalization that we provide
here opens up a wider class of solvable models with strong
correlations.

The mechanism behind this generalization is straight-
forward. Consider a set of N independent and identically
distributed random variables X1, . . . , XN with a common dis-
tribution which contains a set of parameters Y1,Y2, . . . ,YM =
�Y which themselves are random variables with their own
distribution. An example of the case N = 1 and M = 1 is
where X refers to the energy of a gas and Y refers for example
to the temperature or the magnetic field. In this case, the
statistics of X , averaged over the distribution of Y , is referred
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to as “superstatistics” and has been studied in various contexts
[33–39]. For fixed values of these parameters, the Xi variables
are statistically independent with a joint distribution,

Prob.[X1, . . . , XN | �Y ] =
N∏

i=1

Prob.[Xi| �Y ]. (1)

Hence we call these Xi variables conditionally independent
and identically distributed random variables. However, when
one integrates over the Yi variables, the joint distribution of
X1, X2, . . . , XN is no longer factorizable,

Prob.[X1, . . . , XN ] =
∫ {

N∏
i=1

Prob.[Xi| �Y ]

}
Prob.[ �Y ] d �Y . (2)

Thus the X ′
i s get correlated since they share the same set of pa-

rameters �Y . A physical example of such a system is provided
by a simplified version of models of “diffusing diffusivity”
where N Brownian motions X1(t ), . . . , XN (t ) share a common
diffusion constant Y1 = D [40,41] which does not evolve in
time but is randomly initialized. In this specific case, Eq. (2)
would read

Prob.[X1(t ), . . . , XN (t )] =
∫ { N∏

i=1

1√
4πDt

exp

[
−Xi(t )2

4Dt

]}

× Prob.[D] dD. (3)

This example clearly demonstrates that the joint distribution
of X ′

i s does not factorize and hence the Xi variables are corre-
lated. Many other physical examples motivated by stochastic
resetting will be discussed in this paper, but this family of
systems describes a wide variety of physical problems. We
provide here a short nonexhaustive list of such problems so
that the reader may grasp the type of problems which can
be described by this protocol. This protocol can be used to
describe the following:

(i) the statistics of N independent stochastic processes
measured after a random time Y = T .

(ii) the statistics of N experimental observations
X1, . . . , XN which depend on some experimental parameters
Y1, . . . ,YM that may have some non-negligible uncertainties
σ1, . . . , σM . Then, supposing we know Prob.[Xi| �Y ], we can
model Prob.[ �Y ] by a M Gaussians centered around their
expected values and with variances �σ .

(iii) the statistics of N independent particles X1, . . . , XN

evolving in an energy landscape E (Y1, . . . ,YM ) which de-
pends on some parameters Y1, . . . ,YM (magnetization, tem-
perature, etc.) which are randomly initialized according to
some distribution at t = 0.

A natural question is whether it is possible to generalize
the well-known results of certain observables for indepen-
dent and identically distributed random variables, such as
the sum or the EVS, to the conditionally independent and
identically distributed variables. For example, for N indepen-
dent and identically distributed variables, it is known that the
rescaled sum (sometimes referred to as the “sample mean”)
C = 1

N

∑N
i=1 Xi converges to a Gaussian random variable in

the large-N limit: This is the celebrated central limit theorem
(CLT) [42]. How does the CLT get modified for conditionally
independent and identically distributed variables? Similarly,

as mentioned before, the EVS of N independent and identi-
cally distributed random variables, appropriately centered and
scaled, converges for large N , to one of the three limiting
distributions Gumbel, Fréchet, and Weibull. Are there similar
limiting universal distributions for conditionally independent
and identically distributed variables? After recalling these re-
sults for independent and identically distributed variables in
Sec. II, we will consider their generalizations to conditionally
independent and identically distributed variables in Sec. III.

Once these general results are elucidated, it is natural to
look for examples in physical systems where the conditionally
independent and identically distributed variables arise natu-
rally. As mentioned earlier, the case of N Brownian motions
on a line, all starting at the origin at t = 0 and are simultane-
ously reset to the origin with rate r, provides a natural example
of such conditionally independent and identically distributed
variables [32]. For a typical realization of this process for
N = 3 particles, see the left panel of Fig. 1. In this case, it was
shown that the joint distribution of the positions approaches a
nonequilibrium stationary state given by [32]

Prob.[X1, . . . , XN ] =
∫ ∞

0

{
N∏

i=1

1√
4πDτ

e− X2
i

4Dτ

}
(re−rτ ) dτ.

(4)

A detailed derivation of this result is provided in Sec. IV A,
where we show that the EVS for this conditionally inde-
pendent and identically distributed model can be computed
exactly. Note that without the averaging over τ , i.e., for a fixed
τ , the X ′

i s are independent and identically distributed vari-
ables, each distributed via a Gaussian. Hence for fixed τ , their
EVS converges to the Gumbel limiting distribution. There-
fore this example provides a generalization of the Gumbel
class to conditionally independent and identically distributed
variables. It is natural to ask whether there are physical mod-
els of conditionally independent and identically distributed
variables whose independent and identically distributed coun-
terparts have EVS belonging to the other two universality
classes, namely the Fréchet and the Weibull classes. In fact,
we introduce two new models of N independent particles
on a line that precisely do this job. For the Weibull class,
we consider a model of N independent ballistic particles, all
starting at the origin with random velocities v′

is each drawn
independently from a uniform distribution vi ∈ [−1,+1], that
are simultaneously reset to the origin with rate r. After every
resetting, the velocities are also renewed. For a typical realiza-
tion of this ballistic resetting process for N = 3 particles, see
the middle panel in Fig. 1. We show that the EVS for this con-
ditionally independent and identically distributed model can
also be computed exactly. Finally, we study a conditionally
independent and identically distributed model whose inde-
pendent and identically distributed counterpart corresponds
to the Fréchet class for the EVS. In this model, we consider
N independent Lévy flights, all starting at the origin and are
reset simultaneously to the origin with rate r. In the rightmost
panel of Fig. 1, a typical realization of this process for N = 3
is shown. For this model also, we show that the EVS can be
computed exactly, despite the fact that the system is strongly
correlated.
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FIG. 1. A typical realization of three simultaneously resetting processes for N = 3 particles (with different colors): (i) N Brownian motions
on a line, belonging to the Gumbel class of conditionally independent and identically distributed variables, (ii) N ballistic particles on a line,
with random velocities drawn from a uniform distribution over [−1, +1], belonging to the Weibull class of conditionally independent and
identically distributed variables, and (iii) N Lévy flights on a line, belonging to the Fréchet class of conditionally independent and identically
distributed variables. The red vertical arrows indicate the simultaneous resetting events.

The rest of the paper is organized as follows. In Sec. II we
recall the well-known results for the independent and identi-
cally distributed variables. The conditionally independent and
identically distributed variables are introduced in Sec. III. The
results for the rescaled sum of conditionally independent and
identically distributed variables are given in Sec. III while
the derivations are detailed in the Appendix. The EVS for
general conditionally independent and identically distributed
variables are studied Sec. III B. The three physical models are
introduced and analyzed in Sec. IV. Finally, we conclude in
Sec. V.

II. KNOWN RESULTS FOR INDEPENDENT AND
IDENTICALLY DISTRIBUTED RANDOM VARIABLES

The statistics of independent and identically distributed
random variables have been widely studied and are fully un-
derstood. We recall in this section the known results for the
order statistics and the extreme value statistics of indepen-
dent and identically distributed variables [5,6,22,43,44]. We
consider N independent and identically distributed variables
X1, . . . , XN each distributed via p(X ) and we denote their
cumulative distribution function by P(X ) = Prob.[Xi � X ].
We define the order statistics by sorting them in decreasing
order of magnitude

Xmax = M1,N � M2,N > · · · > MN,N = Xmin, (5)

where Xmax (respectively, Xmin) denotes the maximum (respec-
tively, minimum) among the X ′

i s. We define the cumulative
distribution function of the kth maximum,

Fk,N (w) = Prob.[Mk,N � w]. (6)

When k = O(N ), we will refer to Mk,N as the “bulk” order
statistics, while the case k = O(1) will be referred to as the
extremes at the “edge.” In particular, the case k = 1, i.e., the
distribution of the global maximum M1,N , will be referred to
as the EVS.

We start by characterizing the maximum, i.e., Xmax = M1,N

which corresponds to k = 1. In this case, the cumulative
distribution function (appropriately centered and scaled) con-
verges to a limiting scaling form

F1,N (w) −→
N→+∞

Gρ

(
w − aN

bN

)
. (7)

The scale factors aN and bN depend on the details of the
probability distribution function (p.d.f.) p(x). However, it
turns out that the scaling function Gρ (z) can be only of three
varieties labeled by ρ = I, II, III (respectively the Gumbel,
the Fréchet, and the Weibull). When N → ∞, the cumulative
distribution function F1,N (w) converges to one of these three
scaling functions, depending on the tail of p(x) as discussed
below.

A. The Gumbel universality class

If the p.d.f. p(X ) decays faster than any power law for large
X , i.e., when X � 1, then p(X ) 	 X −η for any η > 0, then
p(X ) is said to belong to the Gumbel universality class. In
this case

GI(z) = e−e−z
,

∫ +∞

aN

p(X )dX = 1

N

and bN = N
∫ +∞

aN

(x − aN )p(X )dX. (8)

The scaling factors aN and bN are fixed by the last two equa-
tions in Eq. (8).

B. The Fréchet universality class

If the p.d.f. p(X ) has an unbounded support and decays as a
power law for large X , i.e., when X � 1, then p(X ) ∝ X −1−μ

for a given μ > 0, then p(X ) is said to belong to the Fréchet
universality class. In this case

GII(z) = �(z)e−z−μ

, aN = 0 and
∫ +∞

bN

p(X )dX = 1

N
,

(9)
where �(z) is the Heaviside distribution.

C. The Weibull universality class

If the p.d.f. p(X ) has a support bounded from above at
X � and decays as a power law when approaching X �, i.e.,
when X � − X 	 1, then p(X ) ∝ (X � − X )μ−1 for a given
μ > 0, then p(X ) is said to belong to the Weibull universality
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class. In this case

GIII(z) =
{

1, z > 0
e−|z|μ, z < 0

, aN = X � and
∫ X �

X �−bN

p(X )dX = 1

N
. (10)

With these three classes we have universally characterized the
EVS of independent and identically distributed variables.

It turns out that the cumulative distribution function of the
kth maximum Mk,N when k = O(1) can also be expressed in
terms of the three scaling functions Gρ (z),

Prob.(Mk,N � w) −→
N→+∞

F k
ρ

(
w − aN

bN

)
, (11)

with the scaling function

F k
ρ (z) = 1

	(k)

∫ +∞

− log Gρ (z)
e−t t k−1dt, ρ = I, II, III, (12)

where 	(z) is the Gamma function. For k = 1, one can easily
check that F k=1

ρ (z) = Gρ (z). When k = O(N ), i.e., one is
probing the order statistics Mk,N in the “bulk,” the large-N
limiting form of the p.d.f. of Mk,N is known to be a Gaussian
[5,6],

Prob. [Mk=αN,N = w] −→
N→+∞

√
N p[q(α)]2

2πα(1 − α)

× exp

{
−N p[q(α)]2

2α(1 − α)
[w − q(α)]2

}
.

(13)

where 0 < α < 1 and q(α) is the α quantile obtained implic-
itly from ∫ +∞

q(α)
p(X ) dX = α. (14)

The quantile q(α) denotes the value of Xi such that there are,
on an average, αN variables above q(α).

III. CONDITIONALLY INDEPENDENT AND
IDENTICALLY DISTRIBUTED RANDOM VARIABLES

We recall from Eq. (2) that the joint distribution of N con-
ditionally independent and identically distributed variables
conditioned on �Y = {Y1,Y2, . . . ,YM} is given by

Prob.[X1, . . . , XN ] =
∫ {

N∏
i=1

p(Xi| �Y )

}
h( �Y ) dY1 · · · dYM,

(15)

where p(Xi| �Y ) = Prob.(Xi|Y1,Y2, . . . ,YM ) is the conditional
p.d.f. of Xi and h( �Y ) denotes the joint distribution of �Y =
{Y1,Y2, . . . ,YM}. It is clear from Eq. (15) that the joint p.d.f.
of X ′

i s is not factorizable in general. Hence the X ′
i s are cor-

related. By choosing h( �Y ), one can generate a wide class of
such correlated variables. To analyze the nature of the corre-
lations, it is convenient to compute the connected correlator
〈X n

i X n
j 〉 − 〈X n

i 〉〈X n
j 〉, for a generic n. To compute this, we first

need the nth moment 〈X n
i 〉, which is simply

〈X n
i 〉 =

∫
d �X X n

i Prob.[ �X ]

=
∫

d �X X n
i

∫
d �Y h( �Y )

N∏
k=1

p(Xk| �Y ), (16)

where �X = {X1, X2, . . . , XN } and d �X = dX1dX2 · · · dXN .
Consequently, the connected correlator is given by

〈X n
i X n

j 〉 − 〈X n
i 〉〈X n

j 〉 =
∫

d �Y h( �Y )
∫

d �X X n
i X n

j

N∏
k=1

p(Xk| �Y )

− 〈X n
i 〉〈X n

j 〉, (17)

where 〈X n
i 〉 is given in Eq. (16). For a generic h( �Y ), this

connected correlator is nonzero, indicating the presence of
all-to-all correlations between the Xi variables, which thus
make them strongly correlated.

A. The scaled sum of conditionally independent
and identically distributed variables

The main focus of this paper is on the order and the ex-
treme statistics for conditionally independent and identically
distributed variables that we discuss in detail in the later sec-
tions. However, it is also of interest to compute the statistics
of the sum of such conditionally independent and identically
distributed variables and to explore if there is an equivalent
to the central limit theorem or Lévy stable theorem for the
conditionally independent and identically distributed case. In
order not to shift the focus away from the order and the
extreme statistics, in this section we present only the main
results for the statistics of the sum and provide the detailed
derivations in the Appendix.

Let us now summarize the main results for the rescaled sum
C = 1

N

∑N
i=1 Xi of conditionally independent and identically

distributed variables X1, . . . , XN . We defer the derivation of
these results to the Appendix. If the conditional distribution
p(Xi| �Y ) admits a finite first moment m( �Y ) which is a noncon-
stant function of �Y and a finite second moment σ ( �Y ), then the
p.d.f. P(C, N ) of the rescaled sum can be written as

P(C, N )
N→+∞−→

∫
d �Y δ(m( �Y ) − C) h( �Y ). (18)

On the other hand, if m( �Y ) = m is a constant, then

P(C, N )
N→+∞−→

√
NP[(C − m)

√
N], whereP (Z )

= 1√
2π

∫
d �Y

σ ( �Y )
exp

[
− Z2

2σ 2( �Y )

]
h( �Y ). (19)

Finally, if p(Xi| �Y ) does not admit a finite first or second
moment and instead has a power-law tail p(Xi| �Y ) ∼ 1/X 1+μ
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for large X , with 0 < μ < 2, then

P(C, N ) ≈ N1−1/μPμ

(
C

N1/μ−1

)
wherePμ(Z )

=
∫

d �Y
b( �Y )

Lμ

[
Z

b( �Y )

]
h( �Y ), (20)

where Lμ(z) is the Lévy stable distribution (scaled to unity)
[45]

Lμ(z) =
∫ ∞

−∞

dq

2π
e−iqz−|q|μ . (21)

It has the asymptotic behaviors [45]

Lμ(z) ≈
{ 1

πμ
	(1/μ), z → 0,

1
z1+μ sin

(
πμ

2

)
	(μ+1)

π
z → ∞.

(22)

B. Order statistics of conditionally independent and identically
distributed variables

In this section, we provide a complete characterization of
the order statistics and EVS for conditionally independent and
identically distributed variables. We consider again a set of N
conditionally independent and identically distributed random
variables X1, · · · , XN . Since the X ′

i s are conditionally inde-
pendent, the p.d.f. of the kth maxima Mk,N conditioned on �Y
is given by

Prob.[Mk,N = w| �Y ] = N!

(k − 1)!(N − k)!
p(w| �Y )

×
[∫ +∞

w

p(X | �Y )dX

]k−1

×
[∫ w

−∞
p(X | �Y )dX

]N−k

. (23)

This equation is exact for any k and any distribution p(X | �Y )
and can be understood as follows. For the kth maximum to be
located at w, we need to place one variable exactly at w, k − 1
variables above w and N − k variables below w. The p.d.f. of
the kth maximum, integrated over �Y , reads

Prob.[Mk,N = w] =
∫

d �Y h( �Y ) Prob.[Mk,N = w| �Y ]. (24)

We now study the large-N limit of this p.d.f. by setting k =
αN where 0 < α < 1. Equation (23) then gives

Prob.[Mk,N = w| �Y ] = 	(N + 1)

	(αN )	[N (1 − α) + 1]

× p(w| �Y )∫ +∞
w

p(X | �Y )dX
e−N�α (w), (25)

where we rewrote the combinatorial factor using the Gamma
function 	(z) and we introduced the function

�α (w) = −α ln

[∫ +∞

w

p(X | �Y )dX

]

− (1 − α) ln

[∫ w

−∞
p(X | �Y )dX

]
. (26)

So far, we have not taken the large-N limit. When N →
∞, the p.d.f. in (25) gets sharply concentrated around the
value w = q(α, �Y ) that minimizes �α (w). Setting �′

α[w =
q(α, �Y )] = 0 yields∫ +∞

q(α, �Y )
p(X | �Y ) dX = α. (27)

Notice that this corresponds to the definition of the α quan-
tile of the conditional distribution p(X | �Y ). Then expanding
�α (w) around q(α, �Y ) up to quadratic order, one finds that
for large N and close to q(α, �Y ), the p.d.f. defined in Eq. (25)
simplifies to

Prob.[Mk,N = w| �Y ] ≈
√

N
[
p(q | �Y )

]2

2πα(1 − α)

× exp

⎧⎨
⎩−N

[
p(q | �Y )

]2

2α(1 − α)
[w − q]2

⎫⎬
⎭,

(28)

where for brevity we suppressed the explicit dependence on
α and �Y of q ≡ q(α, �Y ). Then Eq. (28) is simply a Gaussian
distribution centered around q with variance

Var = α(1 − α)

N[p(q | �Y )]2
. (29)

For the order statistics in the bulk where α ∼ O(1), it follows
from Eq. (27) that q(α, �Y ) is also of order O(1). Conse-
quently, from Eq. (29), one finds that Var ∼ O(1/N ). Under
these conditions, in the large-N limit, the p.d.f. in Eq. (28)
becomes sharply peaked and can be approximated by a Dirac
delta function centered at q(α, �Y ). Note that this is true regard-
less of the underlying distribution p(X | �Y ). Substituting the
Dirac delta function back in Eq. (24), we find that the p.d.f. of
the kth maximum in the bulk converges, in the large-N limit,
to an N-independent limiting form given by

Prob.[Mk,N = w] −→
N→∞

∫
d �Y h( �Y ) δ[w − q(α, �Y )]. (30)

This result characterizes the order statistics in the bulk for con-
ditionally independent and identically distributed variables.

However, for the order statistics near the edge, where α =
O(1/N ), we need to carefully study the dependence on N
of the quantile q(α, �Y ) and the variance Var. From Eq. (27)
we see that when α ∼ O(1/N ) 	 1, the quantile q(α, �Y ) de-
pends on the tail of p(X | �Y ) for large X . We therefore analyze
separately the three classes of tails that lead to the three uni-
versality classes of the EVS in the independent and identically
distributed case. In Sec. III B 1, we study the Gumbel class,
where the distribution p(X | �Y ) decays faster than a power law
for large X . In Section III B 2, we study the Weibull class,
where the support of the distribution p(X | �Y ) is bounded above
and approaches its upper bound as a power law. Finally, in
Sec. III B 3, we study the Fréchet class, where the distribution
p(X | �Y ) has an unbounded support and decays as a power law
for large X . We will see that while the bulk result in Eq. (30)
can be extrapolated to the edge [where k = O(1)] for the
Gumbel and the Weibull class, the same cannot be done for
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the Fréchet case. In the Fréchet case, the order statistics at the
edge needs to be analyzed separately.

1. Edge order statistics for the Gumbel class

We start by studying random variables belonging to the
Gumbel class, e.g., when the tail of the distribution p(Xi| �Y )
decays as

p(Xi| �Y ) ∼
Xi�1

A( �Y )e−B( �Y )Xi
μ( �Y )

, (31)

where A( �Y ), B( �Y ), and μ( �Y ) > 0 are positive real functions
of �Y . For simplicity, we will drop the explicit dependence on
�Y of A( �Y ), B( �Y ), and μ( �Y ) and simply denote them by A, B,
and μ. In order to probe the behavior of the extremes near
the edge, i.e., of Mk,N for k ∼ O(1). To do so, we start by
studying the dependence on N of the quantile q(α, �Y ) when
α = k/N = O(1/N ). From Eq. (27) we see that when α 	
1 then necessarily q(α, �Y ) � 1. Hence, in Eq. (27), we can
replace the integrand by its tail behavior (31) and obtain

α ≈
∫ +∞

q(α, �Y )
A e−Bxμ

dx = A

μB1/μ

∫ +∞

B qμ(α, �Y )
t1/μ−1 e−t dt

≈
q(α, �Y )�1

A

B μ
q1−μ(α, �Y ) e−B qμ(α, �Y ). (32)

where we approximated the integral by its value at its lower
bound which is the leading-order contribution due to the expo-
nential decay of the integrand. Since we are at the edge, where
α = k/N 	 1 and q(α, �Y ) � 1, the leading-order solution for
q(α, �Y ) from Eq. (32) is given by

q(α, �Y ) ≈
α→0

1

B1/μ
log1/μ

(
A

Bαμ

)
. (33)

Replacing α = k/N with k ∼ O(1) fixed and taking N →
+∞ we obtain

q(α, �Y ) ≈ 1

B1/μ
log1/μ

(
N

A

Bkμ

)
∼ O[log1/μ(N )], (34)

thus justifying a posteriori that q(α, �Y ) � 1 for large N . We
now investigate how the variance Var in Eq. (29) depends on
N for large N . To do so, we substitute Eq. (34) back into
Eq. (31), yielding

p(q | �Y ) ≈
α	1

Bkμ

N
. (35)

Using Eq. (35) in Eq. (29), we get that the variance is given
by

Var = α(1 − α)

N[p(q | �Y )]2
≈ k/N

N
(Bkμ

N

)2 ≈ 1

B2μ2k
∼ O(1). (36)

Thus, the variance Var = O(1) while from Eq. (34) the mean
q(α, �Y ) = O([log N]1/μ). Hence, we can write

Mk,N ≈ q(α, �Y ) + ηk, (37)

where ηk is a random variable of order O(1). Therefore, in
the large-N limit, the fluctuations are negligible compared to
the mean for any positive A( �Y ), B( �Y ), and μ( �Y ). For large N ,
the kth maximum Mk,N effectively concentrates on its mean
value Mk,N ≈ q(α, �Y ) ∼ log1/μ(N ). Thus, the approximation

used to obtain Eq. (30) is still valid even at the edge, i.e., for
α ∼ O(1/N ). Hence, for the Gumbel class, Eq. (30) charac-
terizes both the order statistics in the bulk as well as at the
edge for conditionally independent and identically distributed
variables.

2. Edge order statistics for the Weibull class

We now turn our attention to conditionally independent
and identically distributed variables belonging to the Weibull
class. In this case, the support of the distribution p(Xi| �Y ) is
bounded above by x�( �Y ) and approaches this bound with a
power-law tail given by

p(Xi| �Y ) ≈
Xi→x�( �Y )

A( �Y )[x�( �Y ) − Xi]
μ( �Y )−1, (38)

for Xi close to x�( �Y ), where A( �Y ), x�( �Y ), μ( �Y ) > 0 are pos-
itive real functions of �Y , where for simplicity we will drop
the explicit dependence on �Y . We start by studying the de-
pendence on N of the quantile q(α, �Y ). Once again, to probe
the EVS we have to fix k ∼ O(1) while taking N → +∞ to
study the behavior close to the global maximum M1,N . Hence
α ∼ O(1/N ) 	 1 and q(α, �Y ) must be approaching x� from
below. This justifies using the tail expression given in Eq. (38)
inside the integral in Eq. (27). Hence,

α =
∫ +∞

q(α, �Y )
p(X | �Y ) dX = A

∫ x�

q(α, �Y )
(x� − X )μ−1dX

= A

μ
[x� − q(α, �Y )]μ, (39)

which gives

q(α, �Y ) = x� −
(

αμ

A

)1/μ

. (40)

In the limit of N → +∞, keeping k ∼ O(1) fixed, α =
k/N → 0 and therefore q(α, �Y ) ∼ O(1). We now study the
dependence on N of the variance Var. Plugging Eq. (40) back
into Eq. (38) we get

p(q | �Y ) ≈ A1/μ(αμ)1−1/μ. (41)

Thus, the variance in Eq. (29), is given by

Var = α(1 − α)

N
[
p(q | �Y )

]2 ≈ k/N (1 − k/N )

NA2μ(kμ/N )2−2/μ

≈ k

A2μ(kμ)2−2/μ
N−2μ ∼ O(N−2μ), (42)

where we used α = k/N and took the EVS limit of N →
+∞ keeping k = O(1) fixed. From Eqs. (40) and (42) we
see that the mean is of order O(1) while the variance is of
order O(N−2μ). Hence the approximation that the Gaussian
is sharply peaked holds and the result derived in Eq. (30) is
valid for any k. Hence, for the Weibull class, Eq. (30) also
fully characterizes both the order statistics in the bulk as well
as at the edge for conditionally independent and identically
distributed random variables.
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3. Edge order statistics for the Fréchet class

Finally, we turn our attention to conditionally independent
and identically distributed variables belonging to the Fréchet
class. The conditional distribution p(Xi| �Y ) has an unbounded
support with a power-law tail given by

p(Xi| �Y ) ≈
Xi�1

A( �Y )

Xi
1+μ( �Y )

, (43)

where A( �Y ) > 0 and 2 > μ( �Y ) > 0 are positive real functions
of �Y . Once more, we drop the explicit dependence on �Y
of A( �Y ) and μ( �Y ) for brevity and we will restore it later.
To probe the EVS, we have to take the limit of N → +∞
keeping k = O(1) fixed to study the behavior close to the
global maximum M1,N . In this limit, α = k/N = O(1/N ) 	
1, which from Eq. (27) implies q(α, �Y ) � 1. Therefore, the
integrand in Eq. (27) can be replaced by its tail behavior given
in Eq. (43). Then,

α ≈
∫ +∞

q(α, �Y )
A

dX

X 1+μ
≈ A

μ
q−μ(α, �Y ), (44)

hence

q(α, �Y ) ≈
(

A

μα

)1/μ

. (45)

Taking, α = k/N and the limit N → +∞ keeping k = O(1)
fixed results in

q(α, �Y ) ≈
(

AN

μk

)1/μ

∼ O(N1/μ). (46)

This characterizes the dependence on N of the quantile
q(α, �Y ). We now turn our attention to the dependence on N
of the variance Var. Plugging Eq. (46) back in Eq. (43) we get

p(q | �Y ) ≈
α	1

A1/μ(α)1/μ+1 ≈ A1/μk1/μ+1

N1/μ+1
, (47)

where we used α = k/N . Then the variance in Eq. (29) is
given by

Var = α(1 − α)

N[p(q | �Y )]2
∼ O(N2/μ). (48)

Thus the width of the fluctuations is of the same order as the
mean value for large N , since Var/q(α, �Y )2 ∼ O(1) and hence
the distribution does not concentrate on its mean for large N—
at variance with the Gumbel and the Weibull class. Thus in
the Fréchet case, we need to analyze the extremes at the edge
directly from the limiting behavior given in Eq. (11), instead
of extrapolating the bulk result to the edge. We recall the result
in Eq. (11) for ρ = II corresponding to the Fréchet class. It
reads, for k ∼ O(1),

Prob.[Mk,N � w | �Y ] ≈ F k
II

(
w − aN

bN

)
, (49)

where F k
II(z) is given in Eq. (12). From Eq. (9), we know that

the scale factors are given by

aN = 0 and
∫ +∞

bN

p(X | �Y )dX = 1

N
. (50)

Comparing Eq. (50) with Eq. (27) we see immediately that

bN = q(1/N, �Y ) ≡ qN ( �Y ). (51)

Putting the scale factors obtained in Eq. (50) in Eq. (11)
we get

Prob.[Mk,N � w | �Y ] −→
N→+∞

1

	(k)

∫ +∞

w−μqN ( �Y )μ
dt e−t t k−1.

(52)
where we used GII(z) = �(z) e−z−μ

from Eq. (9).
Once again, in the N � 1 limit, we have qN ( �Y ) � 1, so we

can plug the tail behavior given in Eq. (43) into Eq. (50) and
solve for qN ( �Y ), as was done before for q(α, �Y ). This yields

qN ( �Y ) �
(

AN

μ

)1/μ

. (53)

Now, using Eq. (52) in Eq. (24), we get

Prob.[Mk,N � w] =
∫

d �Y h( �Y )Prob.[Mk,N � w | �Y ]

= 1

	(k)

∫
d �Y h( �Y )

∫ +∞

w−μqN ( �Y )μ
dt e−t t k−1.

(54)

We denote the lower bound of the integral over t by

λN (w, �Y ) =
[

qN ( �Y )

w

]μ( �Y )

= A( �Y )N

μ( �Y )wμ( �Y )
, (55)

where we restored the explicit dependence of A and μ on �Y .
Next we express the integral over t as

∫ +∞

λN (w, �Y )
dt e−t t k−1 = 	(k) −

∫ λN (w, �Y )

0
dt e−t t k−1

= 	(k) −
∫ ∞

0
dt �[λN (w, �Y )−t]e−t t k−1.

(56)

Substituting this integral in Eq. (54) and using the fact that
h( �Y ) is normalized to unity, we get

Prob.[Mk,N � w] = 1 − 1

	(k)

∫ ∞

0
dt e−t t k−1

×
∫

d �Y h( �Y ) �[λN (w, �Y ) − t]. (57)

Thus interpreting λN (w, �Y ) as a random variable, we get

Prob.[Mk,N � w] = 1 − 1

	(k)

∫ ∞

0
dt Prob.[λN (w, �Y ) � t]

× e−t t k−1, (58)
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where

Prob.[λN (w, �Y ) � t] =
∫

d �Y h( �Y ) �[λN (w, �Y ) − t]. (59)

Given the distribution h( �Y ) of �Y , it follows that A( �Y ) and μ( �Y )
are random variables in Eq. (55). We first need to compute
the distribution of λN (w, �Y ) defined in (55) using Eq. (59).
Finally, we need to substitute this cumulative distribution
function of λN (w, �Y ) in Eq. (58) to compute the cumulative
distribution function of Mk,N . Hence Eq. (58) characterizes the
order statistics at the edge for the conditionally independent
and identically distributed variables belonging to the Fréchet
class.

Let us end this section with the following remark. As
discussed above we see that for conditionally independent
and identically distributed variables belonging to the Gumbel
or Weibull class (but not the Fréchet), one could obtain the
statistics of the positions of the particles near the edges by ex-
trapolating the bulk results. One may wonder if the same can
be done for independent and identically distributed variables
belonging to the Gumbel or the Weibull class. However, it is
well known that for independent and identically distributed
variables the bulk and the edge order statistics behave very
differently and their statistics cannot be derived using just a
single framework. Our results demonstrate that, in contrast
to the independent and identically distributed case, a single
function indeed describes the statistics of the particle positions
both in the bulk and at the edges for conditionally independent
and identically distributed variables belonging to the Gumbel
and the Weibull class.

IV. SIMULTANEOUSLY RESETTING
STOCHASTIC PROCESSES

We now provide three concrete physical examples belong-
ing to the three classes where the general results derived above
for the conditionally independent and identically distributed
variables can be applied. These examples are motivated by the
recent advances in the field of stochastic resetting. Stochastic
resetting simply means interrupting the natural dynamics of
a system (deterministic or stochastic) at random times and
restart from the same initial condition. The resetting breaks
detailed balance and drives the system to a nonequilibrium
stationary state (NESS). This NESS has been studied in
various theoretical models [46–61], for recent reviews see
Refs. [62–64]. Some of these theoretical predictions have been
verified in reent experiments on colloids diffusing in an optical
trap [65–67]. As stated in the Introduction, a straightforward
and physically interesting way of obtaining conditionally
independent and identically distributed variables is through
simultaneous resetting of otherwise independent processes.
It is a mechanism first introduced in Ref. [32], which we
generalize here to two new systems. Specifically, we consider
N-independent particles whose positions X1(t ), · · · , XN (t )
[which we abbreviate as �X (t )] evolve on the line under some
dynamics which we refer to as its “natural dynamics.” For
example, it could be N independent Brownian motions or N
independent ballistic particles, etc. For simplicity we consider
the evolution in continuous time but this can easily be gen-
eralized to discrete time processes such as Lévy flights. We
introduce resetting to the origin by

�X (t + dt ) =
{

0, . . . , 0 with probability rdt
each Xi evolves independently via its natural dynamics with complementary probability 1 − rdt

. (60)

In other words, after every time step dt , we either reset all
the processes simultaneously to the origin with probability
rdt , or we let each process evolve independently, as it would
have in the absence of resetting. A cartoon illustrating the
trajectories for three particles evolving under this dynamics
is shown in Fig. 1. We denote by p(X | τ ) the free-propagator
(in the absence of resetting) at time τ of this process start-
ing at X = 0, i.e., the probability density for the process to
arrive at X at time τ , starting at X = 0. In the absence of
resetting the variables X1(τ ), X2(τ ), . . . , XN (τ ) are indepen-
dent. Hence, for a given τ , their joint distribution factorizes
Prob.[ �X | τ ] = ∏N

i=1 p(Xi | τ ). We can write a renewal equa-
tion for the simultaneously resetting process which reads

Prob.[ �X (t )] = e−rt
N∏

i=1

p(Xi | t ) + r
∫ t

0
dτ e−rτ

N∏
i=1

p(Xi|τ ).

(61)

This equation can be understood as follows. There is a possi-
bility that the process never resets in the time interval [0, t].
The probability of never resetting in this interval is given by
e−rt and the propagator

∏N
i=1 p(Xi | t ) gives us the probability

for the free process to reach �X at time t . This corresponds to

the first term of Eq. (61). Otherwise, the process will reset at
least once before reaching �X at time t . Suppose it has reset
for the last time at time t − τ , it then has to reach �X from
�0 in the time interval [t − τ, t] while never resetting. The
probability of resetting once is given by rdτ , the probability
of never resetting in the interval [t − τ, t] is given by e−rτ

and the probability of reaching �X from �0 in time τ is given
by the free-propagator

∏N
i=1 p(Xi | τ ). Multiplying this free

propagator by the distribution of τ and integrating over τ gives
the second term of Eq. (61). We can see from Eq. (61) that in
the long time limit, t � 1, the first term drops out and the
simultaneously resetting process reaches a NESS

Prob.[ �X ]NESS = r
∫ +∞

0
dτ e−rτ

N∏
i=1

p(Xi | τ ). (62)

This steady state is out-of-equilibrium because resetting man-
ifestly breaks detailed balance in the configuration space.
Comparing Eq. (2) and Eq. (62) we see that this system pro-
vides an example of conditionally independent and identically
distributed variables. Here we have only M = 1 conditioning
variable Y1 = τ , which is the time elapsed since the last re-
setting event before t . Since τ has an exponential distribution,
we then have h(τ ) = re−rτ with parameter r. As discussed in
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the Introduction, this joint probability density function does
not factorize. Indeed the simultaneous resetting induces strong
“all-to-all” correlations in our gas.

Given the joint distribution given in Eq. (62) in the NESS,
one can investigate various physical observables, such as the
average density of the gas, the order statistics, the statistics
of gaps between particles or the full counting statistics, i.e.,
the distribution of the number of particles in a given interval
[32]. For example, one of the basic observables is the average
density of the gas given by

ρ(x, N |r) =
〈

1

N

N∑
i=1

δ(Xi − x)

〉
= r

∫ +∞

0
dτ e−rτ p(x | τ ).

(63)

Therefore the average density in the NESS is just the marginal
distribution of a set of conditionally independent and identi-
cally distributed variables. Interestingly, the average density
is independent of N . Similarly the order statistics of the posi-
tions of the particles in the NESS of this gas can be derived
using the general results for conditionally independent and
identically distributed variables detailed before. In this paper,
we focus only on the average density and the order statistics,
but in principle one can also obtain exactly other observables
such as the gap and the full counting statistics.

A. Brownian motion: An example of the Gumbel class

1. The NESS and the average density

In this section, we briefly recall the results of Ref. [32]
for the simultaneously resetting Brownian gas. We consider a
gas of N simultaneously resetting Brownian walkers on a line
evolving via the stochastic dynamics (60); see the left panel
of Fig. 1. We will see that this is an example of conditionally
independent and identically distributed variables belonging to
the Gumbel class. The propagator p(X | τ ) of a single particle
in the absence of resetting, i.e., the probability density to
arrive at X at time τ starting from X = 0 is simply diffusive,
i.e.,

p(X | τ ) = 1√
4πDτ

exp

[
− X 2

4Dτ

]
. (64)

Plugging this propagator in Eq. (62) gives the joint distribu-
tion in the NESS

Prob.[ �X ]NESS = r
∫ +∞

0

dτ

(4πDτ )N/2

× exp

[
−rτ − 1

4Dτ

N∑
i=1

X 2
i

]
, (65)

which is manifestly nonfactorizable, illustrating the fact that
the positions of the particles become correlated in this NESS.
The origin of these correlations can be traced back to the
simultaneous resetting of the particles [32]. Given this joint
distribution, one can compute various observables in princi-
ple. For example, the average density in the steady state is
given by Eq. (63)

ρ(x, N |r) = r
∫ +∞

0
dτ e−rτ p(x | τ ) = 1

2

√
r

D
e−

√
r
D |x|. (66)

FIG. 2. The average density ρ(x, N |r), given in Eq. (66), is
plotted vs x for N simultaneously resetting Brownian motions with
r = D = 1. This density is independent of N . The blue dots on the
line represent a typical configuration of the particles. The position of
the rightmost particle M1,N scales as

√
ln N for large N .

Thus, even though at fixed τ the marginal distribution
of the conditionally independent and identically distributed
variables is Gaussian, once averaged over the conditioning
variable τ , the steady-state average density becomes highly
non-Gaussian. A plot of this density is shown in Fig. 2.

2. Center of mass

The two first moments of the distribution p(X | τ ) are
clearly finite and are given by

m(τ ) = 0 and σ 2(τ ) = 2Dτ. (67)

Since m(τ ) = 0 we have to use Eq. (19) to obtain the statistics
of the center of mass. Plugging Eq. (67) into Eq. (19) we
immediately obtain

P(C, N ) = r
∫ +∞

0
dτ

√
N

4πDτ
e− NC2

4Dτ e−rτ = 1

2

√
rN

D
e−

√
rN
D |C|.

(68)

A plot of this scaling function is given in the left panel of
Fig. 3 where it is also compared to numerical simulations.
Note that this is simply a rescaling of the average density we
derived in Eq. (66). This is because in this specific case we
actually have a nice trick which allows us to express the center
of mass exactly for any N in terms of the density function.
Indeed, making use of the fact that Gaussian variables are
stable under summation, i.e., if X and Y are Gaussian, then

FIG. 3. Plots of the probability density functions of the center
of mass (left panel) and the order statistics (right panel) obtained
in Eq. (72) and Eq. (75), respectively. The dashed lines correspond
to the theoretical predictions in Eq. (72) (left panel) and Eq. (75)
(right panel). The symbols represent the results of numerical simula-
tions. Different colors and symbols correspond to different values of
α = k/N , where we used N = 1000.
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X + Y is also Gaussian, we can write

p(S | Nτ ) =
∫

dX1

∫
dX2 · · ·

∫
dXN p(X1 | τ )p(X2 | τ )

· · · p(XN | τ )δ(X1 + X2 + · · · + XN − S)

= Prob.

[
N∑

i=1

Xi = S

]
, (69)

where S = C N . This formula can be understood as follows.
In order to reach S in time Nτ we split the trajectory into
segments of duration τ . Denote by Zk the position at time kτ

for 0 � k � N . Then telescopically we can write

S = ZN = (ZN − ZN−1) + (ZN−1 − ZN−2) + · · · + (Z1 − 0).

(70)

Then the terms in each parenthesis Xk = Zk − Zk−1 for 1 �
k � N correspond to the distance traveled in the time inter-
val [(k − 1)τ, kτ ]. Since Gaussian variables are stable under
summation we can split the probability on each of these time
segments, leading to Eq. (69). Then we get

P(C, N ) = rN
∫ +∞

0
e−rτ Prob.

[
N∑

i=1

Xi = cN

∣∣∣∣∣ τ
]

dτ

= rN
∫ +∞

0
e−rτ p(CN | Nτ ) dτ. (71)

Changing variable to y = Nτ we get

P(C, N ) = N

[
r

N

∫ +∞

0
e− r

N y p(CN | y) dy

]

= Nρ

(
CN, N

∣∣∣∣ r′ = r

N

)
, (72)

where ρ(x, N |r′) is precisely the average density in Eq. (66).

3. EVS and order statistics

We now consider the order statistics in the bulk as well as
the edge of this gas. The conditional distribution p(X |τ ) in
Eq. (64) has a Gaussian tail and hence it clearly belongs to the
Gumbel class in Eq. (31). Then, computing the explicit form
of the quantile q(α, �Y ) ≡ q(α, τ ) from Eq. (27), we obtain

q(α, τ ) =
√

4Dτ erfc−1(2α), (73)

where erf (z) = 2/
√

π
∫ ∞

z e−u2
du and erfc−1(z) is the asso-

ciated inverse function. As argued in Sec. III B 1, the order
statistics in the large-N limit, both in the bulk and at the
edges, can be obtained within the same framework, namely
from Eq. (30), with the substitution �Y → τ and h( �Y ) = r e−rτ .
Plugging Eq. (73) in (30) gives

Prob.[Mk,N = w] = r
∫ +∞

0
dτe−rτ δ[w −

√
4Dτ erfc−1(2α)].

(74)

Performing this integral we immediately obtain

Prob.[Mk,N = w] = 1

�(α)
f

[
w

�(α)

]

with �(α) =
√

4D

r
erfc−1(2α), (75)

where the normalized scaling function f (z) defined on z > 0
is given by

f (z) = 2 z e−z2
, z � 0, (76)

This result was already derived in Ref. [32]. In the right panel
of Fig. 3, we compare this analytical prediction to numerical
simulations, finding excellent agreement.

B. Random ballistic motion: An example of the Weibull class

1. The NESS and the average density

To find a physical example belonging to the Weibull class
of conditionally independent and identically distributed vari-
ables, we consider a gas of N particles undergoing ballistic
motions on the line. The particles all start at the origin and
reset simultaneously to the origin with rate r. At the end of
every resetting event, each particle is assigned independently
a random velocity vi drawn from a uniform distribution n(v)

n(v) =
{

1
2 if v ∈ [−1, 1]

0 otherwise
. (77)

In this case, the free propagator of a single particle at time τ

(in the absence of resetting) is given by

p(X | τ ) =
∫ +∞

−∞
dv δ(X − vτ )n(v) = 1

τ
n

(
X

τ

)
. (78)

An example of the typical trajectories of this system of par-
ticles is shown in the middle panel of Fig. 1. Plugging this
free-propagator from Eq. (78) into the general formula for the
NESS given in Eq. (62), we get

Prob.[ �X ]NESS = r
∫ +∞

0
dτ e−rτ 1

τN

N∏
i=1

n

(
Xi

τ

)
. (79)

Once again, the particle positions are strongly correlated in the
NESS since the joint distribution does not factorize. Given this
exact joint distribution, one can compute various observables,
as in the Brownian case. For example, the average density is
given by

ρ(x, N |r) = r
∫ +∞

0
dτ e−rτ p(x | τ ) = r

2

∫ +∞

r|x|

dv

v
e−v

= r ρs(rx), (80)

where the normalized scaling function ρs(z) defined for z ∈ R
is given by

ρs(z) = 1

2

∫ +∞

|z|

dv

v
e−v = −1

2
Ei(−|z|). (81)

Here Ei(z) is the exponential integral function [68] and the
scaling function ρs(z) is plotted in Fig. 4. The asymptotics of
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FIG. 4. The average density ρ(x, N |r), given in Eqs. (80) and
(81), is plotted vs x for N simultaneously resetting ballistic particles
with r = 1. This density is independent of N . The blue dots on the
line represent a typical configuration of the particles. The position of
the rightmost particle M1,N is of order (1 − 2/N )/r for large N .

this scaling function are given by

ρs(z) �
{

− 1
2 log z for |z| 	 1

e−z/(2z) for |z| � 1
. (82)

2. Center of mass

The first and second moments in this case are also finite
and given by

m(τ ) = 0, (83)

and

σ 2(τ ) =
∫ +∞

−∞
dX X 2 p(X | τ ) −

[∫ +∞

−∞
dX X p(X | τ )

]2

=
∫ +∞

−∞
dX

X 2

τ
n

(
X

τ

)

=
∫ +τ

−τ

dX
X 2

2τ
= τ 2

3
, (84)

where we used Eqs. (77) and (78). Since m(τ ) = 0 is a con-
stant, independent of τ , we can use Eq. (19) to express the
p.d.f. of the center of mass. Plugging Eq. (83) into Eq. (19)
we get

P(C, N ) = r
∫ +∞

0
dτ

√
3N

2πτ 2
exp

[
−3NC2

2τ 2
− rτ

]
. (85)

Changing variable to ν = rτ we obtain

P(C, N ) =
√

3

2
Nr2 �

(
C

√
3

2
Nr2

)
, (86)

where the normalized scaling function �(z) defined for z ∈ R
is given by

�(z) = 1√
π

∫ +∞

0

dν

ν
e−ν−z2/ν2

. (87)

While this integral does not admit a simple closed form,
we can easily compute the asymptotics behaviors, which are
given by

�(z) →
⎧⎨
⎩

− 1√
π

log(z) for |z| 	 1(√
3|z|1/3

21/3

)−1
exp(− 3|z|2/3

22/3 ) for |z| � 1
. (88)

FIG. 5. Left: The scaled distribution of the center of mass. The
red dotted lines denote the analytical scaling function �(z) in Eq. (87)
and the points represent numerical simulations. Right: The distribu-
tion of the kth maximum Mk=αN,N in the bulk, given in Eq. (92), is
plotted on a log-linear scale. In the main figure, we show the curves
for α = 0.001 and α = 0.1 (where the distribution is supported over
the positive semiaxis), while the inset shows the curves for α = 0.6
and α = 0.999 (where the distribution is supported over the negative
semiaxis). The black dotted line represent the analytical prediction
given in Eq. (92) and the symbols represent simulation results for
N = 1000 and r = 1.

A plot of this normalized scaling function �(z) in Eq. (87) is
given in the left panel of Fig. 5, where it is also compared to
numerical simulations, finding excellent agreement.

3. EVS and order statistics

As in the Gumbel case, one can obtain the distribution of
the kth maximum, both in the bulk as well as at the edge, using
the same framework leading to Eq. (30), with the substitution
�Y → τ and h( �Y ) = r e−rτ . We start by computing the explicit
form of the quantile q(α, �Y ) ≡ q(α, τ ). Substituting Eq. (78)
in Eq. (27) we obtain

α =
∫ +∞

q(α,τ )
p(X | t )dX =

∫ +∞

q(α,τ )

dX

τ
n

(
X

τ

)

=
∫ +∞

q(α,τ )/τ
dv n(v). (89)

Using the fact that n(v) in Eq. (77) is supported over the
finite interval v ∈ [−1,+1], we need to consider three cases:
If q(α, τ ) � −τ , then the integral is equal to 1; if q(α, τ ) � τ ,
then the integral is equal to 0 and otherwise we have

α = τ − q(α, τ )

2τ
. (90)

Hence we get

q(α, τ ) = τ (1 − 2α) where 0 � α � 1. (91)

The free-propagator, defined in Eq. (78), clearly belongs to
the Weibull class in Eq. (38) with μ( �Y ) = 1. Therefore, as
discussed in Sec. III B, one can once more replace, for large
N , the Gaussian distribution in Eq. (28) by a delta function,
leading to Eq. (30) for the order statistics both in the bulk as
well as the edges. Plugging Eq. (91) into Eq. (30) we obtain

Prob.[Mk,N = w] ≈ r
∫ +∞

0
dτ e−rτ δ[w − τ (1 − 2α)]

= r

|1 − 2α| exp

(
− r|w|

|1 − 2α|
)

× �[w(1 − 2α)]. (92)
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Thus the distribution of the kth maximum Mk,N , both in the
bulk as well as at the edges, is given by an exponential
distribution, which is supported on the positive half-line (re-
spectively, negative half-line) for α < 1/2 (respectively, for
α > 1/2), as shown in the right panel of Fig. 5.

C. Lévy Flights: An example of the Fréchet case

1. The NESS and the average density

In this section, we consider a gas of N Lévy flights on the
line, all starting at the origin and resetting simultaneously to
the origin. Usually Lévy flights (in the absence of resetting)
are defined in discrete time where the position of a walker
evolves via

Xn = Xn−1 + ηn, X0 = 0, (93)

where η′
ns are independent and identically distributed random

noises with a power-law tail, p(η) ∼ |η|−1−μ with 0 < μ < 2.
For large number of steps n, one can replace the discrete time
n by a continuous variable τ and it is well known [45] that the
free propagator of the Lévy flight for large τ converges to

p(X | τ ) ≈ 1

τ 1/μ
Lμ

(
X

τ 1/μ

)
, (94)

where Lμ(z) is the p.d.f. of a centered, normalized to unity,
symmetric stable function parametrized by 0 < μ < 2. Usu-
ally the function Lμ(z) is defined by its characteristic function

L̂μ(k) =
∫ +∞

−∞
dz eikzLμ(z) = e−|k|μ implying

Lμ(z) =
∫ +∞

−∞

dk

2π
e−ikz−|k|μ . (95)

A realization of the trajectories for N = 3 Lévy flights gener-
ated using the propagator in Eq. (94) is shown in Fig. 1 (right
panel). Inserting this expression for the free propagator in the
general formula for the NESS in Eq. (62), we get the joint
distribution of the positions of the simultaneously resetting
Lévy flights in the NESS as

Prob.[ �X ]NESS ≈ r
∫ +∞

0
dτ e−rτ

N∏
i=1

1

τ 1/μ
Lμ

(
Xi

τ 1/μ

)
. (96)

Given this joint distribution, one can compute various physical
observables, as in the two preceding cases. In particular, the
averaged density is given by

ρ(x, N |r) ≈ r
∫ +∞

0
dτ e−rτ 1

τ 1/μ
Lμ

(
x

τ 1/μ

)
= r1/μρμ(r1/μx),

(97)
where the normalized scaling function ρμ(z) is symmetric and
is given by

ρμ(z) = μ|z|μ−1
∫ +∞

0
du

1

uμ
e−(|z|/u)μLμ(u). (98)

One can compute the asymptotic behavior of the average
density. For large |z|, one finds that, for all 0 < μ < 2,

ρμ(z) ≈ 1

2π

1

|z|1+μ
, |z| → ∞. (99)

FIG. 6. The average density ρ(x, N |r), given in Eqs. (97) and
(98), is plotted vs x for N simultaneously resetting Lévy flights for
three different values of μ = 0.5, 1, and 1.5 and r = 1. This density
is independent of N . For μ = 0.5 and μ = 1, the density diverges
as |z| → 0, while it approaches a constant for μ = 1.5. The black
dots on the line represent a typical configuration of the particles. The
position of the rightmost particle M1,N is of order N1/μ for large N .

Interestingly, the small-z behavior is quite different depending
on the value of μ. Indeed, we get, as |z| → 0,

ρμ(z) ≈

⎧⎪⎪⎨
⎪⎪⎩

c1
|z|1−μ when 0 < μ < 1,

1
π

(− log |z|) when μ = 1,

1
μ sin(π/μ) when 1 < μ < 2,

(100)

where we introduced the constant

c1 = μ

∫ +∞

0

dv

vμ
Lμ(v). (101)

Using Lμ(v) → O(1) as v → 0 [see Eq. (22)], we see that the
constant c1 is well defined for μ < 1. Thus the average density
diverges as |z| → 0 for 0 < μ � 1 (but it is still integrable),
while it approaches a constant as |z| → 0 for 1 < μ < 2. A
plot of this density is given in Fig. 6

2. Center of mass

The stable distribution Lμ(z) has a power-law tail for large
z as in Eq. (22). Hence, the free-propagator in Eq. (94) be-
longs to the Fréchet class of conditionally independent and
identically distributed variables. In this case, for the center of
mass C = 1

N

∑N
i=1 Xi, we can use the general result stated in

Eq. (20). A straightforward computation, with suitable change
of variables leads us to

P(C, N ) = rN
∫ +∞

0
dτ e−rτ 1

(N τ )1/μ
Lμ

[
CN

(N τ )1/μ

]
.

(102)

Making a further change of variable ν = Nτ , one gets

P(C, N ) = N

[
r

N

∫
dν e− r

N ν 1

ν1/μ
Lμ

(
CN

ν1/μ

)]

= Nρ

(
CN, N

∣∣∣∣r′ = r

N

)
, (103)

where we used the expression for the average density in
Eq. (97). The fact that this distribution of the center of mass
is related to the rescaled single-particle propagator can again
be traced back to the fact that Lévy variables are stable under
addition. Hence the argument used for the Gaussian case in
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FIG. 7. The p.d.f. of the center of mass P(C, N ) in Eq. (104) is shown by dashed lines for N = 1000 and for μ = 1.5, 1, and 0.5 in the left,
middle, and right panels, respectively. The dots represent numerical simulations.

Eqs. (69)–(72) can also be applied here, explaining the rela-
tion in Eq. (103). Finally, from Eqs. (97) and (103) we find
that the p.d.f. of the center of mass admits the scaling form
for large N

P(C, N ) ≈ N1−1/μr1/μρμ(N1−1/μr1/μC), (104)

where ρμ(z) is a symmetric function defined in Eq. (98).
A plot of this scaling function is given in Fig. 7 where it
is compared to numerical simulations, showing an excellent
agreement.

3. EVS and order statistics

Unlike in the two cases (Gumbel and Weibull) discussed
before, it turns out that for the Fréchet case, the order statistics
in the bulk cannot be extrapolated all the way to the edge.
Hence one needs to study separately the statistics of Mk,N

when k = O(N ) (bulk) and when k = O(1) (edge).

4. Bulk order statistics

In the bulk, i.e., for k ∼ O(N ), we know that the order
statistics is given by Eq. (30) with �Y replaced by τ and h( �Y )
replaced by r e−rτ . Hence, we start by computing the explicit
form of the quantile q(α, �Y ) ≡ q(α, τ ). Replacing Eq. (94)
into Eq. (27) we obtain

α =
∫ +∞

q(α,τ )
p(X | τ ) dX =

∫ +∞

q(α,τ )

1

τ 1/μ
Lμ

(
X

τ 1/μ

)
dX.

(105)
Changing variable to z = X/τ 1/μ and denoting by Fμ(z) =∫ z
−∞ Lμ(x)dx the cumulative distribution function of the sta-

ble law, we can invert the relation in Eq. (105) and express it as

q(α, τ ) = τ 1/μF−1
μ (1 − α) = τ 1/μβμ, (106)

where F−1
μ is the inverse function of Fμ. Although we have

no closed form for βμ = F−1
μ (1 − α), it is simply a constant

which we can therefore numerically compute for any practical
purpose. Furthermore, from the symmetry of the p.d.f. Lμ(z)
it follows that if α < 1/2, then βμ > 0, while if α > 1/2,
then βμ < 0. Exactly at α = 1/2, βμ = 0. Hence, in the bulk
of the system, in the large-N limit, the order statistics will be
given by Eq. (30), which can be simplified as

Prob.[Mk,N = w] ≈ r
∫ +∞

0
dτe−rτ δ[w − τ 1/μβμ]

= rμ

(βμ)μ
wμ−1 exp

[
− r

(
w

βμ

)μ]

= r1/μ

βμ

fμ

(
r1/μ w

βμ

)
, (107)

where the normalized scaling function fμ(z) defined for z > 0
is given by

fμ(z) = μ zμ−1e−zμ

θ (z), (108)

and is plotted in Fig. 8 for three different values of μ. For
μ > 1, the scaling function fμ(z) vanishes as z → 0, while
for μ < 1 it diverges as z → 0.

5. Edge order statistics

As argued in the general discussion for the Fréchet class in
Sec. III B, for the order statistics at the edge, we can no longer
use the bulk result in Eq. (30). Instead, we need to use Eq. (58)
which holds for any k = O(1). To proceed, let us first evaluate
the large-X behavior of p(X | τ ) given in Eq. (94). Using the
large-z tail of Lμ(z) in Eq. (22) we get

p(X | τ ) ∼
X�1

τ

X 1+μ
sin

(
πμ

2

)
	(μ + 1)

π
. (109)

By replacing �Y by τ and μ( �Y ) by μ in Eq. (43), we see that
Eq. (109) is a special case of Eq. (43), namely

p(X | τ ) ∼
X�1

G τ

X 1+μ
, (110)

where

G = sin

(
πμ

2

)
	(μ + 1)

π
. (111)

Then, using Eq. (110) and Eq. (55) it follows that

λN (w, τ ) = G τ N

μwμ
. (112)

Hence the random variable λN (w, τ ) is proportional to the
random variable τ , which itself is distributed exponentially
via the p.d.f. Prob[τ ] = r e−rτ . This leads to

Prob.[λN (w, τ ) � v] = exp

(
−r

μvwμ

GN

)
. (113)

Plugging this expression in Eq. (58) we then obtain the cumu-
lative distribution function of Mk,N , which reads

Prob.[Mk,N � w] ≈ 1 − 1

	(k)

∫ +∞

0
dv vk−1

× exp

(
−r

μvwμ

GN
− v

)

= 1 − 1

[1 + rμwμ/(GN )]k
= Sk

(
rμwμ

GN

)
,

(114)
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FIG. 8. The p.d.f. of the kth maximum in the bulk Mk=αN,N in Eqs. (107) and (108) is shown for μ = 1.5, 1, and 0.5 in the left, middle, and
right panels, respectively. Different colors and symbols correspond to different values of k. The dashed black line corresponds to the scaling
function in Eq. (107).

where the scaling function Sk (z) defined for z � 0 is given by

Sk (z) = 1 − 1

(1 + z)k
. (115)

The p.d.f. is thus given by

Prob.[Mk,N = w] = rμ2wμ−1

GN
S′

k

(
rμwμ

GN

)

=
(

rμk

GN

)1/μ

Sμ,k

[(
rμk

GN

)1/μ

w

]
, (116)

where the normalized scaling function Sμ,k (z) reads

Sμ,k (z) = μ zμ−1

(1 + zμ/k)1+k
, z � 0. (117)

For large z, the scaling function decays as a power law
Sμ,k (z) ∼ z−1−μ k , while for small z, it behaves as Sμ,k (z) ∼
zμ−1. This scaling function thus characterizes fully the
large-N behavior of the order statistics at the edge for si-
multaneously resetting Lévy flights. In Fig. 9, this scaling
function is plotted for three different values of μ in the three
panels and compared to numerical simulations, showing a nice
agreement.

It is instructive to see how this result connects with the
order statistics in the bulk. Taking k = αN and performing
the limit N → +∞ keeping α ∼ O(1) fixed yields

Sμ,k (z) = μ zμ−1

[
1 + zμ

αN

]−1−αN

−→
N→+∞

μzμ−1e−zμ = fμ(z).

(118)
Thus, we recover the scaling function obtained for the order
statistics in the bulk given in Eq. (107). The scale factor
r1/μ/βμ in Eq. (107) for the bulk also matches the scale factor

( rμk
GN )1/μ in Eq. (116) at the edge. To see this, we first evaluate

βμ in Eq. (106). We get

βμ = F−1
μ (1 − α), (119)

which is equivalent to

α =
∫ +∞

βμ

Lμ(z) dz. (120)

In the α 	 1 limit, we can see that βμ � 1 and therefore
we can use the large-z asymptotics of Lμ(z) of the stable
distribution given in Eq. (22) inside the integral. Then,

α ≈
∫ +∞

βμ

G

z1+μ
dz = G

μ
(βμ)−μ, (121)

which yields

βμ ≈
(

G

μα

)1/μ

=
(

GN

μk

)1/μ

, (122)

where we used α = k/N . The scale factor in Eq. (107) is given
by

r1/μ

βμ

−→
α	1

(
rμk

GN

)1/μ

. (123)

Hence the scale factors in the bulk and at the edge clearly
match in this limit α → 0.

V. CONCLUSION

In this paper, we have studied the statistics of the scaled
sum and the order statistics for a set of N conditionally inde-
pendent and identically distributed random variables. These

FIG. 9. The p.d.f.’s of the first, second, and the third maximum from the right, i.e., M1,N , M2,N , and M3,N , given in Eqs. (116) and (117) are
plotted as solid lines. The three figues correspond to μ = 1.5 (left panel), μ = 1 (middle panel), and μ = 0.5 (right panel). The inset in the
left panel shows the behavior close to z = 0 where it vanishes as zμ−1 ∼ z1/2. Different colors and symbols correspond to different values of k.
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conditionally independent and identically distributed vari-
ables are independent and identically distributed variables for
a fixed value of a common parameter (or a set of parameters),
but they get correlated when one averages over the distribution
of the parameters. This provides a general mechanism to gen-
erate a large class of strongly correlated random variables that
are still solvable, despite the presence of strong correlations.
We studied the analog of the central limit theorem for the
scaled sum and also the analog of the three standard classes
of extreme value statistics. We showed that averaging over
the parameters drastically changes the behavior of these con-
ditionally independent and identically distributed observables
compared to the independent and identically distributed case.
As a physical example, we considered N simultaneously reset-
ting processes on a line where the resetting dynamics makes
them strongly correlated but of the conditionally independent
and identically distributed variety. We showed that when the
underlying resetting process is Brownian, this corresponds
to the Gumbel class of conditionally independent and iden-
tically distributed variables. We introduced a new model of
independent ballistic particles with random velocities, which
corresponds to the Weibull class of conditionally independent
and identically distributed variables. Finally, we considered
N simultaneously resetting Lévy flights on a line, which cor-
responds to the Fréchet class of conditionally independent
and identically distributed variables. In all these cases, we
obtained exact results in the large-N limit for the distribution
of the center of mass (i.e., the scaled sum), as well as for the
distribution of the kth maximum (i.e., the order statistics).

Here we only considered the statistics of the center of mass
and the kth maximum. Using the formalism developed here,
one can extend this study to other observables for condition-
ally independent and identically distributed variables, e.g.,
to the gap between successive particles or the full counting
statistics, i.e., the distribution of the number of particles in a
given fixed interval. For N simultaneously resetting Brownian
motions (Gumbel class), these other observables have been
studied recently in Ref. [32] and it would be interesting to
extend these studies to the other two classes, i.e., for the
Weibull and the Fréchet class. Another interesting direction
would be to study these three models in higher dimensions.
Furthermore, a special case where the random variables �X are
conditionally independent and identically distributed when
conditioned on �Y and the random variables �Y are themselves
conditionally independent and identically distributed when
conditioned on �Z might be worth investigating. This hierar-
chical conditional independence can be iterated and a nice
physical example which could be described by this kind of
construction is the generalized random energy model intro-
duced in Ref. [24].

VI. APPENDIX

In this Appendix, we derive how the central limit theorem
of independent and identically distributed variables general-
izes for conditionally independent and identically distributed
variables. We start by recalling some main results for the
sum [42] and the EVS of independent and identically dis-

tributed random variables [22,43]. We will generalize these
to conditionally independent and identically distributed ran-
dom variables in the following sections. Perhaps the most
well-known result for independent and identically distributed
random variables is the CLT that characterizes the distribution
of the scaled sum of N independent and identically distributed
random variables in the large-N limit. Let us consider a
set of N independent and identically distributed variables
X1, · · · , XN each distributed via the p.d.f. p(X ) that has a finite
first and second moment

m = 〈Xi〉 =
∫

X p(X )dX (124)

and

σ 2 = 〈
X 2

i

〉 − 〈
Xi

〉2 =
∫

X 2 p(X )dX −
[∫

X p(X )dX

]2

,

(125)

where the integrals are over the support of p(X ). The CLT
states that, for large N , the rescaled sum (which we refer to as
the “center of mass”) C = 1

N

∑N
i=1 Xi, converges to a Gaussian

distribution, i.e.,

P(C, N ) −→
N→+∞

√
N

2πσ 2
exp

[
−N

(C − m)2

2σ 2

]
, (126)

centered at m with a variance σ 2/N . When the p.d.f. p(X )
has a diverging second moment, e.g., when p(X ) is heavy
tailed such as p(X ) ∼ X −1−μ for large X with 0 < μ < 2, the
centered and scaled sum converges to a Lévy stable law with
index μ [42].

A. The scaled sum of conditionally independent and identically
distributed variables

In this subsection we calculate the general expressions
for the distribution of the sum of conditionally indepen-
dent and identically distributed variables in the large-N limit.
We find that, in contrast to independent and identically dis-
tributed variables, conditionally independent and identically
distributed variables in general do not reach universal limit
laws akin to the CLT or its generalizations to Lévy stable
laws. We start with the joint distribution in Eq. (15). The
p.d.f. of the sample mean, or equivalently the center of mass,
C = 1

N

∑N
i=1 Xi, can be written as

P(C, N ) =
∫

d �X δ

(
C − 1

N

N∑
i=1

Xi

) ∫ {
N∏

i=1

p(Xi| �Y )

}

× h( �Y ) d �Y . (127)
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Taking the Fourier transform with respect to C, one gets

P̂(k, N ) =
∫

P(C, N ) eikC dC =
∫

d �Y
[

p̂

(
k

N

∣∣∣ �Y )]N

× h( �Y ), (128)

where p̂(k| �Y ) is the Fourier transform of the conditional dis-
tribution function p(X | �Y ) with respect to X .

To analyze the large-N behavior of P̂(k, N ) in Eq. (128),
we need to analyze the small-k behavior of p̂(k| �Y ). Let us
assume that p(X | �Y ) admits a finite first and second moment,

m( �Y ) =
∫

dX X p(X | �Y ) and σ 2( �Y )

=
∫

dX X 2 p(X | �Y ) −
[∫

dX X p(X | �Y )

]2

. (129)

Then the logarithm of its Fourier transform admits the small-k
expansion,

log p̂(k| �Y ) = i m( �Y ) k − σ 2( �Y )

2
k2 + O(k3). (130)

Consequently, exponentiating Eq. (130) and keeping terms up
to order O(k2) inside the exponential, one gets

p̂(k| �Y ) ∼ ei m( �Y ) k− 1
2 σ 2( �Y )k2

. (131)

Substituting this in Eq. (128), and inverting the Fourier trans-
form, we get, for large N ,

P(C, N ) ≈ 1

2π

∫ ∞

−∞
dk

∫
d �Y eim( �Y )k− 1

2N σ 2( �Y )k2−ikCh( �Y ).

(132)

If m( �Y ) is a nonconstant function of �Y , then we can drop
the quadratic term O(k2/N ) in Eq. (132). Then, to leading or-
der for large N , the distribution P(C, N ) becomes independent
of N with a limiting form

P(C, N ) −→
N→∞

∫
d �Y δ[m( �Y ) − C] h( �Y ). (133)

In particular, the moments of this limiting distribution can be
calculated easily from Eq. (133) leading to

〈Cn〉 −→
N→∞

∫
d �Y mn( �Y ) h( �Y ). (134)

On the other hand, if m( �Y ) = m is a constant, then one can
shift C by m and rescale it by

√
N . It is then easy to see that

P(C, N ) converges to a scaling form

P(C, N ) −→
N→∞

√
N P

[
(C − m)

√
N

]
, (135)

where the scaling function P (Z ) is given by

P (Z ) = 1

2π

∫ ∞

−∞
dk̃

∫
d �Y e− 1

2 σ 2( �Y )k̃2−ik̃Zh( �Y ). (136)

Performing the integral over k̃, one finds

P (Z ) = 1√
2π

∫
d �Y

σ ( �Y )
exp

[
− Z2

2σ 2( �Y )

]
h( �Y ). (137)

This is the main exact result for the limiting distribution of
the scaled sum in the case where m( �Y ) is independent of �Y .
Clearly, the limiting distribution P (Z ) depends on the details
of h( �Y ) and σ ( �Y ). The moments of the scaling variable Z can
be computed from Eq. (137) leading to

〈Z2n〉 = 	(2n)

2n	(n)

∫
d �Y σ 2n( �Y ) h( �Y ), and

〈Z2n+1〉 = 0 n = 0, 1, 2 . . . . (138)

Using this result together with the scaling form in (135) we
get

〈(C − m)2n〉 = 	(2n)

(2N )n	(n)

∫
d �Y σ 2n( �Y ) h( �Y ), and

〈(C − m)2n+1〉 = 0 n = 0, 1, 2 . . . . (139)

So far, we have assumed that the two first moments of
p(X | �Y ) are finite. In case they are divergent, one can per-
form a similar analysis for conditionally independent and
identically distributed variables as in the case of independent
and identically distributed Lévy variables. For simplicity, we
assume that the variable X is symmetric with zero mean and
the conditional p.d.f. p(X | �Y ) has a power-law tail p(X | �Y ) ∼
1/X 1+μ for large X , with 0 < μ < 2. We also assume for
simplicity that μ is independent of Y . In this case, one can
approximate the small-k behavior of the Fourier transform
p̂(k| �Y ) ≈ e− |b( �Y ) k|μ where b( �Y ) is a scale factor. Substituting
this in Eq. (128) and inverting the Fourier transform, we get

P(C, N ) ≈
∫ ∞

−∞

dk

2π

∫
d �Y e−ikCe−N1−1/μ|b( �Y ) k|μh( �Y ). (140)

Performing the change of variable k = k̃N1−1/μ, one finds that
P(C, N ) takes the scaling form

P(C, N ) ≈ N1−1/μ P̃μ

(
C

N1/μ−1

)
, (141)

where the scaling function P̃μ(Z ) reads

P̃μ(Z ) =
∫ ∞

−∞

dk̃

2π

∫
d �Y e−ik̃Ze−|b( �Y ) k̃|μh( �Y ). (142)

Finally, performing the integral over k̃, it can be expressed in
the compact form

P̃μ(Z ) =
∫

d �Y
b( �Y )

Lμ

[
Z

b( �Y )

]
h( �Y ), (143)

where Lμ(z) is the Lévy stable distribution (scaled to unity) as
stated in Eq. (21). In the case μ = 2, L2(z) = e−z2/4/(2

√
π )

and Eq. (143) gives back (137) with σ ( �Y ) = √
2 b( �Y ).
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