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Active fluids such as bacterial swarms, self-propelled colloids, and cell tissues can all display complex spa-
tiotemporal vortices that are reminiscent of inertial turbulence. This emergent behavior, despite the overdamped
nature of these systems, is the hallmark of active turbulence. In this Letter, using a generalized hydrodynamic
model, we present a study of the persistence problem in active turbulence. We report that the persistence time
of passive tracers inside the coherent vortices follows a Weibull probability density whose shape and scale
are decided by the strength of activity—contrary to inertial turbulence that displays power-law statistics in
this region. In the turbulent background, the persistence time is exponentially distributed that is remindful of
inertial turbulence. Finally we show that the driver of persistence inside the coherent vortices is the temporal
decorrelation of the topological field, whereas it is the vortex turnover time in the turbulent background.
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Introduction. Persistence in physical systems concerns the
probability that a local fluctuating field does not change its
sign upto a time t . From Ising spins [1], rough surfaces
[2], and disordered media [3], to optimization [4], machine
learning [5], and stock markets [6], persistence often contains
important information about the evolution history of a com-
plex system. Theoretical investigations have shown that the
probability density function of this persistence time P (t ) is
nontrivial because the underlying fluctuating field is usually
non-Markovian [7]. A related and often useful quantity is the
mean first passage time distribution of a particle diffusing
in a bounded media. Once computed, such distributions can
be profitably exploited to quantify and compare structural
correlations and dynamical heterogeneity in complex systems
[8,9], directly allowing a characterization of energy land-
scapes in these complex systems [10]. While there exists a
large body of work on persistence and first-passage problems
in many-body systems far from equilibrium [11–14], similar
investigations in active or self-propelled systems have been
very few. Thus, there is a pressing need to explore the per-
sistence problem in active systems, especially with models
that allow a general pattern of energy injection, transfer, and
dissipation. The outcome of such an investigation could com-
plement recent Lagrangian studies on velocity statistics [15],
diffusion [16], effective temperature [17], irreversibility [18],
and even anomalous transport [19] leading to superdiffusive
first passage distributions at high levels of activity [20]. For
a survey of the Eulerian properties of active turbulence, we
refer the reader to the recent review in Ref. [21]. In this
Letter, we report a careful Lagrangian study of persistence
time and its distribution in a model active liquid that can
display spatiotemporal vortices that are remindful of classical
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turbulent flows. To this end, we invoke the Okubo-Weiss crite-
rion [22,23] to perform a topological partitioning of the active
flow field into rotation dominated, deformation dominated,
and intermediate regions, see Fig. 1 for a visualization. We
show that in the rotation dominated regions, P (t ) is given by
the Weibull probability density whose shape and scale are de-
cided by the strength of activity. In the deformation dominated
regions, P (t ) is exponential. Both these observations are con-
trary to the case of inertial turbulence that displays power-law
statistics in these regions [24,25]. In the intermediate region
that forms the turbulent background, P (t ) is exponentially
distributed, beautifully remindful of inertial turbulence. Our
work is a study of the persistence time distributions in active
matter flows that are valid over a wide range of a control
parameters, thereby putting a large number of active systems
under the purview of work, from elementary forms of life,
such as bacterial suspensions to synthetic active matter such
as Janus colloids.

Model and simulation. We perform direct numerical simu-
lations of a generalized hydrodynamic model that is known
to reproduce the flow field of dense bacterial suspensions
in laboratory experiments [26–28]. In two dimensions, the
incompressible velocity field of this model is governed
by

∂u
∂t

+ λ0(u · ∇)u = −∇P − �0∇2u − �2∇4u − μu

∇ · u = 0, (1)

where P is the pressure and the nondimensional parameter λ0

decides the type of bacteria, meaning they are either pusher
(λ0 > 1) or a puller (λ0 < 1) type. Keeping �0,2 > 0 mimics
energy injection into the active fluid via instabilities. The
scalar field μ = α + β|u|2 depends on the local velocity u,
and was first introduced by Toner and Tu to model the “flock-
ing” behavior in self-propelled rodlike objects [29,30]. The
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FIG. 1. Okubo-Weiss field of the turbulent fluid normalized to its
rms value. The snapshot is taken in the steady state driven at α = −6.
We can clearly identify three topologically distinct regions, namely
rotation dominated (Q < −1), deformation dominated (Q > 1), and
intermediate (−1 � Q � 1) regions.

parameter α, henceforth referred to as the Ekman friction,
acts at all scales and can either lead to a damping of energy
when α > 0 or an injection of energy when α < 0. Former
leads the fluid to an isotropic equilibrium and the latter yields
a globally ordered polar state with mean velocity

√|α|/β.
We normalize all distances to a characteristic length σ0 =
5π

√
2�2/�0 and all times to t0 = 5π

√
2�2/�

2
0 . In terms of

these reduced units, we fix the values of the model parameters
as �0 = (5π

√
2)−1, �2 = (5π

√
2)−3, λ0 = 3.5, and β = 0.5,

in order to remain consistent with literature. Equation (1) is
then numerically solved using a pseudospectral approach over
a square grid of 5122 points in a doubly periodic box of size
2π . For α < −6, we use bigger boxes of size up to 10π and
with resolution up to 20482 to avoid forming condensates. We
overcome the aliasing errors that arise due to the implemen-
tation of discrete Fourier transforms by performing 2/3 and
1/2 dealiasing rules, respectively, for the quadratic [(u · ∇)u]
and cubic [(|u|2)u] terms [31]. Time marching of u is done
using the fully implicit Crank-Nicolson scheme with a time
step of 	t = 2 × 10−4 that is sufficient to maintain numerical
stability in the entire range of parameters explored here. To get
Lagrangian statistics, we disperse a distribution of N tracers
that follow the dynamics

dxi(t )

dt
= u[xi(t )], (2)

where xi(t ) and u[xi(t )] are, respectively, the tracer location
and its velocity. We use a cubic spline interpolation to project
Eulerian quantities at any tracer location. As a thumb rule,
we disperse these tracers and record their statistics only af-
ter the fluid attains a turbulent steady state. To compute the
persistence time, we first introduce a fluctuating field that
naturally lends a topological characterization of the flow field
[24]. We do this by realizing that the velocity gradient of
an incompressible fluid is a sum of rotation and deformation

TABLE I. The relative area fractions in topologically distinct
regions at various levels of activity α.

α Rotation Intermediate Deformation

−10 0.035 0.935 0.030
−6 0.044 0.935 0.021
0 0.073 0.879 0.048
2 0.079 0.852 0.069
3 0.103 0.814 0.083

tensors

∇u = 1

2

[
0 −ω

ω 0

]
+ 1

2

[
σn σs

σs −σn

]
(3)

with the eigenvalues γ 2 = (σ 2
n + σ 2

s − ω2)/4 = Q. Here
σn = ∂xux − ∂yuy and σs = ∂xuy + ∂yux denote the normal
and shear strains, respectively, and ω = ∂xuy − ∂yux is the
fluid vorticity. Normalized to its root mean-squared value,
the Okubo-Weiss field Q can now be used to partition the
fluid into three topologically distinct regions, namely rotation
dominated for Q < −1, deformation dominated for Q > 1
and intermediate for −1 < Q < 1. See Fig. 1 for a visual-
ization of this field in the steady state drive at α = −6. The
intermediate region clearly accounts for majority of the area
fraction of the fluid, and this remains true for the range of
activity explored in our work, refer to Table I. In the steady

FIG. 2. Cumulative distribution function C(t ) of the persistence
time in (a) the rotation dominated region and (b) the turbulent back-
ground. Data collapse shows that the persistence probability P (t )
is a Weibull distribution in the former and an exponential in the
latter. The deformation dominated region also shows exponential
persistence probability (not shown here).
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FIG. 3. (a) Hazard function plotted at various activity. The
power-law fits verifies the shape exponent δ of the Weibull distri-
bution discussed earlier. Inset suggests that δ is linear in α. The error
bars in the estimation of δ denote a unit standard deviation, which
is always within 5% of the mean. (b) The probability of n tracers
exiting the intermediate region over a time interval of 10〈t〉. Data for
each activity agrees with the Poisson distribution with λ = 10 (solid
line).

state, we release a distribution of passive tracers into the flow
and track the time taken by each tracer to exit the topological
region where it was initially seeded. This gives us a distribu-
tion of Lagrangian persistence times that follows a probability
density P (t ). It is a standard practice to obtain P (t ) from
its cumulative distribution function C(t ) = ∫ t

0 P (t ′)dt ′ as the
procedure is immune to binning errors. In Fig. 2, we plot this
distribution function separately for each topologically distinct
region.

We observe that in the region where rotation dominates,
P (t ) = (t/τ )δ−1(δ/τ )e−(t/τ )δ is a Weibull distribution func-
tion, quite contrary to the case of inertial turbulence that
shows power-law statistics in this region [24,25]. The param-
eters δ and τ denote, respectively, the shape and scale of this
stretched distribution that is often seen in systems displaying
extreme value statistics. Note that δ < 1 throughout the range
of our simulations, essentially implying that the hazard func-
tion (see later) is a monotonically decreasing function of time.

The shape δ and scale τ are further related to the mean and
variance of the Weibull distribution as

〈t〉 = τ�(1 + 1/δ)

σ 2
t = τ 2{�(1 + 2/δ) − [�(1 + 1/δ)]2}, (4)

where � is the Gamma function. The scale τ controls how
far the Weibull distribution will extend towards the right.

FIG. 4. (a) Comparison of the mean persistence time 〈t〉 with the
vortex turn over time 2π/ωrms in the intermediate region. The two
time scales agree well over a wide range of activity, clearly indicat-
ing that the vortex rotation rate governs the persistence time: faster
rotation leads to smaller persistence time. Error bars indicate a unit
standard deviation about the mean. (b) Lagrangian autocorrelation of
the Okubo-Weiss field computed only from the tracers seeded in the
rotation dominated region. The initial decay is clearly exponential as
seen from the data collapse. The e-folding timescale of the decay te

agrees very well with the mean persistence time 〈t〉 throughout the
range of activity explored (inset). Error bars indicate a unit standard
deviation about the mean.

Naturally, any such extension will be accompanied by a de-
crease in the height of the distribution. To verify our statistics,
we note that the Weibull distribution at its core is defined by
a simple conditional density, given that the event in question
has not occurred yet. Put simply, this is expressed as a hazard
function

h(t ) = − d

dt
ln[1 − C(t )] = δ

τ

(
t

τ

)δ−1

. (5)

In Fig. 3(a), we fit the hazard function with power laws to
confirm the shape exponent δ at all levels of activity α. Inset
shows that δ-α are in a linear relationship. Notice that at any
activity, the hazard function decreases with time indicating
a continuously falling failure rate. This happens because the
tracers seeded near the edge of the vortex are likely to exit
sooner than the ones seeded in the core. This is analogous to
population dynamics with significant infant mortality leading
to the failure rate decreasing over time as weaker infants are
removed from the population.

We now turn our attention to the intermediate region char-
acterized by −1 � Q � 1. This is a turbulent background
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where the density P (t ) = e−t/〈t〉/〈t〉 is an exponential distri-
bution [Fig. 2(b)], that is remindful of the inertial turbulence.
To verify the exponential statistics, we realize that when the
waiting time is exponentially distributed with a mean 〈t〉,
the probability of n tracers exiting the intermediate region
over a time interval λ〈t〉 must be the Poisson probability
distribution

P(n; λ) = e−λ λn

n!
. (6)

Indeed our data on event probability fits nicely to the Poisson
distribution, see Fig. 3(b). We are thus drawn to the fact that
the exit of tracers from the intermediate region is a mem-
oryless stochastic point process—a similarity with inertial
turbulence that is worth noting. The density P (t ) in the defor-
mation dominated region is also exponential (not shown here)
in contrast to the inertial turbulence that exhibits power-law
scaling [24]. The curious reader might wonder if this persis-
tence is driven by an intrinsic timescale of the turbulent fluid.
This is discussed next.

In the intermediate region, the root mean-squared vorticity
ωrms can be used to compute a characteristic turnover time
as 2π/ωrms. We find that this timescale agrees well with
the mean persistence time throughout the range of activity
explored in our work, see Fig. 4(a). It is therefore plausible
to think of vorticity wandering as the driver of persistence in
this region. In the rotation dominated region, we turn our at-
tention to the autocorrelation of the Lagrangian Okubo-Weiss
field W (t ) = 〈Q(t )Q(0)〉/〈Q(0)2〉 computed only from trac-
ers seeded in this region. Here 〈· · · 〉 indicates a joint average
over tracers as well as initial times. This is plotted in Fig. 4(b)
for various levels of activity. Clearly there is an initial

exponential decay that allows a data collapse upto a timescale
of the order te. This is followed by a stretched exponential at
late times t � te that decays faster with increasing α resulting
in shorter trapping times. The e-folding timescale te agrees
very well with the mean persistence time, which progres-
sively increases with α, see inset Fig. 4(b). We also note that
W (t ) clearly retains memory in contradistinction to the turbu-
lent background where it is memoryless. We thus conclude
here that the driver of persistence in the rotation domi-
nated region is the temporal relaxation of the Okubo-Weiss
field.

Conclusions. This Letter constitutes a study of the per-
sistence in dense swarms of active matter. We do this by a
topological partitioning of the flow field that lends a natural
characterization of the flow in terms of regions dominated by
rotation, deformation, and background turbulence. By observ-
ing passive tracers that just go with the flow, we find that
their persistence time inside the coherent vortices follows a
Weibull distribution whose shape and scale are decided by
the level of activity. In the turbulent background outside of
these vortices, persistence time is exponentially distributed,
beautifully remindful of inertial turbulence. We also show that
driver of persistence inside the coherent vortices is the tem-
poral decorrelation of the topological field, whereas it is the
vortex turnover time in the turbulent background. We believe
our findings could be relevant to experiments targeting dense
bacterial swarms.
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