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Thermalization slowing down in multidimensional Josephson junction networks
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We characterize thermalization slowing down of Josephson junction networks in one, two, and three spatial
dimensions for systems with hundreds of sites by computing their entire Lyapunov spectra. The ratio of
Josephson coupling EJ to energy density h controls two different universality classes of thermalization slowing
down, namely, the weak-coupling regime, EJ/h → 0, and the strong-coupling regime, EJ/h → ∞. We analyze
the Lyapunov spectrum by measuring the largest Lyapunov exponent and by fitting the rescaled spectrum with
a general ansatz. We then extract two scales: the Lyapunov time (inverse of the largest exponent) and the
exponent for the decay of the rescaled spectrum. The two universality classes, which exist irrespective of network
dimension, are characterized by different ways the extracted scales diverge. The universality class corresponding
to the weak-coupling regime allows for the coexistence of chaos with a large number of near-conserved quantities
and is shown to be characterized by universal critical exponents, in contrast with the strong-coupling regime. We
expect our findings, which we explain using perturbation theory arguments, to be a general feature of diverse
Hamiltonian systems.
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Thermalization has been a central concept in theoretical
physics since the birth of statistical mechanics. It allows for an
explanation as to how time-dependent microscopic dynamics
gives birth to macroscopic equilibrium, and is deeply rooted in
the classical concepts of chaos and ergodicity [1–6]. Here, the
assumption that all arbitrary initial conditions lead to the same
long-time average when dynamics is sufficiently ergodic—
and, therefore, that time averages and ensemble averages are
interchangeable—is fundamental. It is then natural to wonder
what happens when systems that obey this ergodic hypothesis
approach a limit in which it ceases to be valid. In the context
of many-body Hamiltonian dynamics, which lies beyond the
applicability horizons of Kolmogorov-Arnol’d-Moser (KAM)
theory [7–10], this matter can be envisaged as the study of
how chaotic many-body systems approach integrability.

Since thermalization is reflected in the behavior of long-
time averages, investigations so far have privileged its
diagnose by computing classical expectation values [11–13].
This introduces unnecessary moving parts, e.g., choices of co-
ordinates and classical observables, with “good” choices often
obscured [14]. As a consequence, recent work has instead
focused on Lyapunov spectra (LS). Contrary to observables,
LS are coordinate-independent and invariant under a wide
range of transformations [15], providing a complete measure
of chaos and its characteristic timescales for any classical
system [16–18]. In a recent paper they were employed to show
that a specific class of discrete one-dimensional unitary maps,
similar to nonlinear quantum random talks, thermalize via
two different pathways depending on whether the target inte-
grable limit decouples interactions in real or reciprocal space
[18]. However, due to substantial computational challenges,
little to nothing is currently known about how many-body
Hamiltonian systems cease to thermalize, and whether their
thermalization slowing-down processes fit the universality
classes discovered in Ref. [18].

In this Letter, we characterize the thermalization slow-
ing down of classical Hamiltonian systems with hundreds of
degrees of freedom, addressing the issue mentioned above
and showing these universality classes are a general prop-
erty of Hamiltonian lattices in any dimension. Our analysis
is based on a direct computation of the full LS, for which
we introduce an ansatz capable of fitting the spectra in any
perturbation regime. The models chosen are one-, two- and
three-dimensional (1d, 2d, and 3d) Josephson junction net-
works, which have been extensively studied in 1d as a probe
to the richness of one-dimensional physics [19–24], and in
2d as an exact analog of the XY chain, offering the possi-
bility of simulating a multitude of statistical phenomena in
chips [25,26]. Our calculations show that the models ther-
malize according to two different universality classes near
their integrable limits depending on the network type—either
short-ranged or long-ranged (essentially all-to-all), spanned
by the weak nonintegrable perturbation over the set of actions
(which are integrals of motion at the very limit [12,27]). In
the long-range network (LRN) regime the LS is always well
approximated by an analytical function that depends only
on the maximal Lyapunov exponent (mLE). The short-range
network (SRN) regime is drastically different, with LEs de-
creasing exponentially according to a second diverging scale,
the spectral decay rate, rendering thermalization extremely
slow when compared with the Lyapunov time (the inverse of
the mLE).

Both the Lyapunov time and the spectral decay rate are
shown to be remarkably universal in the SRN class through
the extraction of scaling laws and their critical exponents.
The LRN class is not characterized by additional universal
scaling laws, a phenomenon we explain by invoking classical
perturbation theory. In the SRN class, near-zero and large LEs
coexist, such that regular submanifolds are gradually recon-
structed within a sea of strong chaos as the integrable limit is
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approached. Such coexistence is absent in the LRN class, in
which chaos vanishes almost evenly and tori are rebuilt nearly
all at once. This suggests that the transition to integrability in
the SRN and LRN classes, if interpreted as a phase transition,
can be of more than one type (e.g., first or second order).

Our findings can be used to interpret equipartition, ther-
malization and ergodicity both in experimental and theoretical
investigations, and we expect them to be useful in the analysis
of any system displaying long- and/or short-range interac-
tions, and many-body localization.

We now introduce the systems employed throughout the
rest of this Letter. Denoting momentum and position by p and
q, the Hamiltonians for all networks considered here have the
general form

H (p, q) = |p|2
2

+ EJ

∑

〈σ1,σ2〉
[1 − cos (qσ1 − qσ2 )], (1)

where EJ is the Josephson coupling between two neighboring
superconducting islands, and σ1, σ2 are multi-indices counting
nearest neighbors. Associated with each component of posi-
tion there is a momentum p entering the kinetic term, such that
p2/2 is interpreted as the island’s Coulomb charging energy,
and the rotor angle q as the phase of the superconducting order
parameter. For the 1d network we assume periodic boundary
conditions, while for the 2d and 3d cases—which we take as a
square and a cube lattices with edge N—we leave them open.
We refer to different dimensionalities implicitly by writing the
total number of sites as N , N2, and N3 for d = 1, 2, and 3, e.g.,
the circular ring with 120 sites and the 5 × 5 × 5 cube will be
referred to as N = 120 and N = 53.

The Josephson junction networks (1) conserve both total
momentum and energy. The former can always be set to zero
due to the Galilean invariance of macroscopic systems, or
periodic boundary conditions. The relevant parameters are
then the energy density, h = H/N and EJ . Due to the bound-
edness of the potential-energy term in (1), h → 0 can only be
achieved for fixed EJ by constraining qσ1 − qσ2 and p to be
small. The cosine can then be expanded as cos x ≈ 1 − x2/2
and, for small energies, the networks become integrable sets
of coupled harmonic oscillators. The same effect can be real-
ized as EJ → ∞ while keeping h fixed, such that EJ/h � 1
takes care of both possibilities and furnishes what we refer to
as the LRN regime, in which sites remain strongly connected.
The opposite case EJ/h � 1 produces the SRN regime, in
which the sites become weakly coupled sets of rotors or nearly
disconnected superconducting islands.

We enter the SRN and LRN regimes by varying different
parameters, namely (EJ → 0, h = 1) for the first and (EJ =
1, h → 0) for the latter, with the data continuously glued
together using the simple rescaling transformations described
in Ref. [27]. This is only possible because the Hamiltonian
(1) has effectively a single parameter, namely EJ/h, in terms
of which we present our results [28].

Since we are interested in the vicinity of integrable limits,
the dynamics is weakly chaotic and the time necessary to
resolve LEs is very long. This reliance on long times, together
with the fact that we would like to preserve conserved
quantities as much as possible in order to avoid creating

“fake” chaos due to numerical instabilities, lead to the need of
employing symplectic integrators [30–33]. Here, we employ
the second-order optimized method of Ref. [31] for solving
the equations of motion for the monodromy matrix M, i.e.,
the Jacobian of the Hamiltonian flow, �:

dM(z; t )

dt
= JHess H

(
z′)

∣∣∣∣
z′=�(z;t )

M(z; t ). (2)

In the above, z = (p, q) denotes a 2N-dimensional
phase-space variable composed of N momentum-position
pairs, H is the system’s Hamiltonian, and J is the symplectic
matrix [7,8]. The initial point z is evolved to z′ = �(z; t )
by the Hamiltonian flow, which is computed in parallel. We
then extract the LS from M by employing the well-known
QR-decomposition algorithm of Ref. [34]. This method,
which is both accurate and efficient for continuous systems
[35,36], works especially well if small times steps dt are
used. This is what led us to choose a low-order algorithm
with small dt instead of the standard prescription, i.e., a
high-order one with large dt [36–38]. Here, we fix the
step size as dt = 0.2 for all models considered, with final
propagation times of t f = 2 × 106 for 1d and 2d systems, and
106 for the 3d case. This results in a relative energy and total
momentum drifts no larger than 10−3 and 10−12, respectively,
with small variations depending on the number of sites and
dimensionality [27].

Since the computed LS will be very different depending on
the system’s parameters, we rescale them in order to facilitate
comparisons. The rescaling transformation for each LE is sim-
ply �i = �i/�1, where �1 > �2 > . . . > �N−1 = �N = 0
are the original LEs, the last two being equal to zero due
to total momentum and energy conservation. Since we work
with systems with several different sizes, we also define a
rescaled x axis, namely, ρ = {i/N}i. This results in plots for
the rescaled spectra that vary between 0 and 1 both in the y
as in the x axes, as can be seen in the set of LS displayed in
Fig. 1. The EJ/h values and the number of sites for each row
can be seen as insets in the panels on the right. We also keep
track of the mLEs, which are shown for several system sizes
and dimensionalities in Fig. 2.

To provide a more quantitative distinction between SRN
and LRN regimes, we employ a modification of an ansatz
suggested in Ref. [17] in which the rescaled LS away from
integrable limits is approximated as 1 − ρα . Our modification
arises from noticing that LS in the SRN regime appear to
decay exponentially as a function of ρ, such that the new
ansatz

�(ρ; α, β ) = (1 − ρα ) e−βρ (3)

should also take care of the SRN regime. In Fig. 1 one can see
that least-squares fits, obtained from a Marquadt algorithm
with input (3), provide excellent approximations in both the
SRN and LRN regimes [39]. The coefficients β, therefore,
provide a measure of the spectral decay rates, which are
displayed in the SRN regime as insets in Fig. 1. The critical
exponent ν is then obtained as the angular coefficient of a
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FIG. 1. Selected sets of rescaled Lyapunov spectra �̄(ρ ) in the
short-range regime (red and orange tones) for the (a) 1d, (c) 2d, and
(e) 3d networks, together with the fits obtained from the ansatz (3)
(black dashed curves). The variable ρ is a normalized counting index.
The insets show the β coefficients in (3), which measure the speed of
exponential decay, together with a power-law fit with exponent ν. (b),
(d), (f) Same, but in the long-range regime in which no exponential
decay is visible and the Lyapunov exponents do not bend towards
zero. For all plots, error bars are computed from runs with different
initial conditions and shown as ribbons [27], and the values of EJ/h
and system sizes and dimensionalities are shown in the panels on the
right.

linear fit to log10 β vs log10(EJ/h) and shown to be univer-
sal and independent of boundary conditions, number of sites
and even dimensionality, as can be seen in more detail in
Fig. 3. In the latter we also display the robustness of our
results by comparing between fit parameters obtained from
different system sizes. We also note that (3) will be useful in
an analytical approach to thermalization slowing down and
provides, among other things, an analytical expression for the
Kolmogorov-Sinai entropy (see, e.g., Ref. [40]).

As can be easily seen in the left panels of Fig. 1,
and particularly for the 1d network, the SRN regime is
characterized by a LS that is strongly dominated by a small
subset of LEs, the majority of the others bending towards
zero. Although the rate with which the LEs bend down
decreases with increasing dimensionality, a comparison with
the panels on the right renders the distinction between LRN
and SRN unmistakable, since LEs in the latter remain steadily

FIG. 2. Maximal Lyapunov exponent versus log10 EJ/h for all
networks. Solid markers denote the same configuration as their open
counterparts, but with a larger number of sites. The solid black line
shows a power-law with critical exponent 2/3, predicted analytically
in Ref. [29].

above zero—with the exception of those associated with the
two conserved quantities. This dramatic contrast between
SRN and LRN regimes justifies referring to thermalization
slowing down as arising in two distinct universality classes
(UCs), depending on which integrable regime is neared.
The fundamental distinction between the LRN and SRN
UCs is, as previously mentioned, the network range spanned
by the nonintegrable perturbation among the actions of the
integrable limit system [12,27]. As a result, in the LRN class
the sites remain strongly coupled as the integrable limit is
approached, while decoupling in the SRN class.

It is enlightening to recast the previously described UCs
in the language of classical perturbation theory, which cannot
be properly applied for the maps studied in Ref. [18]. In their
integrable limits, both UCs allow for a description in terms of
action-angle coordinates, in which the N actions provide a full
set of conserved quantities in involution [7,8]. In the SRN-UC
the actions of the unperturbed integrable system are given
by the kinetic energy of each uncoupled site, while in the
LRN-UC they are the normal modes. Therefore, the actions
are spatially extended in the latter, and localized in the former.
Once the systems are perturbed, chaos enters the LRN-UC
in the form of nonlinearly coupled normal modes interacting
with each other in an all-to-all fashion, while in the SRN-UC
it comes in the form of sparse isolated resonance pockets
between weakly interacting nearest-neighbor rotors [41,42].
Those pockets are the source of strongest chaos and the main
responsible for the magnitude of the mLE in the SRN regime.

Due to the extended nature of perturbed actions in the
LRN-UC, any normal mode will be involved in at least one
chaotic resonant interaction [43], with probability exponen-
tially close to one [27]. Therefore, in this black and white
picture in which a mode is either resonant or not, all LEs
should be of the same order of magnitude, confirming that the
rescaled LS should approach a stationary curve. At variance,
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FIG. 3. Fit coefficients for the ansatz (3) for two sizes of the (a) 1d, (b) 2d, and (c) 3d networks. A log-log plot which clearly displays the
power-law behavior of the β coefficients can be seen in the insets of Fig. 1. Note that we plot 1/α instead of α for ease of visualization. Error
bars are displayed as ribbons.

for the SRN-UC a rotor will be involved in a resonance with
at least one of its nearest neighbors with a small probabil-
ity, namely 2d EJ/h [27]. Such sparse resonant pockets have
an average distance of ≈(h/EJ )1/d/d1/d . Therefore the mLE
should show a similar dependence on EJ/h for any dimension,
and most of the other LEs should become negligibly small
compared with the mLE, confirming the observed exponential
decay of the LS.

The above development helps us understand several facets
of Figs. 1 and 2. First, due to the sites interacting only with
their nearest neighbors, it explains why the mLEs in Fig. 2
scale according to the same critical exponent in the SRN-UC,
predicted analytically to be 2/3 for the 1d chain [29] (see
also Ref. [44]) and shown here, perhaps surprisingly, to be the
same for all dimensionalities.1 This has to be contrasted with
the LRN-UC, in which all normal modes interact with each
other and increasing the system’s dimensionality strongly
impacts the dynamics, since the number of almost-resonant
normal modes increases: 1 or 2 for d = 1 (depending on the
boundary conditions), and ≈Nd−1 for higher dimensions. This
explains the smaller slopes of the LRN spectra in Fig. 2 as
a function of increasing dimensionality—larger systems are
more chaotic and, therefore, the speed at which they stop
thermalizing is slower. Interestingly, this is also reflected in
our computational simulations, in the sense that to achieve
convergence in the LRN regime we need considerably shorter
times when dealing with 2d and 3d systems when compared
with 1d ones.

The earlier localization argument also applies to the
observed universality in the second critical exponent that char-
acterizes the SRN-UC, denoted as ν in the insets of Fig. 1:
Since the speed at which exponentially decaying LS curves
bend towards zero can only depend on nearest neighbors, the
exponent ν should not depend on dimensionality at all. This
is in strong contrast with the LRN-UC, in which the plots in

1We note that, while Ref. [29] enters the SRN regime by varying the
energy density, we do so by varying the Josephson coupling. The two
strategies are not equivalent but can be bijectively mapped, as shown
in our Supplemental Material [27]. Indeed, the scaling found by [29]
in the SRN regime is h−1/6, which using Eq. 1 of the Supplemental
Material can be easily shown to result in a h−2/3 scaling in our case.

Fig. 3 point to the possible existence of an asymptote that, at
present, lies beyond our computational resolving power, but
that has been already observed in 1d unitary circuits maps
[18], and indications of which were reported for a short chain
of interacting classical spins [16].

Although both SRN and LRN UCs reflect the fact that
the systems stop thermalizing when an integrable limit is
reached, the simultaneous presence of large and near-zero LEs
in the SRN class is associated with the coexistence of near-
conserved quantities and strong chaos—a characteristic that is
completely absent in the LRN class. In the language of KAM
theory, one can interpret the SRN road to integrability as the
gradual formation of regular low-dimensional submanifolds
within chaotic regions in phase space, which continuously
become N-dimensional tori when the limit is reached. Here,
the universality of critical exponents also shows that the speed
at which regularity is reconstructed appears remarkably con-
stant. For the LRN pathway, on the other hand, tori are rebuilt
as the whole dynamics approaches regularity. If one interprets
chaos and integrability as dynamical phases [45], the mecha-
nisms for thermalization slowing down in the SRN and LRN
classes are associated with different types of phase transitions.

An interesting future research direction concerns adding
disorder. This would allow for an interpolation between differ-
ent universality classes, since Anderson localization can force
the normal modes to localize. An even more intriguing ques-
tion concerns the corresponding quantum many-body case.
We have good reasons to expect that quantizing a classical
SRN system will lead to quantum many-body localization,
which implicates in the complete destruction of thermaliza-
tion at a finite distance from the integrable limit. On the other
hand, the quantization of a LRN system will probably not
destroy thermalization and keep the system in range of the
eigenstate thermalization hypothesis.
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