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Solitary death in coupled limit cycle oscillators with higher-order interactions
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Coupled limit cycle oscillators with pairwise interactions are known to depict phase transitions from an
oscillatory state to amplitude or oscillation death. This Research Letter introduces a scheme to incorporate
higher-order interactions which cannot be decomposed into pairwise interactions and investigates the dynamical
evolution of Stuart-Landau oscillators under the impression of such a coupling. We discover an oscillator death
state through a first-order (explosive) phase transition in which a single, coupling-dependent stable death state
away from the origin exists in isolation without being accompanied by any other stable state usually existing
for pairwise couplings. We call such a state a solitary death state. Contrary to widespread subcritical Hopf
bifurcation, here we report homoclinic bifurcation as an origin of the explosive death state. Moreover, this
explosive transition to the death state is preceded by a surge in amplitude and followed by a revival of the
oscillations. The analytical value of the critical coupling strength for the solitary death state agrees with the
simulation results. Finally, we point out the resemblance of the results with different dynamical states associated
with epileptic seizures.
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a. Introduction. The suppression of oscillations in dynam-
ical systems has been an area of persistent interest due to its
occurrence in a wide range of real-world dynamical systems
such as climate [1], lasers [2], electronic circuits [3], cell dif-
ferentiation [4], etc. Quenching of oscillations in large-scale
dynamical systems made of interacting units arises primar-
ily from the coupling between these units. For instance, in
lasers, a few specific forms of the couplings among the laser
components can lead to the quenching of oscillations [2].
In neurological systems, oscillation death has been proposed
to be an important root cause of various neurodegenerative
diseases and has been modeled using coupled nonlinear oscil-
lators [5,6]. Coupled Stuart-Landau (SL) oscillators provide
a prototype model to fathom the origin of oscillator death
and associated changes in the stability properties. Earlier
investigations on coupled SL oscillators trace a variety of
reasons behind the oscillation quenching, such as time delay
[7], conjugate coupling [8–10], dynamical coupling [11], or
frequency mismatch [12], factors causing a damping effect
on the oscillations. Prasad et al. observed that for a system
of Hindmarsh-Rose neuron oscillators interacting via nonlin-
ear coupling, a death state can be reached for sufficiently
strong coupling strength [13]. A death state of an oscillator
can be classified into two major categories, amplitude death
(AD) and oscillation death (OD), based on the spatial position
and symmetry of the associated fixed points. The AD state
corresponds to all the oscillators settling down to the same
fixed point, which is the unstable fixed point of the uncoupled
oscillator. A coupled system stabilizes the AD through Hopf
bifurcation while preserving the parity symmetry [5,14]. In
contrast, in the OD state, oscillators settle at different fixed
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points which originate due to coupling and parity-symmetry-
breaking bifurcation [15]. Furthermore, there could be two
different routes from the oscillatory state to the oscillation
death state: a smooth second-order transition [6,12,16] or an
abrupt first-order jump [17,18]. Oscillator death is desired in
many real-world systems having unwanted oscillations. For
example, instability in the signals of laser systems can be
regulated via the amplitude death mechanism [2]. In addition
to the quenching, SL oscillators with pairwise couplings have
been shown to depict a rich variety of behaviors, such as
synchronization [19], chimera, and chimera death [20].

Furthermore, it has increasingly been realized that real-
world complex systems made of dynamical units may not
only have pairwise interactions but also possess higher-
order structures; examples include cliques in the human
brain [21], scientific collaborations [22], etc. Studies of cou-
pled Kuramoto oscillators with higher-order interactions have
revealed various emerging behaviors, such as infinite mul-
tistable synchronized states and phenomena such as abrupt
(de)synchronization [23–25]. The Kuramoto oscillator model
describes only the phase of a system; however, many real-
world complex systems are better described by a model
consisting of both amplitude and phase. SL oscillators consti-
tute a limit cycle model which takes into account both factors.

Recently, Carletti et al. investigated coupled SL oscilla-
tors with linear higher-order interactions on networks [26].
Note that the form of higher-order interactions considered
in Ref. [26] gets decomposed into pairwise interactions for
globally coupled systems, i.e., in the absence of a network
structure. This Research Letter considers coupled SL os-
cillators with higher-order nonlinear multiplicative coupling
which cannot be decomposed into pairwise interactions. We
find synchronization, first-order transition to oscillator death,
and revival of the oscillations after the death state. A surge
in the amplitude of the dynamical variable is accompanied
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by the synchronization. Importantly, the oscillator death ob-
served here does not get manifested in the pairwise coupled
SL oscillators. Usually, the AD state arises when an unstable
fixed point of the uncoupled system becomes stable due to the
coupling, and the parity symmetry of the system is preserved
with an introduction of the coupling; in contrast, the OD
state, which corresponds to the birth of more than one fixed
point, arises as a consequence of parity symmetry breaking of
the uncoupled system due to coupling. This Research Letter
reports a state consisting of a single pair of stable and saddle
fixed points in SL oscillators upon introduction of the cou-
pling which preserves the parity symmetry. In saddle-node
bifurcation, a stable point and a saddle point appear together,
where the saddle point has both stable and unstable manifolds.
This single stable fixed point arises through the saddle-node
bifurcation upon coupling through triadic interactions. The
birth of these new fixed points does not change the stability
properties of the already existing unstable fixed point of the
system. We refer to such a single stable fixed point as a solitary
death (SD) state to distinguish it from other coupling-created
death states which correspond to the existence of more than
one stable fixed point. We perform a linear stability analysis
to find the criteria for the occurrence of the SD state. Also, we
analyze the basin of attraction of the bistable regions during
synchronization, and we analyze the first-order transition to
death states and draw bifurcation plots for the coupled sys-
tem. Finally, we check the robustness of the occurrence of
all the phenomena in the presence of change in the value of
the intrinsic frequency, introduced pairwise interaction, and
nonidentical oscillators in the system.

b. Model. The dynamical equation for an uncoupled SL
oscillator can be written as

ż(t ) = (a2 − |z(t )|2)z + iωz.

Here, z is a complex variable depicting the dynamical state of
an oscillator with ω being its intrinsic frequency. The oscilla-
tor has one unstable fixed point acting as a center for a stable
circular limit cycle of radius a. We propose a coupling scheme
for incorporating higher-order interactions among dynamical
units. Our prime consideration while proposing the scheme
is that it should not be decomposed into pairwise terms.
One of the simplest ways of satisfying this condition is to
consider the product of the dynamical states of the interact-
ing oscillators. Moreover, we avoided the conjugate variable
z∗ in the coupling function since it already yields quench-
ing of the oscillations for pairwise coupling [18]. Hence it
will be difficult to assess whether the particular types of
oscillation-quenching states reported in this Research Letter
arise due to higher-order or conjugate couplings. However,
the feedback coupling through zk in pairwise interaction does
not result in quenching. Furthermore, when transformed into
polar coordinates, Eq. (1) signifies periodic coupling between
the phases of the interacting oscillator, just like the form of
higher-order coupling used in the lower-dimensional counter-
part (Kuramoto oscillator) [24] of SL oscillators. The coupled
dynamical equation is given by

ż j (t ) = (1 − |z j (t )|2)z j + iωz j + ε

N2

N∑
k=1

N∑
l=1

zkzl . (1)

Upon substituting z j = r jeiθ j , we get

ṙ j = (
1 − r2

j

)
r j + ε

N2

N∑
k,l=1

rkrl cos(θk + θl − θ j ),

θ̇ j = ω j + ε

N2r j

N∑
k,l=1

rkrl sin(θk + θl − θ j ),

where r and θ are the amplitude and phase of the oscillator,
respectively. Upon substituting z j = x j + iy j , the resulting
equations are

ẋ j = Px
j + ε

N2

N∑
k,l=1

(xkxl − yl yk ),

ẏ j = Py
j + ε

N2

N∑
k,l=1

(xkyl + xlyk ),

where

Px
j = (

1 − x2
j − y2

j

)
x j − wy j,

Py
j = (

1 − x2
j − y2

j

)
y j + wx j .

We further define an order parameter A that quantifies the
variance of fluctuation of the dynamical variables over a time
span and tends to 0 for the amplitude death. Moreover, to
understand phase coherence, we use another order parameter,
R, which takes 1 for the synchronized state and 0 for the
incoherent state. The order parameters are described by the
following equations:

A = 1

N

N∑
i=1

(〈xi〉max,t − 〈xi〉min,t ), R =
∣∣∣∣∣
∑N

i=1 eiθi

N

∣∣∣∣∣.
Here, 〈xi〉max,t and 〈xi〉min,t represent the maximum and

minimum values, respectively, of x over time t .
c. Different dynamical states. The population of SL oscilla-

tors coupled via higher-order interactions [Eq. (1)] is affluent
in dynamics and manifests several distinct dynamical states
[Fig. 1(a)]. Starting with the initial conditions drawn from a
uniform random distribution between 0 and 1 (xi(0) ∈ [0, 1],
yi(0) ∈ [0, 1] ∀ i), as we increase ε, the system gets synchro-
nized immediately on a limit cycle at a very small value of
ε. Upon a further increase in ε, the amplitude of the limit
cycle keeps on increasing, and we refer to this state as “en-
hancement of oscillations” [EO; Fig. 1(b)]. In the forward
direction, this state disappears yielding the oscillator death
state named “solitary death” (SD) depicted by a 0 value of A
at a critical coupling strength εc f [Fig. 1(c)]. In the backward
direction, again starting with a homogeneous distribution for
xi, as ε is decreased adiabatically, initially we encounter a
state that oscillates (limit cycle) but is not synchronized and
label it as the “revival of oscillations” (RO) state [Fig. 1(d)].
A further decrease in ε yields the SD state, which is finally
encountered by a transition to the EO state. However, this
transition happens at a lower critical coupling strength than
εc f and is marked as εcb, thereby giving rise to a hysteresis
region. In the following, we describe all these states in detail.

Enhancement of oscillations (EO). The first state we en-
counter while moving in the forward direction is EO. Here
the oscillators are synchronized with the size of the limit
cycle increasing with ε. This state disappears at the forward
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FIG. 1. (a) A, R vs ε and (b)–(d) time series of globally coupled identical SL oscillators [Eq. (1)]: a synchronized state with enhanced
oscillation (EO; ε = 2.3) (b), solitary death (SD; ε = 3.4) (c), and a revival of oscillations (RO) state with a toroid (ε = 7.5) (d). Red diamonds
(circles) represent A in the forward (backward) direction, and green diamonds (circles) represent R in the forward (backward) direction. Other
parameters are N = 1000, ω = 4.0, and xi(0), yi(0) ∈ [0, 1] ∀ i.

critical point εc f through a homoclinic bifurcation. For ε <

εcb we have the EO state without the existence of the SD state
[Fig. 2(a)]; however, at εb f a pair of points consisting of a
stable fixed point and a saddle fixed point are born [Fig. 2(b)].
The saddle point and the stable limit cycle approach each
other with increasing ε [Fig. 2(c)] and collide at εc f , beyond
which the limit cycle disappears while the saddle point sur-
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FIG. 2. Coordinate space plot y3 vs x3 at various coupling
strengths depicting the disappearance of the stable limit cycle via
homoclinic bifurcation for SL oscillators [Eq. (1)]. (a) ε = 2.0; ex-
istence of the limit cycle. (b) ε = 2.51; birth of a pair of stable and
saddle fixed points. (c) ε = 3.14; increase in the amplitude of the
limit cycle and approaching the saddle point. (d) ε = 3.18; disap-
pearance of the limit cycle through homoclinic bifurcation. Other
parameters are N = 3 and ω = 4.0. Solid red and black circles rep-
resent the stable fixed point and the saddle fixed point, respectively.

vives [Fig. 2(d)]. From εcb to εc f , EO shares its basin with the
SD state as both the states coexist. Additionally, the backward
and forward transition points are different. As illustrated by
the bifurcation diagram (Fig. 3), the EO state is depicted in the
form of a stable limit cycle whose amplitude increases with ε.

Solitary death (SD) state. Upon a further increase in ε,
the system undergoes a first-order transition to the SD state
(explosive death). Only one unstable fixed point exists before
the critical ε (εcb). At εcb, due to the higher-order couplings
in the system, a new pair of fixed points is born through
the saddle-node (limit point) bifurcation, yielding one stable
branch and one unstable branch (Fig. 3). The stable branch
corresponds to the solitary death state, and it loses stability
when ε increases beyond a certain value. Before that until
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FIG. 3. Bifurcation diagram plotted using XPPAUT [27] for ω =
4.0 and N = 3. The stable oscillatory state is depicted by solid green
circles, while the unstable oscillatory state is depicted by open blue
circles. A stable steady state is represented by the red solid curve,
while an unstable steady state is represented by the black dashed
curve.
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εc f , this stable fixed point coexists with two other stable limit
cycles. This regime is depicted as the hysteresis loop whose
width increases with an increase in the value of ω.

The numerical simulations indicate that all the
oscillators settle to a common fixed point away
from the origin [Fig. 1(c)]. The positions of the
fixed points depend on w and k and are given by

(x∗1 = −−ω−2εy∗+
√

(ω+2εy∗ )2+4y∗(y∗−y∗3 )
2y∗ , y∗1 = −ω

ε
) and

(x∗2 = ω+2εy∗+
√

(ω+2εy∗ )2+4y∗(y∗−y∗3 )
2y∗ , y∗2 = −ω

ε
) along with

the preexisting fixed point (x∗3 = 0, y∗3 = 0). Next, the
characteristic equation for the Jacobian J , which is a 2N × 2N
matrix, can be written in the form

|Iλ − J| =

∣∣∣∣∣∣∣∣∣

M1 + F1 · · F1

F2 M2 + F2 · ·
Fi · Mi + Fi ·
FN · · MN + FN

∣∣∣∣∣∣∣∣∣
,

where M1 = M2 · · · = MN = M =
(λ − 1 + 3x2 + y2 +ω − 2xy

+ω − 2xy λ − 1 + x2 + 3y2 ) and F1 = F2 · · · = FN = F =
2ε
N (x y

y x). The characteristic equation of these types of
solutions is given by [6]

�N
i=1|M| = 0 and

∣∣∣∣∣I2 +
N∑

i=1

adj(M )F

|M|

∣∣∣∣∣ = 0.

The fixed point x∗1 is unstable for all the values of ε and ω,
confirming the simulation results. We focus on the following
eigenvalues for x∗2, y∗2 to get the stability condition for the
SD state:

λ1,2 = 1 − 2ω2

ε2
− ε2η2

2ω2
±

√
−ω + ω4

ε4
+ η2

2
+ ε4η4

16ω4
, (2)

λ3,4 = 1 − 2ω2

ε2
− ε2η

ω
− ε2η2

2ω2

±
√

−ω + ω4

ε4
+ η2

2
+ ε4η4

16ω4
, (3)

where η = −ω +
√

ω2 − 4ω
ε

(−ω
ε

+ ω3

ε3 ). The real part of
these eigenvalues [Eq. (2)] must be negative for the fixed
point to be stable, which provides us with the conditions
ε <

√
1+4ω2

2 , the upper bound for the stability of the fixed
point. Similarly, the lower bound is derived by using the
fact that the real part of Eq. (3) is less than zero and conse-

quently ε >
√

−2 + 2
√

1 + ω2. According to these stability
conditions, when ω = 4.0, we get 2.5 < ε < 5.7, which is
in complete agreement with the numerical results (Fig. 4).
Upon increasing ω, while both the forward and backward
critical coupling strengths corresponding to SD shift towards
the right, εc f shifts much more than εcb, and consequently, the
width of the hysteresis increases. Additionally, the stability
region for the SD state also increases with an increase in
intrinsic frequency ω. Note that the stability of the SD state
is independent of the system size. This helps us to compare
the results of numerical simulation (N = 1000, Fig. 1) with
the bifurcation plot (N = 3, Fig. 3) and draw inferences.
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FIG. 4. Phase diagram in the parameter space (ε, ω). The dif-
ferent states are as follows: EO, enhancement of oscillations; HA,
hysteresis; SD, solitary death; RO, revival of oscillations. The blue
dashed lines are obtained from analytical calculations [Eq. (2)]. The
other parameters are xi(0), yi(0) ∈ [0, 1] ∀ i and N = 1000.

Revival of oscillations (RO). In the forward direction, once
a death state is reached, it persists in an increase in ε. In
the backward direction, starting from a set of random initial
conditions, an oscillatory state is achieved with the decrease
in ε. The fixed point corresponding to the SD state does lose
its stability at critical ε; however, in the forward direction,
we change ε adiabatically, the oscillators stay at the fixed
point, and the unstable fixed point keeps getting manifested.
In contrast, if we do not set the initial condition corresponding
to a fixed point solution (as in the case of the backward direc-
tion), an oscillatory state is achieved at critical ε. This state
is, however, not simply elliptic in nature; rather it resembles
something more like a torus. The bifurcation diagram points
out that the stable fixed point loses its stability via Hopf
bifurcation yielding an unstable fixed point and a stable limit
cycle. This stable limit cycle again loses its stability via toroid
bifurcation to become a torus [28]. This torus rotates around
an unstable limit cycle as illustrated in the bifurcation diagram
(Fig. 3).

d. Sensitivity to initial conditions. As depicted in Fig. 3,
for lower ε values, the phase space is shared by two limit
cycles. The first one remains as it is with an increase in ε, and
the oscillators are not synchronized but are phase locked (PL
state). In contrast, in the other branch, the amplitude of the
limit cycle (A) increases with ε and corresponds to all oscilla-
tors being synchronized (Fig. 1). The system chooses either
of the limit cycles to settle based on the initial conditions
as evident from the basin plot in Fig. 5(a). Furthermore, in
the hysteresis region, depending on the initial conditions, the
system goes to the synchronized state or the OD state. Since
both the probable states in this region satisfy the condition that
xi = x j and yi = y j ∀ i, j, we have assumed xi = x j = x3 and
yi = y j = y3 [Fig. 5(b)]. The SD state after ε = εc f does not
share its basin with any other state [Fig. 5(c)]. Similarly, in the
RO state, if we start the simulations close to the unstable fixed
point, the system remains in the SD state; otherwise, it goes
to the oscillatory state [Fig. 5(d)].

e. Introduction of pairwise couplings. Next, we add
pairwise couplings along with the triadic couplings in the
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FIG. 5. Basin of attraction for N = 3 and ω = 4.0 in Eq. (1).
(a) Synchronized state at ε = 1.0, (b) hysteresis at ε = 2.7, (c) soli-
tary death at ε = 4.0, and (d) RO state at ε = 7.0. The different states
are as follows: EO, enhancement of oscillations; PL, phase locked;
SD, solitary death; RO, revival of oscillations.

following manner:

ż j (t ) = (1 − |z j (t )|2)z j + iωz j + εp

N

N∑
k=1

zk

+ ε

N2

N∑
k=1

N∑
l=1

zkzl , (4)

where εp is the pairwise coupling strength. Figure 6(a) in-
dicates that even for small values of εp, synchronization is
achieved. Moreover, with the introduction of pairwise cou-
plings, the hysteresis width decreases with an increase in εp.

f. Nonidentical coupled oscillators. To gauge the generality
of the results presented here, we consider an ensemble of N
nonidentical SL oscillators coupled through higher-order as
well as pairwise couplings. The dynamics of such a coupled
system can be given by

ż j (t ) = (1 − |z j (t )|2)z j + iω jz j + εp

N

N∑
k=1

zk

+ ε

N2

N∑
k=1

N∑
l=1

zkzl , (5)

where intrinsic frequencies of SL oscillators are uniformly
distributed within ω j ∈ [4, 5]. We find that in the absence
of pairwise couplings, even for a small spread in the intrin-
sic frequencies, the system fails to stabilize to a death state
[Fig. 6(b)]. In other words, in the absence of pairwise cou-
plings, the death state arising due to higher-order couplings
becomes unstable, and the system stays on the same limit
cycle even when ε increases. Moreover, at higher εp values,
both εcb and εc f decrease, and so does the hysteresis width.

g. Conclusion. This Research Letter investigates globally
coupled identical oscillators with higher-order interactions.
We propose a scheme for incorporating higher-order interac-
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FIG. 6. (a) A vs ε for globally coupled identical SL oscillators
having pairwise interactions as well [Eq. (4)] for εp = 0.1, εp = 0.5,
and εp = 1.0; ω = 4.0 and N = 1000. (b) A vs ε for globally coupled
nonidentical SL oscillators [Eq. (5)] for εp = 0.0, εp = 1.0, and εp =
2.0; ω ∈ [4, 5] and N = 1000. Diamonds, A in the forward direction;
circles, A in the backward direction.

tions which cannot be decomposed into lower-order interac-
tions, and the coupled dynamical equation in this scheme also
contains a physical meaning in its polar coordinate counter-
part. We report the emergence of a coupling-dependent SD
state, a single stable quenched state arising from the higher-
order interactions. This state might be relevant for real-world
complex systems, where a single stabilization point is de-
sired and can be set using the coupling strength. Moreover,
incorporation of higher-order interactions yields a first-order
transition to death popularly known as explosive death. At
lower coupling values the system is usually synchronized
along with a surge in the amplitude, and at very high cou-
pling values we observe the SD state transitioning into an
RO state in the form of a torus. The surge in the amplitude
just after the synchronization resembles the preictal regime
in which synchronization is accompanied by an increase in
brain activity, which is further followed by a postictal general-
ized epileptic seizure (PGES) corresponding to a considerable
suppression of brain activity [29–31]. These states can be
compared with the EO and SD states manifested by Eq. (1).
Moreover, at the end of a PGES, the brain might return to
a normal state [32] which resembles the RO state discussed
here. Furthermore, we calculated the critical coupling strength
for occurrence of the SD state using linear stability analysis,
which suggested system size independence. Finally, we inves-
tigated the dynamical evolution of nonidentical oscillators and
found that the nonidentical frequency distribution was respon-
sible for destabilizing the SD state. However, an introduction
of the pairwise coupling feedback helped in re-sorting the
stability of SD.

This Research Letter only considers triadic couplings to
model higher-order interactions. A straightforward extension
of the present work is to incorporate other higher-order in-
teractions, such as quadratic and other coupling forms. The
effect of network structure on the dynamics of the system
could also be an interesting avenue to achieve a more in-depth
understanding of how higher-order interactions bring about
emerging dynamical features beyond the scope of pairwise
interactions.
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