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Thermodynamic bounds on time-reversal asymmetry
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Quantifying irreversibility of a system using finite information constitutes a major challenge in stochastic
thermodynamics. We introduce an observable that measures the time-reversal asymmetry between two states
after a given time lag. Our central result is a bound on the time-reversal asymmetry in terms of the total
cycle affinity driving the system out of equilibrium. This result leads to further thermodynamic bounds on the
asymmetry of directed fluxes, on the asymmetry of finite-time cross-correlations, and on the cycle affinity of
coarse-grained dynamics.
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Introduction. Nonequilibrium systems are characterized
by their irreversible dynamics. This irreversibility is gener-
ated by dissipative forces, and thus implies a thermodynamic
cost [1,2]. In stochastic thermodynamics [3], irreversibility is
encoded in statistical properties of stochastic trajectories [4].
In practice, measuring probabilities of whole trajectories is
often hard, and one is forced to estimate irreversibility from
incomplete statistical information. For example, fluctuations
of currents and first-passage time can be used to set bounds
on the dissipation rate through thermodynamic uncertainty
relation [5–9]. Responses to perturbations can also reveal
nonequilibrium properties [10]. Often, only a few states of
a physical system may be “visible”, i.e., experimentally ob-
servable, and the temporal resolution of measurement may be
also finite. Inferring thermodynamic costs from such partial
observations remains an active field of investigation [11–15].

In this Letter, we propose and study the following measure
of time-reversal asymmetry between two states,

Aτ
i; j ≡

∣∣∣∣∣ln
(

Pτ
i| j pst

j

Pτ
j|i p

st
i

)∣∣∣∣∣, (1)

where pst
i is the probability of state i at steady state and Pτ

i| j is
the propagator, defined as the probability of finding the system
in state i after a time lag τ , given that it initially was in state
j [see Fig. 1(a)]. The time-reversal asymmetry Aτ

i; j must be
equal to zero for any choice of i, j, and τ at equilibrium, where
forward and backward trajectories have equal probability and
thus time-reversal symmetry is preserved.

The freedom in choosing the states i, j, and the time lag τ

allows us to use Aτ
i; j to probe how the nonequilibrium nature

of a system affects its different states at different timescales.
In the short-time limit, only the direct edge between state
i and j contributes the propagator, so that the time-reversal
asymmetry reduces to the absolute log ratio of directed fluxes,
limτ→0 Aτ

i; j = | ln[Wi j pst
j /(Wji pst

i )]|. In contrast, in the long-
time limit, propagators lose memory of the initial state, so that
limτ→∞ Pτ

i| j = pst
i and limτ→∞ Aτ

i; j = 0.
Our central result is that, out of equilibrium, the time-

reversal asymmetry Aτ
i; j is bounded from above by the sum of

affinities driving all the cycles in the network, irrespectively

of the choice of i, j, and τ [see Fig. 1(b)]. To prove our result,
we combine trajectory thermodynamics with a graph-theoretic
description of Markov networks [16–19]. We conclude with
three applications to other observables: the asymmetry of di-
rected fluxes, the asymmetry of finite-time cross-correlations,
and the cycle affinity of temporal-coarse-grained dynamics.

Setup. We consider a discrete-state system whose dynamics
is described by a master equation

d

dt
p = W p, (2)

where p = p(t ) = [p1(t ), . . . , pn(t )] is the probability distri-
bution on a set of n states. The off-diagonal elements Wi j of
the matrix W represent the transition rates from state j to state
i, whereas Wii = −∑

j �=i Wji. Thermodynamic properties are
encoded in the local detailed balance (LDB) condition

Wi j/Wji = e
sres

ei j , (3)

which associates the transition rates between states i and j
with the entropy sres

ei j
released into the thermal reservoir when

going from state j to i through the edge ei j (see Refs. [3,20]).
Here and in the following, we set the temperature T = 1 and
the Boltzmann constant kB = 1.
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FIG. 1. (a) A Markov network with only two visible states. The
time-reversal symmetry can be broken by driving the system out of
equilibrium. (b) Thermodynamic bound on the time-reversal asym-
metry Aτ

i; j , as defined in Eq. (1). Here, F sum
c = ∑

c |Fc| is the sum
of all cycle affinities in the network.
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FIG. 2. The relative propagator Rτ
1|3 as a function of the lag time

τ for different kinetic rates. In the small τ limit, Rτ
1|3 is determined

by the path b and approaches its upper bound. In the large τ limit,
Rτ

1|3 approaches the lower bound for small k/k′.

The steady-state probability distribution is the eigenvector
of W associated with the zero eigenvalue, W pst = 0. Such
an eigenvalue is unique according to the Perron-Frobenius
theorem.

The formal solution of Eq. (2) is

p(τ ) = eW τ p(0). (4)

The propagator Pτ
i| j is the i j element of the matrix eW τ . At

steady state, the joint probability of two states separated by a
lag time τ is

Pτ
i; j ≡ Pτ

i| j pst
j . (5)

We shall derive thermodynamic bounds to the relative
joint probabilities based on graph-theoretic concepts, that we
briefly introduce in the following. A walk (wi j) is a sequence
of directed edges (e) which join a certain sequence of states
(v) from state j to state i. A path (ri j) is a walk from j to i
with neither repeated edges nor vertices. A cycle (c) is a closed
path. The entropy production released into the heat reservoir
along a given path from state j to state i is the sum of entropy
released for all the edges belonging to this path,

sres
ri j

= ln

[ ∏
e∈ri j

W +
e

W −
e

]
=

∑
e∈ri j

sres
e , (6)

where W +/−
e is the forward (backward) rate along the edge

e, sres
e is the entropy released into the reservoir along the

same edge, and the second equality follows from Eq. (3). At
equilibrium, the entropy sres

ri j
is independent of the chosen path,

and thus the cycle affinity Fc = ∑
e∈c sres

e vanishes for any
cycle [20].

Bound on relative propagators. Our first main result is that
the relative propagator Rτ

i| j ≡ Pτ
i| j/Pτ

j|i is bounded by

e
sres,min

ri j � Rτ
i| j � e

sres,max
ri j . (7)

Here, sres,max / min
ri j is the maximum/minimum entropy released

into the reservoir among all possible paths ri j . In a three-state
network, we find that the relative propagator Rτ

1|3 ranges be-
tween the upper and lower bounds as τ increases (see Fig. 2).
Equation (7) can be seen as a finite-time LDB condition [see
Eq. (3)], since, if two states i and j are connected and in the

(a) (b)

st
at
e
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FIG. 3. (a) A walk from state 1 to state 6, and the corresponding
reversed walk w̄, partial-reversal operation w∗, and the joint-reversed
walk w̄∗. (b) An example trajectory along the walk w with a series of
waiting times on all states during a time lag τ .

short-time limit, the relative propagator reduces to the ratio of
transition rates:

lim
τ→0

Rτ
i| j = Wi j/Wji. (8)

To prove Eq. (7), we represent the propagator from j to i
as a sum of contributions from all possible walks from j to i,

Pτ
i| j =

∑
wi j

P(wi j ; τ ), (9)

where P(wi j ; τ ) is the probability of all the trajectories as-
sociated with the walk wi j in a time τ . Such probability is
expressed by

P(wi j ; τ ) = Pτ
wi j

∏
e∈wi j

W +
e , (10)

where Pτ
wi j

= ∫ ∏
ν∈S(wi j ) dtνe−W out

ν tvδ(τ − ∑
ν tν ) is the prob-

ability of completing the walk wi j in a time τ (see Refs. [3,21–
23]). Here, S(wi j ) is the set of states along the walk wi j ,
W out

ν = ∑
j �=ν Wjν is the total out rate from state ν, and tν is

the time spent in state ν.
We introduce reversal and partial reversal operations on

the trajectories. The reversal operation w̄ simply reverses the
orientation of all edges in the trajectory [see Fig. 3(a)]. In con-
trast, the partial-reversed trajectory w∗ reverses the direction
of all cycles in the trajectory, leaving the direction of edges
that do not belong to cycles unaltered. These two operations
do not affect the times spent in each state along the walk, so
that Pτ

wi j
= Pτ

w∗
i j

= Pτ
w̄i j

= Pτ
w̄∗

i j
. A walk and its partial-reversed

counterpart both belong to the set of all possible walks with
the same start and end. This means that a partial-reversal
operation is a bijection in this set. In contrast, the reversal
operation is a bijection from a set of trajectories to a set with
swapped start and end states. Thus we have∑

w ji

P(w ji; τ ) =
∑
w̄i j

P(w̄i j ; τ ) =
∑
w̄∗

i j

P(w̄∗
i j ; τ ). (11)

Given these properties, we now obtain the bound on the rela-
tive propagator,

Rτ
i| j =

∑
wi j

P(wi j ; τ )∑
w ji

P(w ji; τ )
=

∑
wi j

P(wi j ; τ )∑
w̄∗

i j
P(w̄∗

i j ; τ )

=
∑

wi j

(
Pτ

wi j

∏
e∈wi j

W +
e

)
∑

w̄∗
i j

(
Pτ

w̄∗
i j

∏
e∈w̄∗

i j
W +

e

)
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� max
wi j

Pτ
wi j

∏
e∈wi j

W +
e

Pτ
w̄∗

i j

∏
e∈w̄∗

i j
W +

e

= max
ri j

e
sres

ri j , (12)

where in going from the second to the third line we used that∑
i yi∑
i xi

=
∑

i xi(yi/xi )∑
i xi

� max
i

yi

xi
if xi, yi > 0 ∀i. (13)

We note that the cycles in wi j and w̄∗
i j share the same ori-

entation, as exemplified in Fig. 3(a). So when we evaluate∏
e∈wi j

W +
e /

∏
e∈w̄∗

i j
W +

e , the contributions from cycles cancel
out and only the remaining path contributes. The lower bound
can be obtained following the same logic. This completes the
proof of Eq. (7).

First affinity bound. The upper and lower bounds in Eq. (7)
do not depend on τ . By choosing two arbitrary time lags τ and
τ ′, we immediately obtain our first affinity bound

Rτ
i| j

Rτ ′
i| j

� e
sres,max

ri j

esres,min
ri j

� eF
sum
c , (14)

where F sum
c = ∑

c |Fc| is the sum of affinities of all cycles
in the network. The second inequality can be proven as fol-
lows. Since sres

ri j
is antisymmetric with respect to changing

the orientation of the path, we have sres,min
ri j

= −sres,max
r ji

. The
combination of the maximum dissipative paths from j to i and
i to j form a closed walk. The contribution to the dissipation
in this walk comes from the enclosed cycles. Since the closed
walk is formed by two paths, any enclosed cycle can only be
passed once. Therefore, the upper bound is smaller than the
sum of all cycle affinities. In principle, the bound in Eq. (14)
can be made tightest by choosing τ and τ ′ in such a way as
to maximize the numerator and minimize the denominator on
the left-hand side, respectively.

Affinity bound on the time-reversal asymmetry. We now
seek for a bound for the relative joint probability Rτ

i; j =
Pτ

i; j/Pτ
j;i. To this aim, we exploit the matrix-tree theorem, that

bounds the steady-state probabilities as

e
sres,min

r ji �
pst

j

pst
i

� e
sres,max

r ji (15)

(see Refs. [18,19]). We recover this bound as a particular case
of Eq. (7) for τ → ∞. We combine Eqs. (7) and (15) to find
ln Rτ

i; j ∈ [sres,min
ri j

+ sres,min
r ji

, sres,max
ri j

+ sres,max
r ji

], and therefore

Aτ
i; j � sres,max

ri j
+ sres,max

r ji
� F sum

c . (16)

An alternative bound for the relative joint probability can
be obtained by considering Eq. (7) and multiplying each term
by the positive quantity pst

j /pst
i . Defining the total entropy

production rate stot
ri j

= sres
ri j

+ �ssys = sres
ri j

− ln pst
i + ln pst

j , we
obtain

e
stot,min

ri j � Rτ
i; j � e

stot,max
ri j , (17)

where stot,min / max
ri j is the minimum/maximum total entropy

production among all possible paths ri j .
Asymmetry of directed fluxes. In the short-time limit, the

leading term of the propagator between two connected states

is Pτ
i| j 
 Wi jτ + O(τ 2). Therefore, the joint probability in a

short lag time is related to the instantaneous directed flux:
Jst

j→i ≡ Wi j pst
j = limτ→0 Pτ

i; j/τ . We obtain a bound on the
asymmetry of directed fluxes in terms of the maximum cycle
affinity,

lim
τ→0

Aτ
i; j =

∣∣∣∣∣ln Jst
j→i

Jst
i→ j

∣∣∣∣∣ =
∣∣∣∣∣ln Wi j pst

j

Wji pst
i

∣∣∣∣∣
�

∣∣sres
ei j

+ sres,max
r ji

∣∣ = Fmax
ci j

, (18)

where Fmax
ci j

is the cycle affinity maximized over all cycles
that contain the edge from state j to state i. We prove Eq. (18)
by combining the LDB condition, Eq. (3), and the bound on
steady-state probabilities, Eq. (15). The combination of the
edge from j to i and the maximum dissipative path from i to j
forms at most one cycle. Therefore, the upper bound is given
by a maximum cycle affinity, resulting in a tighter bound than
the finite-time one given by Eq. (16).

Asymmetry of cross-correlations. The correlation of two
observables a = (a1, . . . , an) and b = (b1, . . . , bn), with lag
time τ is a useful measure of the nonequilibrium behavior of
a system [24]. At steady state, this correlation is defined by

Cτ
ab ≡ 〈a(t + τ )b(t )〉 =

∑
i, j

aiP
τ
i; jb j . (19)

We first link the relative cross-correlation with the relative
joint probability,

Cτ
ab

Cτ
ba

=
∑

i, j aiPτ
i; jb j∑

i, j a jPτ
i; jbi

=
∑

i, j aiPτ
i; jb j∑

i, j aiPτ
j;ib j

� max
i, j

Rτ
i; j � eF

sum
c ,

(20)
which holds for physical observables such that the compo-
nents of a and b are positive. The two inequalities in Eq. (20)
follow from Eqs. (13) and (16).

One direct application of Eq. (20) is a bound on the time-
reversal asymmetry between coarse-grained states. We define
PI|J (τ ) = ∑

i∈I

∑
j∈J Pi| j (τ )[pst

j /pst
J ], where I and J are given

sets of states, and the weight pst
j /pst

J is due to the lack of
information on the starting state in J . We immediately obtain

Aτ
I;J ≡

∣∣∣∣ln PI|J (τ )pst
J

PJ|I (τ )pst
I

∣∣∣∣=
∣∣∣∣∣ln

∑
i∈I, j∈J Pi| j (τ )pst

j∑
i∈I, j∈J Pj|i(τ )pst

i

∣∣∣∣∣ � F sum
c ,

(21)
where the last inequality is obtained from Eq. (20) by choos-
ing the indicator functions of the sets I and J as the functions
a and b.

We further obtain an affinity bound on the asymmetry of
cross-correlations by a transformation of Eq. (20):

χab ≡
∣∣∣∣Cτ

ab − Cτ
ba

Cτ
ab + Cτ

ba

∣∣∣∣ � tanh
[
F sum

c

/
2
]
. (22)

Temporal-coarse-grained Markov process. A continuous-
time master equation can be coarse grained in time to a
Markov chain with time step τ , �p = τW τ p, by rearranging
Eq. (4). Here, W τ ≡ (eW τ − I )/τ is a temporal-coarse-
grained stochastic matrix which reduces back the original
matrix W in the τ → 0 limit. We note that the resulting
Markov chain is fully connected. One natural question is how

L062101-3
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(a) (b)

Upper boundUpper bound
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FIG. 4. (a) A two-cycle network and the corresponding paths
from state 1 to state 4. The network is brought out of equilibrium by
two cycle affinities. (b) The thermodynamic bound on time-reversal
asymmetry Aτ

1;4. The sum of cycle affinities F sum
c = |F1| + |F2|

sets an upper bound on the time-reversal asymmetry. (c) The bound
on finite-time cycle affinity of the cycle c = (e12, e24, e45, e51) can
exceed the maximum cycle affinity evaluated from the original tran-
sition matrix. (d) The finite-time cycle affinity is bounded from above
by the sum of cycle affinities. All data points are obtained with τ = 1
and randomly generated transition rates such that F1,F2 ∈ [−1, 1].

the thermodynamic properties are affected by coarse grain-
ing [15,25,26]. It was recently suggested that the maximum
cycle affinity evaluated over cycles of a uniform cycle decom-
position for the coarse-grained stochastic matrix W τ might be
smaller than or equal to the maximum cycle affinity associated
with the original stochastic matrix W [27]. We have simulated
a nonequilibrium model on a butterfly network, and have
found that the maximum cycle affinity bound does not hold
for an arbitrary coarse-grained cycle [see Fig. 4(c)]. However,
with our formalism, we find that the finite-time cycle affinity
F τ

c is bounded by the sum of the cycle affinities of the original
network:

F τ
c ≡ ln

( ∏
e∈c

W τ+
e

W τ−
e

)
� F sum

c (23)

[see Fig. 4(d)]. This bound agrees with the conjecture in
Ref. [27] in the unicycle case. To prove Eq. (23), we pick two

arbitrary states k and l from cycle c and decompose the cycle
into two distinct paths between the two states, that we denoted
by rc

kl and rc
lk . We then split the finite-time cycle affinity into

two temporal coarse-grained paths:

F τ
c = ln

[ ∏
e∈rc

kl

W τ+
e

W τ−
e

]
+ ln

[ ∏
e∈rc

lk

W τ+
e

W τ−
e

]
. (24)

We can decompose the products of temporal-coarse-grained
transition rates in Eq. (24) into walks, similarly to how we
have done in Eq. (10). The resulting expression would contain
the same product of the original rates as in Eq. (10). The main
difference is that, in this case, the temporal factor analogous
to Pτ

wi j
represents the probability of passing through the states

composing the walk after each time lag τ . In any case, as
for the time-continuous case, this temporal factor is invariant
under reversal and partial reversal operations, and thus cancels
out in the final expression. We therefore obtain

ln

[ ∏
e∈rkl

W τ+
e

W τ−
e

]
∈ [

sres,min
rkl

, sres,max
rkl

]
, (25)

and also the same for the rc
lk . By combining the bounds for the

two paths, we finally reach Eq. (23).
Discussion. In this Letter, we have introduced the measure

of time-reversal asymmetry Aτ
i; j . Our main result is that Aτ

i; j
is bounded by the sum of cycle affinities in the system. Our
bound directly connects the time-reversal asymmetry with its
causes. While the temporal asymmetry depends on an ad-
justable timescale τ and the chosen pair of states, our bound
solely depends on the cycle affinities. Our main results lead to
a bound on the cross-correlation asymmetry, which comple-
ments recent results on this subject [27–29]. In the short-time
limit, Aτ

i; j provides information on the asymmetry of directed
fluxes.

Further work should explore other observable quantifying
temporal asymmetry that can be bounded using this approach.
Additionally, this approach should be extended to continuous
space stochastic processes described by Langevin equa-
tions and to complex chemical reaction networks [30–32].
The latter study could provide useful insight into biochemical
systems.
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