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How to read optical properties of matter via the Kubo-Greenwood approach
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Substances with a complex electronic structure exhibit non-Drude optical properties that are challenging
to interpret experimentally and theoretically. In our recent paper [Phys. Rev. E 105, 035307 (2022)], we
offered a computational method based on the continuous Kubo-Greenwood formula, which expresses dynamic
conductivity as an integral over the electron spectrum. In this Letter, we propose a methodology to analyze
the complex conductivity using liquid Zr as an example to explain its nontrivial behavior. To achieve this, we
apply the continuous Kubo-Greenwood formula and extend it to include the imaginary part of the complex
conductivity into the analysis. Our method is suitable for a wide range of substances, providing an opportunity
to explain optical properties from ab initio calculations of any difficulty.

DOI: 10.1103/PhysRevE.108.L053301

Introduction. Optical properties are of great interest for
both industrial and fundamental research applications [1–4].
At the dawn of rapid development in quantum mechanics,
Drude proposed the electrical conduction theory [5], which
is still widely used and evolved [6–8]. Despite its success, the
Drude formula (1) fails to describe complicated conductivity
curves observed in experiments. Moreover, this formula re-
quires a posteriori knowledge of the collision time.

Unfortunately, the experimental analysis of such depen-
dencies is also limited, as the absorption between two energy
levels cannot be directly measured [9]. Therefore, the transi-
tion intensity is often assumed to be constant [10,11], which
is a very rough approximation [12]. The reader can find an
overview of different experimental methods to measure the
optical properties of metals in Refs. [13–17].

Numerous attempts have been made to unravel optical
properties using analytical techniques [18–20], leading to sig-
nificant advances in our understanding of conductivity theory.
However, each material possesses a unique electronic struc-
ture that is difficult to capture by analytical methods alone.
Consequently, there is an urgent need for a method that not
only interprets optical properties qualitatively, but also quan-
titatively, without relying on tunable parameters.

The advances in solid state physics theory [21] and quan-
tum chemistry [22,23], as well as the implementation of
density functional theory (DFT) [24–27], allow to obtain
ab initio data on the thermodynamical [28–34] and
optical properties of matter [35–38]. As a result, a number
of powerful research techniques have emerged, includ-
ing Korringa-Kohn-Rostoker (KKR) [39–41], time-dependent
DFT (TD-DFT) [42–45], dynamical mean-field theory
(DMFT) [46–48], Boltzmann transport theory [49,50], GW
method [51,52], and random phase approximation (RPA)
[53,54].

*Corresponding author: pasha@jiht.ru

The Kubo-Greenwood (KG) formula is one of the
commonly used methods for calculating optical properties
[55–59]. It allows to obtain the real part of complex conduc-
tivity [or the dynamic conductivity σ1(ω)]; its imaginary part
[or the imaginary conductivity σ2(ω)] can be obtained from
the Kramers-Kronig relation [60]. The electronic structure is
calculated by DFT, while the ion dynamics is accounted for by
a quantum molecular dynamics (QMD) simulation. Although
the implementation of the KG formula in DFT involves ap-
proximate Kohn-Sham wave functions, this method produces
good results for static and dynamic conductivity, and other
optical properties of several substances [61–65].

However, analyzing a final result from the usual KG for-
mula is still challenging, as it involves a discrete sum over
all electron transitions. To address this issue, we developed a
technique for smoothing the dipole matrix elements squared
and obtained the continuous Kubo-Greenwood (CKG) for-
mula [66]. It appears that the first derivation of this formula
is given in the books of Mott and Davis and Madelung
[67,68], although without a specific procedure for application
to any real materials. This formula enables a straightforward
consideration of electronic transition contributions to con-
ductivity, representing σ1(ω) as an integral of the product
of continuous functions (2). Therefore, the CKG formula
provides a useful tool for a comprehensive analysis of the
optical properties of matter, even for complicated frequency
dependencies.

In this Letter, we analyze the contribution of electron tran-
sitions to the CKG formula in order to interpret the dynamic
conductivity of liquid Zr. We also develop a similar approach
for analyzing the imaginary conductivity, extending our anal-
ysis to the full set of optical properties. Thus, our approach
enables us to gain a deeper understanding of various features
of optical properties.

Computation of electronic structure. A QMD simulation of
250 atoms in a cubic supercell was performed using the VASP

package [28] to obtain thermodynamic properties and ionic
configurations of Zr [69]. 3000 configurations were generated
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FIG. 1. SSME, the intensity of transitions between the levels
with energies ε1 and ε2 multiplied by the system volume �. The diag-
onal lines correspond to some constant frequency h̄ω = ε2 − ε1. The
vertical and horizontal red lines show the integration region; it arises
from the difference of Fermi weights, [ f (ε1) − f (ε1 + h̄ω)]/(h̄ω).

with a time step of 2 fs. We used the generalized gradient
approximation for the exchange-correlation functional in the
Perdew-Burke-Ernzerhof parametrization [70] and the pro-
jector augmented-wave pseudopotential [71] with 12 valence
electrons. We selected specific calculation parameters, includ-
ing a 400 eV energy cutoff for the plane-wave basis set, a
Baldereschi mean-value point [72,73], and 2200 bands, to
guarantee the convergence of thermodynamic properties.

Once the system reaches equilibrium after 500 steps, we
select a set of five ionic configurations starting from the 600th
one in increments of 600. Next, we perform a more precise
DFT calculation of the electronic structure via VASP for the
selected configurations with 6000 bands total, the same energy
cutoff, and a 2 × 2 × 2 k-point grid. As a result, we obtain
eigenstates, eigenvalues, Fermi weights, and chemical poten-
tial μ. Then the averaged over spatial directions dipole matrix
element squared Dk

i j in terms of the momentum operator is
computed for all k points and bands i, j.

Continuous Kubo-Greenwood formula. The dipole matrix
elements squared are not suitable for a direct analysis [66]. For
this purpose we use the smoothed squares of matrix elements
[SSME; see Eqs. (16) and (28) in Ref. [66]]. SSME, D(ε1, ε2),
shows the intensity of the electron transition between the
levels with energies ε1 and ε2 (see Fig. 1).

The complex electrical conductivity, σ (ω) = σ1(ω) +
iσ2(ω), is a coefficient of proportionality between the Fourier
components of the external electric field and the induced
electric current density at a frequency ω. According to Drude,
its real, σ1(ω), and imaginary, σ2(ω), parts are the following,

σ Dr
1 (ω) = σ Dr

1DC

1 + ω2τ 2
, σ Dr

2 (ω) = σ Dr
1DC

ωτ

1 + ω2τ 2

σ Dr
1DC

= nee2τ
me

, (1)

where ne denotes the free-electron density, and τ is the mean
free time between ionic collisions. The dynamic conduc-

tivity is obtained from ab initio calculations via the CKG
formula [66],

σ CKG
1 (ω) = 2πe2h̄3

m2
e

∫
dε1D(ε1, ε1 + h̄ω)�

× g(ε1)g(ε1 + h̄ω)

�2

f (ε1) − f (ε1 + h̄ω)

h̄ω
, (2)

where g(ε) is the density of states (DOS) and f (ε) is
the Fermi-Dirac distribution. The imaginary conductivity is
also obtained in an integral form, σ CKG

2 (ω) = ∫ dε1σ
CKG
2,ω (ε1),

from the Kramers-Kronig relation (see the derivation and
computational details in the Supplemental Material [74]),
where the differential imaginary conductivity

σ CKG
2,ω (ε1) = 2e2h̄3

m2
e

g(ε1)

�

∫ +∞

0
d (h̄ν)D(ε1, ε1 + h̄ν)�

× g(ε1 + h̄ν)

�

f (ε1) − f (ε1 + h̄ν)

h̄ν

× 2h̄ω

(h̄ω)2 − (h̄ν)2
. (3)

The integral in Eq. (3) should be understood in the sense of
the Cauchy principal value.

It is also convenient to define the following function:

Dg(ε1, ε1 + h̄ω) = D(ε1, ε1 + h̄ω)g(ε1)g(ε1 + h̄ω). (4)

Dg(ε1, ε1 + h̄ω)dε1 d (h̄ω) represents the sum of all electron
transitions with a frequency ω from some initial energy
level ε1.

The CKG formula (2) has a clear physical meaning. SSME,
D(ε1, ε1 + h̄ω), shows the intensity of an electron transition
from the initial energy level ε1 to the final one, ε1 + h̄ω. The
DOS product shows the number of energy levels on the initial
level g(ε1) and on the final level g(ε1 + h̄ω). The difference
between the Fermi weights, [ f (ε1) − f (ε1 + h̄ω)]/(h̄ω), re-
flects the occupation of the levels. Finally, the integration over
the energy range takes into account the transitions from all the
initial energy levels to obtain σ CKG

1 (ω). Note that the differ-
ence of Fermi weights limits the integration range in Eq. (2);
a transition may occur only from an occupied to unoccupied
level (the occupation can be partial).

For the imaginary part σ CKG
2 (ω), all possible transitions

from the energy level ε1 contribute to σ CKG
2,ω (ε1) [see Eq. (3)].

The contribution of each transition is determined by several
factors, including its intensity, D(ε1, ε1 + h̄ν), the number
of levels at the initial, g(ε1), and final values, g(ε1 + h̄ν),
the occupancy [ f (ε1) − f (ε1 + h̄ν)]/(h̄ν), and the “weight”
2h̄ω/[(h̄ω)2 − (h̄ν)2]. To obtain the differential imaginary
conductivity σ CKG

2,ω (ε1), we sum over all such contributions by
integration over h̄ν [see Eq. (3)]. Next, we account for the
transitions from all initial levels ε1 by integrating over the
electron spectrum to calculate σ CKG

2 (ω).
The calculation of SSME, DOS, σ CKG

1 (ω), σ CKG
2,ω (ε1), and

σ CKG
2 (ω) is provided via the CUBOGRAM code [66].

While being computationally more expensive, the con-
tinuous KG formula (2) allows for a more comprehensive
analysis of contributions into σ CKG

1 (ω), compared to the stan-
dard KG formula [75]. This can be achieved by examination
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FIG. 2. Analysis of contributions to the real and imaginary parts of complex conductivity. The horizontal axis in (a) and (d) represents the
energy of the initial level, and the vertical axis indicates the transition frequency. (a) The product of the transition intensity D(ε1, ε1 + h̄ω)
and the number of levels at the initial energy g(ε1) and final energy g(ε1 + h̄ω) divided by the system volume �. The vertical and diagonal
red lines mark the integration region, which arises from the difference of the Fermi weights, [ f (ε1) − f (ε1 + h̄ω)]/(h̄ω), and corresponds to
the red lines in Fig. 1. (b) The dynamic conductivity, calculated via the CKG formula (2). The gray dashed line shows the Drude fit (1) of the
initial segment of σ CKG

1 (ω) with σ Dr
1DC

= 8.3 × 105 Ohm−1 m−1 and τ/h̄ = 0.22 eV−1. (c) DOS, g(ε1), for electrons at the initial energy level
ε1. The projected DOS, obtained from the decomposition of the wave functions by spherical harmonics, for the bcc lattice at the same density
is also shown in (c); it displays DOS for s, p, and d orbitals. (d) The differential imaginary conductivity σ CKG

2,ω (ε1) [see Eq. (3)] obtained from
the Kramers-Kronig relation. (e) The imaginary conductivity σ CKG

2 (ω) obtained by integrating the differential one. The gray dashed line shows
the Drude fit (1); the black dash-dotted line shows the imaginary conductivity without the contribution from inner electrons. Each label in
(a)–(c) corresponds to an electron transition from the initial level with energy ε1 by h̄ω eV; labels in (d) and (e) indicate corresponding peaks
on σ CKG

2,ω (ε1) and σ CKG
2 (ω); their physical meaning differs from that in (a)–(c). The horizontal orange dashed lines show the contribution of

transitions for a frequency h̄ω; any vertical slice represents the contribution of transitions for a given initial energy level ε1.

of D(ε1, ε2), g(ε), and the difference of Fermi weights. Note
that the usual and continuous KG formulas are independent
implementations of the exact KG formula (see Sec. IV of
Ref. [66]).

All quantities such as DOS, SSME, Dg(ε1, ε1 + h̄ω),
σ CKG

2,ω (ε1), and σ CKG(ω) are averaged over the set of five ionic
configurations.

Contributions to optical properties. In our recent publica-
tion [76], we examined the optical properties of liquid Zr at
T = 2250 K and ρ = 6 g/cm3, calculated using the GREEKUP

code [75] that implements the usual KG formula to obtain
σ KG

1 (ω) and σ KG
2 (ω).

In our study [76] of σ KG
1 (ω) and σ KG

2 (ω) curves, we ob-
served two specific patterns, which are highly different from
the Drude approximation (1) [see Figs. 2(b) and 2(e)].

Following the initial (Drude-like) section of the dynamic
conductivity [see Fig. 2(b)], we observed a plateau in the
range of h̄ω ∈ (9, 11) eV. In the range of h̄ω ∈ (25, 33) eV we
noted a significant hump, which we attribute to the excitation
of 4p electrons.

The initial section of the imaginary conductivity exhibits
the Drude-like behavior too [see Fig. 2(e)]. However, a plateau
is also observed in the region of h̄ω ∈ (10, 13) eV. Two sharp
humps appear: a negative peak at h̄ω ∈ (22, 28) eV and a pos-
itive one at h̄ω ∈ (28, 35) eV. Note that the decay of σ CKG

2 (ω)
from its maximum at h̄ω = 5 eV is more abrupt than that the
Drude formula (1) predicts.

To understand such complicated behavior of
σ CKG

1 (ω), σ CKG
2 (ω), we need to analyze the intensity of

electron transitions D(ε1, ε2) (see Fig. 1).
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The red lines in Fig. 1 indicate the integration region,
which arises from the difference of Fermi weights in Eq. (2).
Therefore, only the upper left-hand corner of Fig. 1 between
the two red lines contributes into σ CKG(ω). This region in-
cludes the areas of high (red), medium (yellow and orange),
and low (green) intensity of transitions.

The primary contribution to σ CKG
1 (ω) for transitions at

h̄ω < 25 eV is made up by the upper right-hand corner of
Fig. 1 with an initial energy ε1 − μ > −4 eV. Although the
lower left-hand corner presents the intensity of transitions
from ε1 − μ = −50 eV to ε2 − μ ≈ −30 eV, it is outside the
integration region and contributes nothing to σ CKG(ω).

There are, however, transitions from ε1 − μ ≈ −30 eV to
ε2 − μ > 0 in the integration region. Due to these transitions,
we observe a significant hump on σ CKG

1 (ω) in the range of
h̄ω ∈ (25, 33) eV [see Fig. 2(b)]. For the same reason, two
peaks appear on σ CKG

2 (ω) in the region h̄ω ∈ (22, 35) eV.
Figure 1 contains the diagonal lines that indicate transitions

at a specific frequency, ε2 = ε1 + h̄ω. Thus, D(ε1, ε1 + h̄ω)
represents the intensity of transitions from the initial energy
level ε1 by the frequency h̄ω. To visualize it from Fig. 1,
we consider the isosceles trapezoid bounded by the black
diagonal lines in Fig. 1 and rotate it by 45◦. Then, we shift
the upper boundary to the left to form a right trapezoid, which
results in Fig. 2(a). Note that Fig. 2(a) shows the transition
intensity D(ε1, ε1 + h̄ω) multiplied by the DOS at the initial
energy level g(ε1) and at the final energy level g(ε1 + h̄ω).
This product is denoted by Dg(ε1, ε1 + h̄ω) [see Eq. (4)].

After calculating all the contributions to σ CKG
1 (ω), we

can now compute σ CKG
2,ω (ε1). To evaluate this function for

a given energy ε1 and frequency ω, we consider all pos-
sible transitions from the level with energy ε1, denoted by
Dg(ε1, ε1 + h̄ν), as shown in Fig. 2(a). These transitions
have different “weights” given by 2h̄ω[(h̄ω)2 − (h̄ν)2]−1,
and we need to sum over them, according to the occu-
pation of levels, [ f (ε1) − f (ε1 + h̄ν)]/(h̄ν) [see Eq. (3)].
Figuratively speaking, this process is similar to smearing
Fig. 2(a) along the frequency axis using a procedure described
by Eq. (3), much like spreading butter on bread, resulting
in Fig. 2(d). By integrating this diagram for a fixed fre-
quency h̄ω along the energy axis ε1, we obtain the imaginary
conductivity σ CKG

2 (ω).
For clarity, we linked the top energy axis to the DOS

in Fig. 2(c), g(ε1), and the frequency axis to the dynamic
conductivity in Fig. 2(b), σ CKG

1 (ω). The bottom energy axis is
linked with Fig. 2(d) of σ CKG

2,ω (ε1); its frequency axis is linked
to the imaginary conductivity in Fig. 2(e).

Figure 2(a) contains different letter labels (A, B, C, etc.)
with coordinates (ε1, h̄ω). Each label corresponds to a specific
transition, which is shown by an arrow in Fig. 2(c). The origin
of the arrow indicates the initial electron energy ε1 while its
end points to the final energy ε1 + h̄ω. Hence, the difference
between the end and origin of the arrow is the transition
frequency h̄ω.

Next, we analyze contributions to the dynamic conductiv-
ity σ CKG

1 (ω).
The first peak in Dg(ε1, ε1 + h̄ω) [labeled (A)] corresponds

to the transition of electrons with the initial energy near the
chemical potential, ε1 − μ = 0, by h̄ω = 3 eV. Since most
of the unoccupied states at ε1 − μ = 3 eV correspond to

d orbitals, the peak (A) corresponds to the p → d transition
in the region ε1 − μ > 0.

In the region ε1 − μ � 9 eV, DOS increases, indicating the
presence of levels available for transitions from the chem-
ical potential region. This increase in DOS is reflected in
the appearance of a peak, labeled (C), which indicates the
transitions from the first peak on the d-electron DOS. These
transitions cause a non-Drude behavior of the conductivity
curve in the range 9 � h̄ω � 20 eV, preventing the curve to
decrease monotonously.

Consider the region 9 � h̄ω � 11 eV [label (B)], high-
lighted by the dashed orange lines in Fig. 2(a). We observe
that in this region, Dg(ε1, ε1 + h̄ω) varies very little with
frequency, though it slightly increases (consider the trapezoid
limited by orange and red lines). However, this increase is
fully compensated by the multiplier 1/(h̄ω), which weakly
decreases in the range from 9 to 11 eV. Consequently, the
integrand function in Eq. (2) exhibits a weak frequency de-
pendence, and the energy integral is also weakly frequency
dependent. Therefore, the σ CKG

1 (ω) curve shows a plateau in
the h̄ω ∈ (9, 11) eV region.

When the frequency increases (h̄ω > 11 eV), there is a
decrease in Dg(ε1, ε1 + h̄ω) [label (G)]. It results in a decrease
in σ CKG

1 (ω) within the region of 11 � h̄ω � 20 eV. In the
range 20 � h̄ω � 25 eV, the conductivity shows a Drude-like
behavior again.

We observe a peak on Dg(ε1, ε1 + h̄ω) corresponding to
4s → 4p transitions [labeled as (D)] at h̄ω = 22 eV. However,
despite the presence of this peak, these transitions do not occur
due to the levels being fully occupied, which we have also
noted in Fig. 1.

Consider now the region of the double peak on the conduc-
tivity, which is labeled as (E) and (F), at 25 � h̄ω � 31 eV.
These peaks are the result of intensive transitions from the
inner 4p electrons to 4d . Note that the intensity of the double
peak in the conductivity follows from that of the double peak
in the projected DOS of d electrons, in the vicinity of the
chemical potential. However, SSME (see Fig. 1) in this region
shows no splitting into two peaks.

Following the peak (F), we see a sharp drop in
Dg(ε1, ε1 + h̄ω) as g(ε2) at ε2 − μ = −27 + h̄ω = 8 eV
for h̄ω = 35 eV decreases sharply. This is also reflected
by a sharp decrease of the peak (F) on the function
Dg(ε1, ε1 + h̄ω), and hence a sharp decrease of the conduc-
tivity σ CKG

1 (ω).
Next, we analyze contributions to the imaginary conduc-

tivity σ CKG
2 (ω) [see Figs. 2(d) and 2(e)].

Let us begin by examining the excitation region of the
inner 4p electrons (−30 eV � ε1 − μ � −23 eV). These ex-
citations have different signs for various h̄ω: A negative peak
(J) and a positive peak (K) are observed, which arise as a result
of transitions (E) and (F). The peak (J) has a very long tail
[see label (M)]. Therefore, in contrast to σ CKG

1 (ω), the impact
of these deep 4p electron excitations is noticeable in σ CKG

2 (ω)
even for relatively low h̄ω � 20 eV. To demonstrate it, we
computed the curve σ CKG

2 (ω) excluding the spectrum part
of ε1 − μ � −10 eV [see Fig. 2(e), black dash-dotted line].
Consequently, peaks (J) and (K) disappear, and this curve
becomes similar to the Drude one.

Next, we focus on the transitions from levels near the
chemical potential. The sum of all transitions from the level

L053301-4



HOW TO READ OPTICAL PROPERTIES OF MATTER VIA … PHYSICAL REVIEW E 108, L053301 (2023)

ε1 = μ is positive, as indicated by peak (H). This peak (H)
leads to a significant increase in σ CKG

2 (ω) for h̄ω � 5 eV.
However, in the same frequency range, transitions from
levels −4 eV � ε1 − μ � −0.5 eV contribute negatively, as
demonstrated by peak (I). This peak (I) results in a slower
increase in σ CKG

2 (ω) compared to the Drude curve σ Dr
2 (ω) for

h̄ω � 5 eV.
In the region h̄ω ∈ (5, 10) eV, there are no negative contri-

butions near the chemical potential, and peak (H) decreases,
leading to a decrease in σ CKG

2 (ω). The curve σ CKG
2,ω (μ) ex-

hibits a slight increase for h̄ω ∈ (10, 14) eV, as illustrated
by peak (L). It causes a small increase in the imaginary
conductivity curve [the one without peaks (J) and (K)]. How-
ever, the negative effect of transitions from inner 4p levels
compensates this increase, resulting in a plateau on σ CKG

2 (ω)
for h̄ω ∈ (10, 14) eV. As the positive contribution near the
chemical potential decreases and the negative one from 4p
electrons increases, σ CKG

2 (ω) drops sharply after the plateau
for h̄ω ∈ (14, 21) eV.

Through the analysis of SSME, D(ε1, ε2), and
Dg(ε1, ε1 + h̄ω), along with the projected DOS, we have
successfully explained the nontrivial behavior in the complex
conductivity of liquid Zr. It is our expectation that such

an analysis will facilitate the interpretation of the optical
properties of other substances with a non-Drude behavior.

Conclusion. The interpretation of optical properties is
crucial for understanding the electronic structure of matter.
However, there is often a lack of such data, and their analysis
can be challenging due to limitations in measuring the inten-
sity of electron transitions. Ab initio calculations using the
Kubo-Greenwood formula provide a solution to these prob-
lems, yielding accurate predictions of optical and transport
properties that are consistent with experimental data. How-
ever, to explain these complicated dependencies, it is crucial
to apply the continuous Kubo-Greenwood formula, which
represents complex conductivity in an integral form.

In our work, we demonstrate the power of this formula
to study the complex conductivity of liquid Zr, revealing its
nontrivial behavior. This approach can be used to interpret
the optical properties of complex substances obtained from
electronic structure calculations.
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