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We examine the momentum and thermal transport in the continuum breakdown regime of a mixing layer flow,
which exhibits Kelvin-Helmholtz instability under ideal continuum conditions. The Grad 13 moment model is
used as it provides an adequate description of the flow physics (second-order accurate in Knudsen number)
in the transition regime. Analytical solutions are developed under breakdown conditions for two-dimensional,
compressible, parallel shear flows. It is shown that the deviation of viscous stress and heat flux from the Navier-
Stokes-Fourier system follows two different scaling regimes depending upon the Mach number. At low Mach
numbers, the departure of all stress and heat-flux components depends only upon the Knudsen number. At high
Mach number, the scaling of shear stress and transverse heat flux depends on the product of the Knudsen and
Mach numbers. The normal stresses depend individually on the Knudsen and Mach number. The scaling results
are verified against numerical simulations of compressible mixing layers performed using the unified gas kinetic
scheme for various degrees of rarefaction.
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Introduction. Rarefaction effects are important in many
flows encountered in nature and engineering applications—
including astrophysical flows, space propulsion, re-entry
flight, high-altitude vehicles, and micro-electro-mechanical
(MEMS) systems. For highly rarefied flows, the foundational
Boltzmann equation can be solved using the direct simu-
lation Monte Carlo (DSMC) approach or discrete velocity
methods (DVM) at reasonable computational cost. In space
applications such as satellite thruster flow, multiple levels
of rarefaction flow—from a continuum to free-molecular
regime—are present within a single application [1–4]. A
possible simulation approach would be to employ separate
physical models in different rarefaction regimes. In this re-
gard, it is of much importance to understand the conditions
under which mass, momentum, and thermal transport depart
from the continuum Navier-Stokes-Fourier (NSF) system of
equations. It is also of fundamental interest to examine the

*Corresponding author: vishnu.mohan@newcastle.ac.uk

Published by the American Physical Society under the terms of the
Creative Commons Attribution 4.0 International license. Further
distribution of this work must maintain attribution to the author(s)
and the published article’s title, journal citation, and DOI.

manner of continuum breakdown in different regimes of Mach
number.

Kelvin-Helmholtz instability (KHI) occurs at the interface
of fast and slow moving streams under favorable conditions.
Such flows are called mixing layers and the onset of KHI at
high enough Reynolds numbers enhances the mixing of mo-
mentum and energy between the two streams [5]. In a variety
of aerospace propulsion and astrophysical mixing layer flows,
the standard KHI is profoundly influenced by compressibility
and rarefaction effects [6–10]. In our recent work [11], the
unified gas kinetic scheme (UGKS) simulations were used to
establish that mixing layers exhibit five types of behavior in
the parameter space of Mach (Ma) and Knudsen (Kn) num-
bers. At low Ma and Kn, the well-known KHI is observed.
The flow physics in this regime is well understood. When Ma
is increased at low Kn, the emergence of a dilatational velocity
field leads to the inhibition of KHI and reduced mixing. At low
Ma and high Kn, the mixing layer diffuses rapidly without the
occurrence of KHI. This is because molecules translate freely
from one side of the mixing layer to the other without encoun-
tering many collisions. In the fourth regime of high Kn and
Ma, a combination of dilatational waves and free-molecular
translation leads to a more restrained mixing, again without
the occurrence of KHI. The purpose of the study is to ex-
amine the continuum breakdown regime which separates the
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TABLE I. Various continuum breakdown parameters proposed in the literature.

Reference Breakdown parameters Remarks

Macroscopic parameter Tsien [13] (γ − 1)Ma2/Re Re ≈ Ma/Kn ⇒ Ma2/Re ≈
MaKn, MaKn is the ratio of micro
to macro timescale.

Bird [14] P = λ D(lnρ )
Dt Empirical formulation, fails at low

Mach.
Boyd et al. [15] KnGLL = λ

Q |∇Q| Q is either T or ρ, local parameter.

Schrock et al. [16,17] W = ∂ρs
∂t + ∇ · �T W is entropy generation rate, s is

entropy per mass, T is entropy
flux. Method was used for DSMC.

Lockerby et al. [18] KnQ = ‖Q−QNS‖
‖QNS‖ Q can be σi j and qi, ‖ · ‖ is L2

norm over the components, ‖QNS‖
should be nonzero.

Mohan et al. [12] Kng = ∂

∂y

(
λu
a

)
Local continuum breakdown
parameter based on KnMa.

PDF parameter Chigullapalli et al. [19] Ṡcoll = −ν
∫ ∞

−∞( f − f0 )ln
( h3 f

m3

)
d �c Method used in DVM solver. Used

to test accuracy of scheme and
grid.

Meng et al. [20] ENS
c =

√∫
( f − f NS− f 0 )2d �c∫

( f 2 )d�c A priori prediction difficult for
NSF to Boltzmann switch;

Alamatsaz and Venkattraman [21] ε =
∫ |φ−φCE |d �ω∫ |φCE |d �ω φ is Fourier transform of f .

parameter region of KHI occurrence from the dominantly
diffusive behavior. Mohan et al. [12] demonstrates that in a
high-speed rarefied mixing layer, the onset of Navier-Stokes
continuum breakdown effects is different for shear and normal
stresses. Similarly, the breakdown of transverse and nor-
mal heat fluxes exhibits markedly different features. Current
breakdown criteria treat all flux and stress components in an
identical fashion and do not adequately account for directional
effects. It is important to note that many of the flows of
practical importance are shear flows.

The various parameters developed in the literature to char-
acterize the continuum breakdown in rarefied compressible
flows are listed in Table I. The different approaches can be
classified into two categories: (i) macroscopic or continuum
field based parameters and (ii) kinetic theory or the particle
distribution function (PDF) based parameters. Expressions
similar to the ones listed in Table I have also been suggested
by Singh and Schwartzentruber [2], Tiwari [22], Ou and Chen
[23], Singh and Schwartzentruber [3], Wang et al. [4], and
Macrossan [24]. The methods used in the literature, while
useful, do not provide a complete account of all breakdown
scenarios.

The objective of this work is to use the Grad 13 moment
model to analytically characterize the continuum breakdown
and identify the difference in the breakdown between the
normal and shear or transverse transport. It is well established
in the literature that the Grad’s moment equations are not com-
pletely valid for high Knudsen numbers; for example, they fail
to describe smooth shock structures for Mach numbers above
a critical value [25]. However, the model is quite suitable for
up to second-order expansion in the Knudsen number. Since
continuum breakdown phenomena only address the limits of
first-order expansion, it is reasonable to use the Grad 13 model
for this purpose.

Grad 13 moment equations. The Boltzmann transport
equation provides an accurate description of the evolution
of the single-point PDF over a wide range of Knud-
sen and Mach numbers. The NSF [26], Grad 13 moment
[27], and Regularized 13 moment equations [28,29], which
provide macroscopic descriptions of the medium, are ob-
tained by taking the moments of the Boltzmann equation.
The NSF equation uses an algebraic relationship for the
description of stress and heat flux and is accurate up to O(Kn).
The Grad 13 moment equation is accurate up to O(Kn2)
and the Regularized 13 moment equation is accurate up to
O(Kn3). The 13-moment approaches entail transport equa-
tions for stress and heat flux. Here, the Grad 13 description
is used since our concern is restricted to deviation from the
NSF equation.

The macroscopic mass, momentum, and energy conserva-
tion equations for a monoatomic gas are given as [26]

Dρ

Dt
+ ρ

∂ui

∂xi
= 0, (1)

ρ
Dui

Dt
+ ∂ p

∂xi
+ ∂τik

∂xk
= 0, (2)

3

2
ρ

Dθ

Dt
+ ρθ

∂ui

∂xi
+ ∂qi

∂xi
+ τi j

∂ui

∂x j
= 0, (3)

where D/Dt = ∂/∂t + ui∂/∂xi is the material derivative, ρ is
the density, p is the pressure, θ = RT , where T is temperature,
R is the gas constant, xi are the Cartesian coordinates (x, y, z),
ui are velocity components, τi j are the stress components, and
qi are the heat flux components. Equations for the stress and
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heat-flux components in a Grad 13 moment system for the
Bhatnagar-Gross-Krook assumption [26] are given as

Dτi j

Dt
+ 4

5

∂q<i

∂x j>
+ 2τk<i

∂u j>

∂xk
+ τi j

∂uk

∂xk
+2p

∂u<i

∂x j>

= − p

μ
τi j, (4)

Dqi

Dt
+ 5

2
p

∂θ

∂xi
+ 5

2
τi j

∂θ

∂x j
− τi jθ

∂lnρ

∂x j
− τi j

ρ

∂τ jk

∂xk

− 5

2
θ
∂τi j

∂x j
+ θ

∂τi j

∂x j
+ 7

5
qi

∂u j

∂x j
+ 7

5
q j

∂ui

∂x j
+ 7

5
q j

∂u j

∂xi

= − p

μ
qi, (5)

where a<ib j> = (aib j + a jbi )/2 − (1/3)aibiδi j is the trace-
less symmetric matrix, and μ is the dynamic viscosity.
Clearly, the Grad 13 moment equation is quite complex for
general flows. In order to obtain useful insights into shear
flows of practical importance, the following approximations
are made: (i) Nonparallel effects are neglected (i.e., ∂/∂x = 0),
(ii) spanwise velocity uz is assumed to be zero, (iii) stress and

heat flux in the spanwise direction (z) is negligible, (iv) the
Chapman-Enskog relationship, ν = p/μ, is valid in the near-
continuum limit [30], and (v) the continuum scalings of the
flow variables are assumed to be valid in the near-continuum
regime. It is important to note that the time derivatives can be
nonzero.

The above assumptions reduce mass, momenta in the x and
y directions, and energy equations as follows:

∂ρ

∂t
+ ∂ρuy

∂y
= 0, (6)

ρ
∂ux

∂t
+ ρuy

∂ux

∂y
+ ∂τxy

∂y
= 0, (7)

ρ
∂uy

∂t
+ ρuy

∂uy

∂y
+ ∂τyy

∂y
+ ∂ p

∂y
= 0, (8)

3

2
ρ

∂θ

∂t
+ 3

2
ρuy

∂θ

∂y
+ p

∂uy

∂y
+ ∂qy

∂y
+ τxy

∂ux

∂y
+ τyy

∂uy

∂y

= 0. (9)

The stress (τxy, τyy, and τxx) and heat flux (qy and qx) compo-
nent equations reduce to

τxy = −μ
∂ux

∂y
− 1

ν

[
∂

∂t
(τxy) + ∂

∂y
(uyτxy) + 2

5

∂

∂y
(qx ) + τyy

∂

∂y
(ux ) + τxy

∂

∂y
(uy)

]
, (10)

τyy = −4

3
μ

∂uy

∂y
− 1

ν

[
∂

∂t
(τyy) + uy

∂

∂y
(τyy) + 8

15

∂

∂y
(qy) + 7

3
τyy

∂

∂y
(uy) − 2

3
τxy

∂

∂y
(ux )

]
, (11)

τxx = 2

3
μ

∂uy

∂y
− 1

ν

[
∂τxx

∂t
+ uy

∂τxx

∂y
+ τxx

∂uy

∂y
− 4

15

∂qy

∂y
+ 4

3
τxy

∂ux

∂y
− 2

3
τyy

∂uy

∂y

]
, (12)

qx = −1

ν

[
∂

∂t
(qx ) + uy

∂

∂y
(qx ) + 5

2
τxy

∂

∂y
(θ ) − τxyθ

∂

∂y
(lnρ) − τxx

ρ

∂

∂y
(τxy) − τxy

ρ

∂

∂y
(τyy) + θ

∂

∂y
(τxy) + 7

5
qy

∂

∂y
(ux ) + 7

5
qx

∂

∂y
uy

]
,

(13)

qy = −5μ

2

∂θ

∂y
− 1

ν

[
∂

∂t
(qy) + uy

∂

∂y
(qy) + 5

2
τyy

∂

∂y
(θ ) − τyyθ

∂

∂y
(lnρ) − τxy

ρ

∂

∂y
(τxy) − τyy

ρ

∂

∂y
(τyy) + θ

∂

∂y
(τyy)

+16

5
qy

∂

∂y
(uy) + 2

5
qx

∂

∂y
ux

]
. (14)

The first terms on the right-hand side of Eqs. (10)–(14) are the
NSF continuum stress tensor and heat-flux vector [30] consti-
tutive relations. The terms in the square brackets correspond
to the higher-order term.

The nondimensional parameters of importance in the
present study are Reynolds number Re, Mach number Ma, and
Knudsen number Kn, which are given as

Re = ρ∞u∞δ0

μ∞
, Ma = u∞

c∞
, Kn = λ

δ0
. (15)

Here, ρ∞ is the free-stream density, u∞ is the free-stream
velocity, δ0 is the shear layer thickness, μ∞ is the free-stream
dynamic viscosity, c∞ is the free-stream speed of sound, and
λ is the mean-free path of the medium. For monoatomic gas,

the specific heat capacity at constant pressure, Cp = 5R/2. It
has been shown by Tsien [13] that Re ≈ Ma/Kn.

Nondimensionalization of equations. The temporal
equivalent of the thin shear layer approximation in the
continuum limit is invoked in nondimensionalizing the
Grad 13 moment equation. The order analysis based on the
thin shear layer assumption reasons that the diffusion layer
thickness δ0 develops through viscous action. The scales used
for the nondimensionalization of the variables are shown in
Table II. The collision frequency ν scales as λ/c∞, which
is the inverse of the molecular timescale. Using the Crocco-
Busemann relationship [31] for the compressible boundary
layer flow with zero streamwise pressure gradient, the
temperature can be shown to be directly proportional to u2

∞.
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TABLE II. Nondimensionalization of different variables. The
quantities with the overbar are nondimensional.

ȳ = y/δ0 ρ̄ = ρ/ρ∞
μ̄ = μ/μ∞ τ̄xy = (δ0τxy )/(μ∞u∞)
ūx = ux/u∞ ūy = (ρ∞δ0uy )/μ∞
t̄ = (μ∞t )/(ρ∞δ2

0 ) p̄ = p/(ρ∞u2
∞)

θ̄ = θ/u2
∞ ν̄ = λν/c∞

τ̄yy = (ρ∞δ2
0τyy )/μ2

∞ τ̄xx = (ρ∞δ2
0τxx )/μ2

∞
q̄y = (δ0qy )/(μ∞u2

∞) q̄x = (c∞δ2
0qx )/(μ∞u3

∞λ)

Substituting these nondimensionalized variables into
Eqs. (7)–(9), we get

μ∞
δ2

0

{
∂ρ̄

∂ t̄
+ ∂ρ̄ūy

∂ ȳ

}
= 0, (16)

μ∞u∞
δ2

0

{
ρ̄

∂ ūx

∂ t̄
+ ρ̄ūy

∂ ūx

∂ ȳ
+ ∂τ̄xy

∂ ȳ

}
= 0, (17)

ρ∞u2
∞

δ0

{
1

Re2

(
ρ̄

∂ ūy

∂ t̄
+ ρ̄ūy

∂ ūy

∂ ȳ
+ ∂τ̄yy

∂ ȳ

)
+ ∂ p̄

∂ ȳ

}
= 0, (18)

μ∞u2
∞

δ2
0

{
3

2
ρ̄

∂θ̄

∂ t̄
+ 3

2
ρ̄ūy

∂θ̄

∂ ȳ
+ p̄

∂ ūy

∂ ȳ
+ ∂ q̄y

∂ ȳ
+ τ̄xy

∂ ūx

∂ ȳ

+ 1

Re2 τ̄yy
∂ ūy

∂ ȳ

}
= 0. (19)

Order of magnitude of stresses and heat fluxes. Nondi-
mensionalizing the τxy, τyy, and τxx in Eqs. (10)–(12) as dis-
cussed above, and noting that the nondimensional frequency
ν̄ = λν/c∞, by definition, is of the order of unity, we get

δ0τxy

μ∞u∞
= −μ̄

∂ ūx

∂ ȳ
− 1

ν̄

[
Kn2

(
∂τ̄xy

∂ t̄
+ ∂ ūyτ̄xy

∂ ȳ
+ τ̄xy

∂ ūy

∂ ȳ
+ τ̄yy

∂ ūx

∂ ȳ

)
+ 2Kn2Ma2

5

∂ q̄x

∂ ȳ

]
, (20)

ρ∞δ2
0τyy

μ2∞
= −4

3
μ̄

∂ ūy

∂ ȳ
− 1

ν̄

[
Kn2

(
∂τ̄yy

∂ t̄
+ ūy

∂τ̄yy

∂ ȳ
+ 7

3
τ̄yy

∂ ūy

∂ ȳ

)
+ Ma2

(
8

15

∂ q̄y

∂ ȳ
− 2

3
τ̄xy

∂ ūx

∂ ȳ

)]
, (21)

ρ∞δ2
0τxx

μ2∞
= 2

3
μ̄

∂ ūy

∂ ȳ
− 1

ν̄

[
Kn2

(
∂τ̄xx

∂ t̄
+ ūy

∂τ̄xx

∂ ȳ
+ τ̄xx

∂ ūy

∂ ȳ
− 2

3
τ̄yy

∂ ūy

∂ ȳ

)
+ Ma2

(
4

15

∂ q̄y

∂ ȳ
+ τ̄xy

∂ ūx

∂ ȳ

)]
. (22)

The nondimensional equation for qx and qy from Eqs. (13) and (14) are given as

c∞δ2
0qx

μ∞u3∞λ
= −1

ν̄

[
Kn2

(
∂ q̄x

∂ t̄
+ ūy

∂ q̄x

∂ ȳ
+ 7

5
q̄x

∂ ūy

∂ ȳ

)
− Kn2

Ma2

(
τ̄xy

ρ̄

∂τ̄yy

∂ ȳ
+ τ̄xx

ρ̄

∂τ̄xy

∂ ȳ

)
+ 5

2
τ̄xy

∂θ̄

∂ ȳ

− τ̄xyθ̄
∂ (lnρ̄)

∂ ȳ
+ θ̄

∂τ̄xy

∂ ȳ
+ 7

5
q̄y

∂ ūx

∂ ȳ

]
, (23)

δ0qy

μ∞u2∞
= −5μ̄

2

∂θ̄

∂ ȳ
− 1

ν̄

[
− Kn4

Ma2

τ̄xx

ρ̄

∂τ̄yy

∂ ȳ
+ 2Kn2Ma2

5
q̄x

∂ ūx

∂ ȳ
− Kn2

(
∂ q̄y

∂ t̄
+ ūy

∂ q̄y

∂ ȳ
+ 16

5
q̄y

∂ ūy

∂ ȳ
− τ̄xy

ρ̄

∂τ̄xy

∂ ȳ
+ 5

2
τ̄yy

∂θ̄

∂ ȳ

− τ̄yyθ̄
∂ (lnρ̄ )

∂ ȳ
+ θ̄

∂τ̄yy

∂ ȳ

)]
. (24)

At the continuum, only O(Kn) terms are important; how-
ever, increasing the rarefaction O(Kn2) terms determines the
departure from the NSF equation. From Eqs. (20)–(24), the
higher-order terms in the continuum breakdown mechanism
can now be extracted. From the above equations, it can be seen
that the leading-order terms in all of the above equations are
the continuum terms. The next higher-order terms are as
follows:

(1) for the transverse heat flux and shear stress, they are
Kn2 and Kn2Ma2;

(2) for the normal stress, they are Kn2 and Ma2.
When KnMa � Kn (i.e., when Ma � 1), the leading-

order terms in the transverse heat flux and shear stress are
the ones that have Kn2 as the coefficient. This implies that
for incompressible flows, the deviation of τxy and qy from
the NSF equation scales as Kn2. When KnMa � Kn (i.e.,
when Ma � 1), the leading-order terms are the ones that

have Kn2Ma2 as the coefficient. It can thus be concluded that
for compressible flows, the deviation of τxy and qy from the
NSF equation scales as Kn2Ma2. The deviation of normal
stresses from the NSF equation scales with Kn and Ma in-
dependently. When Kn � Ma, the deviation of normal stress
from the continuum hypothesis scales according to Kn2, and
when Kn � Ma, it scales as Ma2, as seen from Eqs. (21) and
(22).

Comparison of analytical result with data. We now com-
pare the scalings discussed in the previous section with
the computational results of the authors presented in
Refs. [11,12]. The work uses the finite-volume-based method
with discretization in velocity space for solving the Boltz-
mann transport equation, known as the unified gas kinetic
scheme (UGKS) [32,33]. The method has been extensively
validated by the authors [11,34]. A domain of size Lx × Ly

was initialized with a tan hyperbolic velocity profile and a
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periodic boundary condition is used in the streamwise di-
rection. In the transverse direction of the mixing layer, a
zero gradient boundary condition is used. A schematic of
the domain can be found in Mohan et al. [12]. The com-
putation examines the development of mixing layers for
different Knudsen number based on the vorticity thickness
and convective Mach number, given as Kn = λ/δ and Mac =
�u/2

√
γ RT∞, respectively. Here, λ is the mean-free path

of the medium, δ is the mixing layer thickness, �u is the
difference in speed of the free stream, γ is the ratio of spe-
cific heat capacity, and T∞ is the free-stream temperature of
the mixing layer. Computations have been performed, Mac =
0.1–1.2, with increments of 0.1 in Mach number and the
initial Knudsen number, Kn0 = λ/δt=0 = 0.01. Other initial
Knudsen numbers of Kn0 = 0.1, 0.5, and 1.0 were also tried.
The scalings shown in Nondimensionalization of equations
were observed for the lower Kn0, whereas at higher Kn0,
these scalings were not seen, especially for the higher Mach
numbers. This could be because at higher Mach and Knudsen
numbers, the Grad 13 moment equations and the approxima-
tions (iv) and (v) in Grad 13 moment equations would not be
valid. In the computation, the length of the domain is taken
as Lx = 20δ0 and Ly = 80δ0, where δ0 is the initial vortic-
ity thickness of the mixing layer. The domain is discretized
into Nx × Ny = 128 × 604 grid points. The velocity space is
discretized into cx × cy = 28 × 28 discrete ordinates and the
Gauss-Hermite quadrature is used. A detailed discussion on
discretization is given in Ref. [11].

The Prandtl number Pr is kept equal to unity and the ratio
of specific heat capacity, γ = 1.667, in the study. Monoatomic
gas is considered for the present computation. The temper-
ature is initialized using the Crocco-Busemann relationship,
and the pressure is kept constant throughout the field. The
densities of both of the free streams are equal. The PDF is
initialized using the Maxwellian distribution function. The
domain is periodic in the streamwise direction and a zero gra-
dient is used for all the quantities in the transverse direction.

The deviation of the stress and transverse heat flux from
the NSF is calculated as follows:

�τxy = |τxy,NS − τxy,B|
μ∞�u/δ

, (25)

�τxx = |τxx,NS − τxx,B|
μ2∞/(ρ∞δ2)

, (26)

�τyy = |τyy,NS − τyy,B|
μ2∞/(ρ∞δ2)

, (27)

�qy = |qy,NS − qy,B|
μ∞�u2/δ

, (28)

where μ∞ is the viscosity of the fluid in the free stream.
Figure 1 shows the peak deviation of shear stress from

the NSF equation, �τxy, against time-varying Knudsen Kn.
Red dashed reference lines are included, which show Kn2 and
(KnMac)2, and the black arrow indicates increasing convec-
tive Mach number in Figs. 1 and 2. As noted earlier in [12],
the deviation of shear stress of the low Mach number case col-
lapses on each other when they are scaled with the Knudsen
number alone. Likewise, in the high Mach number cases, the

FIG. 1. Scaling of the peak deviation of shear stress, �τxy, with
Knudsen number Kn at various Mach numbers Mac. Solid lines
are from the present UGKS simulation, and dashed lines are the
slope of predictions from the present theory. It can be inferred that
(a) when KnMac � Kn (i.e., when Mac � 1), �τxy scales as Kn2,
and (b) when KnMac � Kn (i.e., when Mac � 1), �τxy scales as
(KnMac )2.

collapse occurs when the deviation of shear stress is scaled
with the product of the Knudsen number and Mach number. It
can be seen that the low Mach number cases scale with Kn2,
while the high Mach number cases scale well with (KnMac)2.
A similar analysis is done for qy, as shown in Fig. 2. The
low Mach number curves collapse on each other when �qy

is plotted against Kn, whereas the high Mach number cases
collapse when it is plotted against KnMac. It is seen that for
the low Mach number cases, the deviation of transverse heat
flux from the NSF equation scales as Kn2, whereas at high
Mach number cases, the deviation scales as (KnMac)2.

Figure 3 shows the scaling of peak deviation of normal
stresses, �τxx and �τyy, with convective Mach number at
instantaneous Kn = 0.075. It can be seen from the figure that
both �τxx and �τyy increase with the increase in Mach num-
ber. The black circles in the figure are the values of �τxx and
�τyy obtained from the numerical simulation of mixing layers,
whereas the red dotted line shows the scaling of this data with
Mac. The deviation of τxx and τyy scales as Ma2

c , which is close
to the theoretical prediction given in Eqs. (21) and (22).

Conclusion. The work examined the effect of rarefaction
and compressibility on the continuum breakdown for tempo-
rally developing parallel shear flows. The degree of departure
of the stress tensor and the heat-flux components from their
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FIG. 2. Scaling of the peak deviation of transverse heat flux, �qy,
with Knudsen number Kn at various Mach number, Mac. Solid lines
are from the present UGKS simulation, and dashed lines are the slope
of predictions from the present theory. Similar inferences as in Fig. 1
can also be made here.

respective NSF values is computed from the UGKS simu-
lation data. The Mach and Knudsen number scaling of the
magnitude of departure is compared to Grad 13 model esti-
mates. Mohan et al. [13] demonstrate that the Grad 13 model
is indeed accurate in the parameter regime Mac � 1.2 and
Kn0 � 1. The limitations of Grad 13 for accurately capturing
the physics of rarefied flows will be examined in future works.
The Grad 13 moment equations were nondimensionalized us-
ing continuum thin shear layer scaling. The nondimensional
equations showed multiple parameters of importance for the

FIG. 3. Scaling of the peak deviation of normal stresses, �τxx

and �τyy, with convective Mach number Mac, at Kn = 0.075. The
deviation scales as Ma2

c as given in Eqs. (21) and (22).

stress and heat-flux components. At specific ranges of Mach
number, the contribution of different terms in the stress and
heat-flux equations is dominant. Based on this observation,
two regimes for deviation from the NSF equation are identi-
fied. At low Mach number, the only parameter that determines
the deviation from the NSF equation is the Knudsen num-
ber. The deviation of all the stress and heat-flux components
from the NSF equation in this regime scales according to
Kn2. At high Mach numbers, the parameter that determines
the deviation is KnMa. However, this parameter turns out to
be important only for two of the nonequilibrium variables,
namely, qy and τxy. In this regime, the deviation of τxy and
qy scales as Kn2Ma2. It is seen that the deviation of τxx and
τyy from the NSF equation depends on Kn and Ma, indepen-
dently, and scales as Kn2 and Ma2 depending on the relative
magnitude of Kn and Ma. Finally, it is shown that the scaling
analysis for the Grad 13 equation is in agreement with the nu-
merical data for mixing layers in a compressible and rarefied
medium.
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