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Changes in functional connectivity preserve scale-free neuronal and behavioral dynamics
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Does the brain optimize itself for storage and transmission of information, and if so, how? The critical brain
hypothesis is based in statistical physics and posits that the brain self-tunes its dynamics to a critical point
or regime to maximize the repertoire of neuronal responses. Yet, the robustness of this regime, especially
with respect to changes in the functional connectivity, remains an unsolved fundamental challenge. Here, we
show that both scale-free neuronal dynamics and self-similar features of behavioral dynamics persist following
significant changes in functional connectivity. Specifically, we find that the psychedelic compound ibogaine
that is associated with an altered state of consciousness fundamentally alters the functional connectivity in
the retrosplenial cortex of mice. Yet, the scale-free statistics of movement and of neuronal avalanches among
behaviorally related neurons remain largely unaltered. This indicates that the propagation of information within
biological neural networks is robust to changes in functional organization of subpopulations of neurons, opening
up a new perspective on how the adaptive nature of functional networks may lead to optimality of information
transmission in the brain.
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Introduction. The brain integrates multisensory informa-
tion in order to generate appropriate responses to a wide
range of environmental stimuli. This information must be
flexibly routed within and between brain regions as part
of this process. Although the mechanisms of information
routing remain unclear, a common working theory is that
information is routed via transiently activated patterns of
functionally connected neuronal populations [1]. A flexible
functional network facilitates the formation of new activation
patterns and adaptation of existing ones, which enables the
brain to generate sequences of appropriate patterned activity
even to novel stimuli. Despite significant headway made in
studying the coordinated activity of neuronal populations,
the role of functional connectivity (FC) in the mechanism
of information routing and neural dynamics remains poorly
understood.

The critical brain hypothesis is a framework based in
statistical physics to account for the properties of collective
neuronal activity and information processing in the brain
[2–4]. It posits that quiet wakefulness is characterized by a
self-organized critical state in which the repertoire of possi-
ble neuronal activity patterns is maximized [5–8]. Hallmarks
of such a nonequilibrium phase transition include scale-free
cascades of causally connected neuronal activity (dubbed
neuronal avalanches) [9–11], and the presence of long-range
spatial [12] and temporal [13–15] correlations, all of which
have been observed in vivo [9,16], in vitro [17,18], and
across species [19–23] and spatial scales [14,23–27]. This
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suggests the existence of some universal mechanism or pro-
cess that imbues brain networks with the flexibility required
for optimization of information storage and transmission. The
repertoire of accessible neuronal activation states is maxi-
mized at criticality, allowing network dynamics to adapt both
to situations that require immediate attention (e.g., task or
rapidly changing situation) and to long-term stimuli (e.g.,
stress).

Although critical dynamics are thought to be important
for information processing, the explicit relationship of this
ensemble property to information routing, FC, and behavior
is not currently known. For example, to what extent are topo-
logical changes in FC reflected in signatures of criticality?
Certainly, large changes in neural excitability result in ob-
servable changes to critical dynamics, such as the outright
loss of scale-free statistics under surgical-plane anesthesia
[7,10,28,29], or changes in the universality class brought
about by pathological neural development in cultures [30],
among others [31–33]. While loss of criticality due to changes
in excitability can be tied to changes in the overall degree of
correlations among neurons [7], the relationship to specific
topological changes in FC, information routing, and behavior
has remained elusive. It is an open question how perturbations
to FC affect signatures of criticality under normal physiologi-
cal conditions.

To tackle this challenge, we studied the robustness of
neuronal and behavioral dynamics to changes in FC in
mouse retrosplenial cortex (RSC), an area of the brain well
positioned to integrate sensory, mnemonic, and cognitive
information by virtue of its strong connectivity with the
hippocampus, medial prefrontal cortex, and primary sensory
cortices. As shown in [34–37], a subset of RSC neurons
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increases neural activity during movement, while another
decreases activity. In the present study, we perturbed these
functional networks using the psychedelic drug ibogaine. Ibo-
gaine has been shown to increase mean excitability [38], but
its effects on network dynamics at the single-cell level are
not well understood. We compare the resulting changes in
behavior and neuronal dynamics to a control case in which
we administered saline. We find that while FC is significantly
altered under ibogaine, the signatures of criticality in both
behavior and neuronal dynamics are not. Observing the same
behavioral output and the same overall neuronal dynamics at
the network level under changes to FC is consistent with the
claim that information can be routed via more than one se-
quence of transiently coactivating neuronal populations [39].
These results offer a new perspective on the relationship
between the adaptive nature of FC and the optimality of in-
formation transmission in the brain, and they also support the
recently proposed connection between scale-free behavioral
and neuronal dynamics [36].

Experimental setup. Head-fixed mice were free to loco-
mote or remain still on a passive treadmill belt [34]. Neural
activity of several hundred neurons was recorded with two-
photon imaging of a genetically encoded activity-dependent
fluorescent sensor. Activity and belt movement was recorded
for 10 min before administering either ibogaine or saline via
intraperitoneal injection. Following a 10-min period for the
drug to take effect, neural activity and treadmill belt move-
ment was again recorded for 10 min. An additional 10-min
recording was taken 30 min after injection. For more de-
tails on experiments and data collection, see Sec. S1A of the
Supplemental Material [40].

Functional connectivity. Mice spontaneously move the
treadmill in episodes separated by brief rest periods. We
classified each neuron according to its change in neural ac-
tivity as animals transitioned from stationary to moving on
the treadmill (see Sec. S1B [40] for more details). As the
animal transitioned from stationary to moving, some neurons
increased activity whereas others decreased it. We refer to
these as up-regulated and down-regulated, respectively. In
contrast, neuron activity was largely homogeneous across all
neurons when the animal was not moving, i.e., resting. Fig-
ure 1(a) shows an example of the activity of up-regulated and
down-regulated neurons with track speed. Neurons belonging
to either up- or down-regulated populations are referred to as
classified, while all others are referred to as unclassified (see
also Table S1 [40]).

FC can be quantified by pairwise correlations among
neurons. Figure 1(b) illustrates this in a baseline recording
(i.e., prior to drug injection) and the subsequent ibogaine
recording. The pairwise correlation matrix is strongly al-
tered after ibogaine injection but not after saline injection
(Fig. S1 [40]). This phenomenon is observed in all record-
ings; the mean absolute matrix distance between baseline
and ibogaine [0.0134(5)] is statistically greater than between
baseline and saline [0.0110(4)] based on a Kolmogorov-
Smirnov (KS) test, with p = 0.01, persistent 30 min after
ibogaine administration (Fig. S2 [40]). Yet, ibogaine pre-
serves certain topological features, such as the strength of
neuron-neuron correlations and weighted degree distribution
of the pairwise correlation matrix (Fig. S3 [40]). This is

FIG. 1. Changes in FC. (a) Activity of up- and down-regulated
neurons, during moving and resting periods (separated by a white
dashed curve). The track speed is overlaid (solid white curve). (b) Ex-
amples of pairwise neuron correlations matrices. Left: Ordered from
most correlated to most anticorrelated with track speed for a baseline
recording. White lines separate classified from unclassified neurons.
Middle: For the subsequent ibogaine recording, preserving the or-
der of the neurons in the left panel. Right: For the same ibogaine
recording but reordered to account for changes in the correlations
with track speed. (c) Track speed correlation of all neurons across
all post-administration recordings [saline (SAL) left, ibogaine (IBO)
right] plotted against their respective baseline (Base). Cells classified
in both baseline and post-administration recordings are represented
by hollow circles. Gray circles represent cells that were unclassified
in at least one recording. (d) Percentage of neurons that changed
classification category from baseline to saline, baseline to ibogaine,
ibogaine to 30 min post-ibogaine (IBO30), and baseline to IBO30.
Colors (shades of gray) represent different mice, and crosses with
error bars represent the mean and standard error. Left: Percentage of
neurons that switched classification category (δ1). Right: Percentage
of all neurons that were classified at least once and switched (δ2).

supported by the visual similarity of the left and right panels of
Fig. 1(b).

The changes in FC can be further quantified. Figure 1(c)
shows that correlations between neuron activity and track
speed are significantly altered under ibogaine in comparison
to saline, suggesting that ibogaine modulates neuronal acti-
vation patterns in the RSC beyond what can be explained
by differences in motor output. A quantification of activity
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FIG. 2. Scale-free behavioral dynamics. (a) Distribution of be-
havioral avalanche sizes. The exponent τ was estimated for the
baseline recording. The vertical line at 150 cm indicates the belt
length. (b) Relationship between avalanche duration and size, for all
baseline recordings only. Pixel color (shading) represents the density
of points, and (red) dots indicate the average 〈t〉 for a given l . The
exponents γ1 and γ2 are given for two fit ranges (white dashed lines).

pattern modulation is shown in Fig. 1(d). Circles represent
the percentage of neurons that changed classification among
up- and down-regulated after injection. Of the neurons that
were classified in both recordings (left), 23% ± 2% switched
between populations after administration of ibogaine, com-
pared to 4% ± 1% under saline. This behavior persists 30 min
post-ibogaine administration. Of the neurons that were clas-
sified in at least one of the two recordings (right), 43% ±
1% were reassigned in the ibogaine recording, compared to
30% ± 2% under saline, with the change persisting at least
30 min post-ibogaine. These data reveal that FC is robustly
altered following ibogaine administration, and persists for at
least 30 min.

Behavioral dynamics: To test the critical brain hypothesis
under the influence of ibogaine and also to establish the effect
of ibogaine on the moving and resting behavior, we studied
the track movement data. The mice move at varying speed on
the treadmill, and occasionally stop. We focused on periods
of forward movement, preceded and succeeded by periods of
immobility (see Sec. S1D [40] for more details). These pe-
riods, which we term behavioral avalanches in this paper, can
be characterized by their size l , i.e., the total distance covered,
and their duration t , i.e., the total time elapsed during the for-
ward movement. The behavioral avalanche size distribution,
P(l ), is shown in Fig. 2(a), and appears to follow a power
law, P(l ) ∝ lτ , over at least two orders of magnitude, with
τ = 0.81(5) The self-similar features of periods of forward
movement are robust to changes in the threshold used to define
movement events covering a range from nonbehavioral motor
activity to actual behavior (see Fig. S4 [40]). Mice typically
stop moving before the end of one lap, possibly in preparation
to receive their reward after each lap (see Sec. S1A [40]),
which explains the cutoff in behavioral dynamics at about
50 cm. While this experimental limitation does not allow us
to clearly test whether there is a difference between motor
dynamics on shorter ranges and ballistic movement at longer
ranges once a decision has been made by the animal, re-
cent findings for experiments without reward administration

suggest that there is no difference [36]. In any case, P(l )
is consistent with the critical brain hypothesis if finite-size
effects are taken into account. This is further supported by the
power-law relationship between l and t , 〈t〉(l ) ∝ lγ , shown in
Fig. 2(b) for all baseline recordings.

We observe two ranges with scaling exponents γ1 and γ2,
and the transition between the regimes occurs around 1 cm of
track movement. For avalanches larger than 1 cm, the average
track speed decreased, possibly indicating the transition from
sporadic to steady/regular movement. The same transition can
be observed for saline and ibogaine [Fig. S5(b) [40]], with
similar values for γ1 and γ2, indicating that the relationship
between avalanche size and duration is maintained under ibo-
gaine. Due to the limited range of the behavioral avalanche
duration distribution, P(t ) [Fig. S5(c) [40]]—and potentially
the existence of two power-law ranges—the uncertainties are
too large to get a reliable estimate of any power-law exponent
α and to determine whether the expected scaling relation
between τ , α, and γ holds [41].

As suggested by Fig. 2(a), the statistical properties of
behavioral avalanches were largely unaffected by saline or
ibogaine (Figs. S4 and S5 [40]). The only significant effect
was that ibogaine reduces the largest size and duration of the
behavioral avalanches—the animals have a lower mean speed
(Fig. S6 [40]) and fewer long movement intervals [Fig. S5(c)
[40]]. When normalizing l and t by their respective averages,
〈l〉 and 〈t〉, differences between the curves vanish (Fig. S7
[40]). This indicates that ibogaine only reduced the average
size and duration of behavioral avalanches slightly, but the
shape of the distributions remained form-invariant, indicating
self-similarity consistent with the critical brain hypothesis.
This invariance implies in particular that the ibogaine-induced
changes in FC discussed above are not primarily a conse-
quence of altered motoric output.

Neuronal dynamics. To further test the critical brain hy-
pothesis under the influence of ibogaine, we analyzed the
statistical properties of neuronal activation. We analyzed dis-
tributions of neuronal avalanches—bursts of neuronal activity
between periods of relative quiescence—for the classified
populations (see Sec. S1E [40] for more details). Specifi-
cally, we focused on avalanches conditioned on the voluntary
movement behavior of the animals, i.e., resting versus moving
phases as in [34], and we investigated how these distributions
are altered if ibogaine-induced changes to FC are or are not
taken into account.

In all cases, we find size distributions resembling power
laws [Figs. 3(a) and S8 [40]], consistent with the critical brain
hypothesis. Following Refs. [42,43], power-law exponents
were estimated using maximum likelihood within the largest
range [Smin, Smax] that supports p > 0.1 in a two-sample KS-
test against a theoretical power law with the same exponent
(more details are in Sec. S1G [40]). The quality of the fit
is measured by the dynamic range � = log10(Smax/Smin). In
all cases, we found [Smin, Smax], which supported p > 0.1
[Fig. 3(b)], but � was largest for the up-regulated group
during movement, and smallest for the down-regulated group,
also during movement, similar to Refs. [34,36].

The estimated power-law exponents are summarized in
Fig. 3(c) (see also Tables S3 and S4 [40]). We find that if FC
is taken into account, the estimated exponents are consistent
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FIG. 3. Neuronal dynamics. (a) Example of neuronal avalanche
size distribution for the up-regulated subgroups in resting (rst.) and
moving (mv.) phases for baseline. The exponent τ and the dynamic
range � are also indicated. (b) The dynamic range during the moving
phase plotted against the resting phase equivalent, for each of the dif-
ferent conditions for up- (square) and down-regulated (circle) cells.
In all cases, solid markers represent the result obtained when changes
to FC are accounted for by reclassifying up/down neurons for each
recording independently, while hollow markers indicate values when
these changes are not accounted for by using the previous baseline
classification. x = y is shown for reference. (c) As in (b) but for the
avalanche size exponents. (d) γ (α, τ ) ≡ τ−1

α−1 plotted vs the directly
estimated value of γ for different conditions for up-regulated cells.
Large markers denote moving phases, small markers denote resting
phases.

across baseline, saline, and ibogaine recordings. During the
resting phase, the exponents are statistically indistinguishable
across subpopulations. In contrast, during movement, the ac-
tivity of the down-regulated population is suppressed, and
large avalanches become rare, leading to larger exponents and
a smaller �. Conversely, large avalanches become common
in the up-regulated subpopulation during movement, and the
estimated exponent becomes smaller, and � increases. The
exponent therefore carries information about the behavioral
state of the mouse—the amount of information increases with
the difference between the resting and moving exponents.

Whereas saline administration preserved the exponents re-
gardless of whether FC changes were accounted for, this was
not true for ibogaine [Fig. 3(c)]. If changes to FC are unac-
counted for, the exponents do change relative to the baseline.
For the down-regulated neurons, the exponents are indistin-
guishable between the resting and moving phases [Fig. 3(c)],
suggesting the behavioral state can no longer be inferred from
this subpopulation. The decreased difference between expo-
nents τrst. and τmv. for up-regulated neurons also indicates
that this subpopulation no longer carries as much information
about behavior. These findings indicate that when changes

to FC are accounted for, the information is preserved, but it
has been routed differently relative to the baseline. Moreover,
surrogates that maintain each neuron’s firing rate and preserve
their correlation with the track speed (Sec. S1F [40]) do not
exhibit power-law statistics (Fig. S10 [40]), implying this is
not a simple consequence of the behavioral statistics or sub-
population reclassification.

The robustness of the critical brain hypothesis is further
supported by the observation that behaviorally conditioned
distributions of neuronal avalanche sizes considering all
neurons preserve the self-similarity under ibogaine as well
(Fig. S11 [40]). Moreover, neuronal avalanche duration distri-
butions showed the same behaviorally conditioned power-law
characteristics as avalanche sizes for behaviorally related neu-
rons, with varying exponent α (Fig. S12, Tables S3 and S4
[40]). Whereas τ and α change with behavioral state, the
exponent γ that characterizes the relationship between neu-
ronal avalanche size and duration (as in the case of behavioral
avalanches) does not. We find γ ≈ 0.7 (Fig. S13, Tables S3
and S4 [40]), regardless of the subpopulation and whether
changes to FC were accounted for. This value and its in-
variance are consistent with [44]. Most importantly, Fig. 3(d)
(see also Fig. S13) confirms that the scaling relation γ =
τ−1
α−1 holds, further supporting the critical brain hypothesis
[41,44,45].

Discussion. Whereas previous studies have detected
changes to, or loss of, signatures of criticality under network
changes [7,10,28–33], our findings show that psychedelic-
induced perturbations to FC preserve the scale-free statistics
of neuronal dynamics, one of the signatures of criticality,
including those of behaviorally conditioned sub-populations
if rewiring of the FC is accounted for. FC changes under
ibogaine also leave behavior and its self-similar features un-
changed, as well as some topological features of the functional
network. This is despite the loss of information in the RSC en-
coding of spatial position revealed previously [38]. Thus, our
findings suggest that key features of information propagation
are invariant and robust against perturbations due to the drug,
which alters FC information rerouting.

What is the underlying mechanism for this invariance?
It is possible that the drug directly produces the observed
changes in FC while preserving criticality by changing the
dynamics (e.g., neural excitability) of individual neurons in
the RSC and/or the communication between them, or by
changing the inputs to the RSC (consistent with the proposed
multistability [46]). Alternatively, the invariance could be due
to the brain’s adaptation to the drug-induced perturbation,
exhibiting a specific example of self-organized criticality [6]
or some combination of all these mechanisms. For all these
mechanisms, the structure of the underlying network must
allow for sufficiently flexible functional connectivity. Indeed,
this flexibility is maximized for efficient information process-
ing in healthy brains operating near criticality [21,47]. Some
have even suggested that the psychedelic state may actually
be closer to criticality and allow greater flexibility than the
normal waking state [48].

To extend our study of changes in FC and neuronal dy-
namics to more general contexts, an alternate description of
interneuron correlations forming a low-dimensional set of
neural modes, which span the neuronal activity space [49], is a
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promising future option. Similarly, any possible connection of
our observations to changes in neuronal representations occur-
ring naturally over days and weeks while maintaining output
of learned tasks [50,51] remains to be explored. The mech-
anism for network reconfiguration over such long timescales
could be qualitatively very different from the drug-induced
FC changes on shorter timescales. However, the degeneracy
of network configurations, which is important to maintain be-
havioral output during representational drift, could also allow
for flexibility in FC on shorter timescales.

Conclusions. In summary, we find that ibogaine changes
the functional relationship of many neurons with each other
and with behavior. However, we found that the scale-free neu-
ronal dynamics are not affected by ibogaine. The critical brain
hypothesis indicates this invariance as a necessary condition
for the brain to operate near a critical point, wherein the range
of stimuli resulting in distinguishable network responses is
maximized [5,18,52]. Our results imply that FC is variable on

timescales over which the drug affects the system, and they
suggest that for a given structural arrangement, the functional
network adapts to maintain criticality and optimize informa-
tion propagation in the network. The invariance of neuronal
and behavioral dynamics under a potent psychoactive drug
that changes FC suggests that these are fundamental dy-
namical properties robust to perturbations. Finally, our study
supports the correspondence between scale-free neuronal and
behavioral statistics [36], but discovering whether a direct link
between neuronal and behavioral dynamics exists remains an
exciting challenge for the future.

Acknowledgments. We would like to thank Adam Neu-
mann for technical support. This work was supported by
the Natural Sciences and Engineering Research Council
of Canada, Government of Canada’s New Frontiers in
Research Fund (NFRF) [NFRFE-2019-01531], Alberta Inno-
vates, Branch Out Neurological Foundation, and Izaak Walton
Killam Memorial Trusts.

[1] K. D. Harris, Nat. Rev. Neurosci. 6, 399 (2005).
[2] J. M. Beggs and D. Plenz, J. Neurosci. 23, 11167 (2003).
[3] L. Cocchi, L. L. Gollo, A. Zalesky, and M. Breakspear, Progr.

Neurobiol. 158, 132 (2017).
[4] J. M. Beggs, The Cortex and the Critical Point: Understanding

the Power of Emergence (MIT Press, Cambridge, MA, 2022).
[5] O. Kinouchi and M. Copelli, Nat. Phys. 2, 348 (2006).
[6] D. R. Chialvo, Nat. Phys. 6, 744 (2010).
[7] S. H. Gautam, T. T. Hoang, K. McClanahan, S. K. Grady, and

W. L. Shew, PLoS Comput. Biol. 11, e1004576 (2015).
[8] E. D. Fagerholm, G. Scott, W. L. Shew, C. Song, R. Leech, T.

Knöpfel, and D. J. Sharp, Cereb. Cortex 26, 3945 (2016).
[9] D. Plenz, T. L. Ribeiro, S. R. Miller, P. A. Kells, A. Vakili, and

E. L. Capek, Front. Phys. 9, 639389 (2021).
[10] T. Bellay, A. Klaus, S. Seshadri, and D. Plenz, Elife 4, e07224

(2015).
[11] D. J. Korchinski, J. G. Orlandi, S.-W. Son, and J. Davidsen,

Phys. Rev. X 11, 021059 (2021).
[12] A.-E. Avramiea, A. Masood, H. D. Mansvelder, and K.

Linkenkaer-Hansen, J. Neurosci. 42, 2221 (2022).
[13] K. Linkenkaer-Hansen, V. V. Nikouline, J. M. Palva, and R. J.

Ilmoniemi, J. Neurosci. 21, 1370 (2001).
[14] M. Jannesari, A. Saeedi, M. Zare, S. Ortiz-Mantilla, D. Plenz,

and A. A. Benasich, Brain Struct. Funct. 225, 1169 (2020).
[15] J. M. Palva, A. Zhigalov, J. Hirvonen, O. Korhonen, K.

Linkenkaer-Hansen, and S. Palva, Proc. Natl. Acad. Sci. (USA)
110, 3585 (2013).

[16] Z. Ma, G. G. Turrigiano, R. Wessel, and K. B. Hengen, Neuron
104, 655 (2019).

[17] C. Tetzlaff, S. Okujeni, U. Egert, F. Wörgötter, and M. Butz,
PLoS Comput. Biol. 6, e1001013 (2010).

[18] W. L. Shew, H. Yang, T. Petermann, R. Roy, and D. Plenz, J.
Neurosci. 29, 15595 (2009).

[19] E. D. Gireesh and D. Plenz, Proc. Natl. Acad. Sci. (USA) 105,
7576 (2008).

[20] A. Ponce-Alvarez, A. Jouary, M. Privat, G. Deco, and G.
Sumbre, Neuron 100, 1446 (2018).

[21] A. Haimovici, E. Tagliazucchi, P. Balenzuela, and D. R.
Chialvo, Phys. Rev. Lett. 110, 178101 (2013).

[22] T. Petermann, T. C. Thiagarajan, M. A. Lebedev, M. A.
Nicolelis, D. R. Chialvo, and D. Plenz, Proc. Natl. Acad. Sci.
(USA) 106, 15921 (2009).

[23] G. Hahn, A. Ponce-Alvarez, C. Monier, G. Benvenuti, A.
Kumar, F. Chavane, G. Deco, and Y. Frégnac, PLoS Comput.
Biol. 13, e1005543 (2017).

[24] D. Dahmen, S. Grün, M. Diesmann, and M. Helias, Proc. Natl.
Acad. Sci. (USA) 116, 13051 (2019).

[25] J. Wilting and V. Priesemann, Cereb. Cortex 29, 2759 (2019).
[26] M. G. Kitzbichler, M. L. Smith, S. R. Christensen, and E.

Bullmore, PLoS Comput. Biol. 5, e1000314 (2009).
[27] E. Tagliazucchi, P. Balenzuela, D. Fraiman, and D. R. Chialvo,

Front. Physiol. 3, 15 (2012).
[28] G. Scott, E. D. Fagerholm, H. Mutoh, R. Leech, D. J.

Sharp, W. L. Shew, and T. Knöpfel, J. Neurosci. 34, 16611
(2014).

[29] D. Curic, D. Ashby, A. McGirr, and J. Davidsen (unpublished).
[30] M. Yaghoubi, T. de Graaf, J. G. Orlandi, F. Girotto, M. A.

Colicos, and J. Davidsen, Sci. Rep. 8, 3417 (2018).
[31] C. Meisel, A. Storch, S. Hallmeyer-Elgner, E. Bullmore, and T.

Gross, PLoS Comput. Biol. 8, e1002312 (2012).
[32] G. Alamian, T. Lajnef, A. Pascarella, J.-M. Lina, L. Knight,

J. Walters, K. D. Singh, and K. Jerbi, Front. Neural Circ. 16,
630621 (2022).

[33] P. Sorrentino, R. Rucco, F. Baselice, R. De Micco, A. Tessitore,
A. Hillebrand, L. Mandolesi, M. Breakspear, L. L. Gollo, and
G. Sorrentino, Sci. Rep. 11, 4051 (2021).

[34] D. Curic, V. E. Ivan, D. T. Cuesta, I. M. Esteves, M. H.
Mohajerani, A. J. Gruber, and J. Davidsen, J. Phys.: Complexity
2, 045010 (2021).

[35] C. Stringer, M. Pachitariu, N. Steinmetz, C. B. Reddy,
M. Carandini, and K. D. Harris, Science 364, eaav7893
(2019).

[36] S. A. Jones, J. H. Barfield, V. K. Norman, and W. L. Shew, Elife
12, e79950 (2023).

L052301-5

https://doi.org/10.1038/nrn1669
https://doi.org/10.1523/JNEUROSCI.23-35-11167.2003
https://doi.org/10.1016/j.pneurobio.2017.07.002
https://doi.org/10.1038/nphys289
https://doi.org/10.1038/nphys1803
https://doi.org/10.1371/journal.pcbi.1004576
https://doi.org/10.1093/cercor/bhw200
https://doi.org/10.3389/fphy.2021.639389
https://doi.org/10.7554/eLife.07224
https://doi.org/10.1103/PhysRevX.11.021059
https://doi.org/10.1523/JNEUROSCI.1095-21.2022
https://doi.org/10.1523/JNEUROSCI.21-04-01370.2001
https://doi.org/10.1007/s00429-019-02014-4
https://doi.org/10.1073/pnas.1216855110
https://doi.org/10.1016/j.neuron.2019.08.031
https://doi.org/10.1371/journal.pcbi.1001013
https://doi.org/10.1523/JNEUROSCI.3864-09.2009
https://doi.org/10.1073/pnas.0800537105
https://doi.org/10.1016/j.neuron.2018.10.045
https://doi.org/10.1103/PhysRevLett.110.178101
https://doi.org/10.1073/pnas.0904089106
https://doi.org/10.1371/journal.pcbi.1005543
https://doi.org/10.1073/pnas.1818972116
https://doi.org/10.1093/cercor/bhz049
https://doi.org/10.1371/journal.pcbi.1000314
https://doi.org/10.3389/fphys.2012.00015
https://doi.org/10.1523/JNEUROSCI.3474-14.2014
https://doi.org/10.1038/s41598-018-21730-1
https://doi.org/10.1371/journal.pcbi.1002312
https://doi.org/10.3389/fncir.2022.630621
https://doi.org/10.1038/s41598-021-83425-4
https://doi.org/10.1088/2632-072X/ac35b4
https://doi.org/10.1126/science.aav7893
https://doi.org/10.7554/eLife.79950


ANJA RABUS et al. PHYSICAL REVIEW E 108, L052301 (2023)

[37] P. Garcia-Junco-Clemente, T. Ikrar, E. Tring, X. Xu, D. L.
Ringach, and J. T. Trachtenberg, Nat. Neurosci. 20, 389 (2017).

[38] V. E. Ivan, D. P. Tomàs-Cuesta, I. M. Esteves, D. Curic, M.
Mohajerani, B. L. McNaughton, J. Davidsen, and A. J. Gruber,
Biol. Psych. Global Open Science (2023).

[39] D. Plenz and T. C. Thiagarajan, Trends Neurosci. 30, 101
(2007).

[40] See Supplemental Material at http://link.aps.org/supplemental/
10.1103/PhysRevE.108.L052301 for details on experiments
and data collection; methods for classifying subpopulations
and numbers of cells in each subpopulation; distances be-
tween correlation matrices; weighted degree distributions of
correlation matrices; methods for defining neuronal and behav-
ioral avalanches; all neuronal and behavioral avalanche size
and distance distributions; methods for estimating power-law
exponents; all estimated power-law exponents; finite scaling
analysis; and surrogate neuronal avalanches.

[41] J. Touboul and A. Destexhe, Phys. Rev. E 95, 012413 (2017).
[42] A. Clauset, C. R. Shalizi, and M. E. Newman, SIAM Rev. 51,

661 (2009).
[43] A. Deluca and Á. Corral, Acta Geophys. 61, 1351 (2013).

[44] A. J. Fontenele, N. A. P. de Vasconcelos, T. Feliciano, L. A. A.
Aguiar, C. Soares-Cunha, B. Coimbra, L. Dalla Porta, S.
Ribeiro, A. J. Rodrigues, N. Sousa, P. V. Carelli, and M. Copelli,
Phys. Rev. Lett. 122, 208101 (2019).

[45] J. P. Sethna, K. A. Dahmen, and C. R. Myers, Nature (London)
410, 242 (2001).

[46] C. Kirst, M. Timme, and D. Battaglia, Nat. Commun. 7, 11061
(2016).

[47] B. Song, N. Ma, G. Liu, H. Zhang, L. Yu, L. Liu, and J. Zhang,
J. Neural Eng. 16, 056002 (2019).

[48] R. L. Carhart-Harris, R. Leech, P. J. Hellyer, M. Shanahan, A.
Feilding, E. Tagliazucchi, D. R. Chialvo, and D. Nutt, Front.
Human Neurosci. 8, 20 (2014).

[49] J. A. Gallego, M. G. Perich, L. E. Miller, and S. A. Solla,
Neuron 94, 978 (2017).

[50] L. N. Driscoll, N. L. Pettit, M. Minderer, S. N. Chettih, and
C. D. Harvey, Cell 170, 986 (2017).

[51] M. E. Rule, T. O’Leary, and C. D. Harvey, Curr. Opin.
Neurobiol. 58, 141 (2019).

[52] D. B. Larremore, W. L. Shew, and J. G. Restrepo, Phys. Rev.
Lett. 106, 058101 (2011).

L052301-6

https://doi.org/10.1038/nn.4483
https://doi.org/10.1016/j.bpsgos.2023.07.008
https://doi.org/10.1016/j.tins.2007.01.005
http://link.aps.org/supplemental/10.1103/PhysRevE.108.L052301
https://doi.org/10.1103/PhysRevE.95.012413
https://doi.org/10.1137/070710111
https://doi.org/10.2478/s11600-013-0154-9
https://doi.org/10.1103/PhysRevLett.122.208101
https://doi.org/10.1038/35065675
https://doi.org/10.1038/ncomms11061
https://doi.org/10.1088/1741-2552/ab20bc
https://doi.org/10.3389/fnhum.2014.00020
https://doi.org/10.1016/j.neuron.2017.05.025
https://doi.org/10.1016/j.cell.2017.07.021
https://doi.org/10.1016/j.conb.2019.08.005
https://doi.org/10.1103/PhysRevLett.106.058101

