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Surge of power transmission in flat and nearly flat band lattices
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Flat band systems can yield interesting phenomena, such as dispersion suppression of waves with frequency
at the band. While linear transport vanishes, the corresponding nonlinear case is still an open question. Here, we
study power transmission along nonlinear sawtooth lattices due to waves with the flat band frequency injected at
one end. While there is no power transfer for small intensity, there is a threshold amplitude above which a surge
of power transmission occurs, i.e., supratransmission, for defocusing nonlinearity. This is due to a nonlinear
evanescent wave with the flat band frequency that becomes unstable. We show that dispersion suppression and
supratransmission also exist even when the band is nearly flat.
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Introduction. Flat band lattices are periodic media with at
least one of their Bloch bands completely flat in the entire
Brillouin zone (see, e.g., [1–3] for early theoretical predic-
tions). Because the wave group velocity vanishes, the media
are dispersionless and, as such, wave transport is suppressed
and particles will have infinite effective mass, which brings
forth exotic characteristics and dynamics (see, e.g., the recent
reviews [4–7]). As the kinetic energy is completely quenched,
particle interaction becomes enhanced, which makes flat band
lattices a perfect candidate to study complex many-body quan-
tum states and strongly correlated physical systems [2,8,9].
Linear flat band lattices also support localized modes with-
out inhomogeneity that have been demonstrated theoretically
[10–14] and observed experimentally [15–18]. In interacting
with nonlinearity, flat bands can support compactons [10] and
interaction-driven topological states [19].

Here we are interested in the scattering of plane waves
by a nonlinear medium which possesses a flat band. Due
to the dispersionless property of the medium, what happens
when the plane wave frequency falls within the flat band
is a mystery. One may expect that the wave will be totally
reflected, but it is not certain. Moreover, the presence of non-
linearity can alter expected behaviors and the dynamics can
become complicated. An important example is the so-called
supratransmission, i.e., an abrupt transmission phenomenon
of plane wave power with frequency in the forbidden band
when the incoming wave amplitude is above a threshold,
that has been reported both theoretically and experimentally
[20–25].

Here, we report a supratransmission of plane waves with
frequency in the flat and nearly flat band when the wave
amplitude is above a critical value. As a particular case, we
consider the sawtooth lattice with Kerr nonlinearity, and to
represent incoming plane waves the medium is periodically
end driven.
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The sawtooth lattice (portrayed in Fig. 1) belongs to a class
of quasi-one-dimensional lattices with an accidental flat band,
i.e., a flat band that is formed only when a special relation be-
tween its coupling coefficients holds [11,26]. The presence of
an accidental flat band was observed on waveguides arranged
on a sawtooth lattice by fine tuning the intersite coupling
coefficients [27].

Sawtooth lattices have been investigated in many diverse
physical contexts including photonics [28,29], Bose-Hubbard
systems [30], the attractive Hubbard model [31], strongly
interacting bosons [32], Bose-Einstein condensates [33], and
ultracold atoms [34]. Because completely flat bands of the
sawtooth lattice are sensitive to perturbations (e.g., of the cou-
pling coefficients), in the following we consider the general
case of nearly flat bands, where the characteristics of wave
inhibition and supratransmission will be shown to be generic.

We also study the mechanism behind the surge of trans-
mission phenomenon. In the standard case, it is caused by
the generated sequence of gap solitons propagating in the
medium. Supratransmission in lattices with a flat band was
considered in [35], where generation of gap solitons with zero
frequency drive was shown to be possible. However, similar
nonlinear modes cannot exist within flat or nearly flat bands.
The supratransmission reported herein is therefore different.
In fact, we show that in the case of a completely flat band, the
surge is due to the instability of a nonlinear edge state with the
flat band frequency.

Model equation. The semi-infinite sawtooth lattice is mod-
eled by

iȦn = CA(�+Bn−1 − 2An) + γ |An|2An,
(1)

iḂn = CA(�+An − 2Bn) + CB�Bn + γ |Bn|2Bn,

where the upper dot is the derivative with respect to the
time variable t (or the propagation distance in nonlinear
optics), n ∈ Z+, �+Xn = Xn + Xn+1, �Xn = Xn−1 + Xn+1 −
2Xn, and γ is the nonlinearity coefficient. The lattice is driven
through its left boundary by setting B0 = f (t ), with f (t ) =
F (t )e−i�t . The amplitude of this harmonic force is turned on
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FIG. 1. Schematic representation of the semi-infinite one-
dimensional lattice in the model, driven at the edge by f .

adiabatically, e.g., as F (t ) = f0[1 − exp(−t/τ )], τ � 1, to
avoid initial shock.

The linear plane wave of the (infinite) lattice is given by
{A, B}n = {a, b}ei(kn−ωt ), where

ω± = CB(cos k − 1) − 2CA ± √
ω̃, (2)

and ω̃ = C2
B(cos k − 1)2 + 2C2

A(cos k + 1), with the cor-
responding eigenvectors (a, b) = (CA(1 + e−ik ), ω± + 2CA).
This implies that the lattice has two linear bands at −2CA �
ω � 0 and −max(v) � ω � −min(v), where v = {CA +
2CB, 4CA}. The latter band becomes flat when CA = 2CB

[11,26]. We plot the bands in Fig. 2. Without loss of generality,
we take CB = 1.

When the driving frequency � of the external force lies
within a linear band, there will be power flow through the
lattice even for low amplitude driving [21,22]. However, note
that the flow speed is given by the group velocity ∂ω/∂k.
Because ∂ω/∂k → 0 as CA → 2CB, what happens when the
driving frequency � is at the flat or in a nearly flat band? This
is the main question that we consider in this Letter.

Supratransmission. Equations (1) were numerically inte-
grated in time using a sixth order Runge-Kutta scheme [36]
with time step h = 5 × 10−3. The semi-infinite lattice is trun-
cated into a finite one with N = 256 unit cells, and dissipation
is imposed by adding the terms −i�nAn and −i�nBn on the
right-hand side of Eqs. (1), respectively, to suppress wave re-
flection from the right boundary of the lattice. The dissipation
array �n is zero for n = 1, . . . , N − Nd , and �n = �max(n −

FIG. 2. Two allowed bands of the system as a function of the cou-
pling coefficient CA. Additionally, there is an in-gap eigenfrequency
for finite lattices shown as a green curve (see the text). Analytical
approximation ω̂− (5) is shown in blue. Inset: Enlargement around
CA = 2CB = 2.

FIG. 3. The averaged power at the 25th cell, 〈|A25|2 + |B25|2〉, as
a function of the driving force amplitude f0 and the coupling coeffi-
cient CA for CB = 1, and (a) γ = −2, (b) γ = 0, and (c) γ = +2.

N + Nd )/Nd for n = N − Nd + 1, . . . , N (�max = 5). Herein,
Nd = 32.

Next, we study the flow of power injected by the drive
into the array. To show our results, we compute the time-
averaged power at a particular site 〈|A25|2 + |B25|2〉, which is
far enough from the driving edge. We integrate the govern-
ing equation and discard the first Ttr = 200 000 T time units,
where T = 2π/� is the driving period. The integration con-
tinues for Tav = 50 000 T more time units, where the average
power is then calculated. We present it in Fig. 3 as a function
of the driving force amplitude f0 and CA for several values of
γ . In all cases, the driving frequency is � = −(3CA + 2CB),
i.e., in the middle of the lower band.

For the defocusing nonlinearity γ = −2 the power trans-
mission to the cell at n = 25 is very low, until a CA-dependent
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threshold value of f0 = f th
0 is reached, where it jumps

abruptly to high values of the order of 10. For CA = 2, f th
0 ≈

1.668. Below the threshold, the value of the transmitted power
is of the order of 10−5 or less. For f0 > f th

0 , the transmission
remains at high levels and nearly constant on average. For
γ = 0 (linear regime), the transmission increases gradually
and nonlinearly with increasing f0. However, different from
the defocusing case above, the transmission power dimin-
ishes at the flat band only. As soon as the lower band is
not completely flat, there is a significant power transmission.
For the focusing nonlinearity γ = +2, a different situation is
observed in Fig. 3(c), where the transmission is low in the
whole parameter plane shown with the lowest transmission
again around CA = 2.

Thus, the main effect which differentiates these three
regimes is the existence of the threshold fth for defocusing
nonlinearity which leads to a sharp transition from low to high
power transmission at that amplitude.

Bifurcation of evanescent waves. Supratransmission has
been previously shown to be caused by an evanescent wave
that ceases to exist [22–24] in a turning point bifurcation. It
is then instructive to consider the standing wave solution of
(1) with frequency �. Substituting {A, B}n = {a, b}ne−i�t , we
obtain the following coupled algebraic equations:

�an = CA(�+bn−1 − 2an) + γ a3
n,

(3)
�bn = CA(�+an − 2bn) + CB�bn + γ b3

n,

where b0 = f0.
We shall look for solutions of the system that are localized

close to or at the driven end of the sawtooth lattice, while they
decay to zero relative far from it. These evanescent modes owe
their very existence to the localized eigenmodes associated
with the flat band, which are expected to be stable for low
f0 (weak nonlinearity).

Once a solution is found, its linear stability is computed
through solving the corresponding eigenvalue problem ob-
tained from substituting An = (an + âneλt )e−i�t and Bn =
(bn + b̂neλt )e−i�t into the governing equations (1) and lin-
earizing about small ân and b̂n. The solution is said to be
linearly stable if all the spectrum λ has zero real part.

In Fig. 4(a) we present a bifurcation diagram of the non-
linear mode as a function of the driving amplitude f0 in
the defocusing case (γ = −2) for CA = 2. Starting from the
lower branch that corresponds to evanescent waves appearing
as one ramps up the external drive f (t ), we obtain that the
corresponding solution is stable. As we increase f0 further,
there is a critical value where the solution becomes unstable
due to a quartet of complex eigenvalues. In the figure, this
occurs at f cr

0 ≈ 1.730, which is in close agreement with the
threshold amplitude f th

0 reported above.
The small difference between f th

0 and f cr
0 is due to the

strong instabilities which are present in the numerical inte-
gration of the dynamical equations (1) that produce irregular
behavior especially when the threshold driving amplitude is
approached.

Hence, we obtain that the supratransmission in Fig. 3(a)
above corresponds to the evanescent wave becoming unsta-
ble. This mechanism is different from the previously reported
cases [21–23], where the threshold amplitude occurs at a
turning point.

FIG. 4. Bifurcation diagram of localized solutions of (3) as a
function of the driving amplitude f0 for (a) γ = −2 and (b) γ = +2.
Shown is the norm on the vertical axis, where ||a|| = √∑n

1 |an|2
and ||b|| = √∑n

1 |bn|2. The inset shows the most unstable solution
profile on the lower branch and the corresponding linear spectrum in
the complex plane. Solid (dashed) lines represent stable (unstable)
solutions.

After instability in the lower branch, as we increase f0

further, we obtain a small portion where the decaying-in-space
solution becomes stable again. The localized wave then ceases
to exist due to a turning point bifurcation at f TP

0 ≈ 1.791. The
upper branch corresponds to solutions that are exponentially
unstable due to a pair of real eigenvalues.

We have also calculated nonlinear evanescent waves due
to the drive in the focusing case in Fig. 4(b), where there
is no change of stability nor turning point. This explains the
absence of supratransmission in the focusing case in Fig. 3(c).

When the lower band is nearly flat, i.e., CA ≈ 2CB, our
evanescent wave analysis above cannot be applied because
there is no spatially decaying state in the middle of the band.
Nevertheless, extreme suppression of power is clearly seen
in Figs. 3(a) and 3(c) when the system is nonlinear. This
peculiar phenomenon is caused by nonlinear interaction be-
tween the in-band drive and its in-gap excited harmonics. The
supratransmission in the defocusing nonlinearity case is then
caused by the corresponding evanescent modes of the resonant
harmonics becoming unstable. This argument will be clearly
seen from the time-series analysis below.

Time-series analysis. We have performed Fourier spec-
tral analysis of the dynamics of the end-driven lattice. In
Fig. 5, the decimal logarithms of Fourier spectra for A1(t ),
log10[FT {A1}], are shown for the complete flat band case
CA = 2 and several values of the driving amplitude f0. The
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FIG. 5. Fourier spectra of A1(t ) for several values of driving
amplitudes f0 for CB = 1, γ = −2, and CA = 2, shown in semiloga-
rithmic plots.

time series are recorded after integrating the system for 105T
to eliminate transients. The length of each time series spans
a time interval of more than 1.6 × 104T ; each time series
consists of NFT = 219 points. The resolution in the Fourier
frequencies is therefore �ωFT 	 2.4 × 10−4.

For low f0, much lower than the threshold value, the driv-
ing frequency is dominant. One may also observe a second
(sub)harmonic in the spectra in Figs. 5(a) and 5(b). The fre-
quency, which is at ωFT ≈ −4, corresponds to the lower edge
of the top band (see Fig. 2).

With increasing f0, however, it disappears due to increasing
nonlinearity strength that results in gradual weakening of the
resonance and its subsequent disappearance. At the same time,
more subharmonics around the driving frequency appear.

Their separation increases with the increment of f0 and
is maintained at an equidistant space for values of f0 even
very close to the threshold. When f0 exceeds the threshold,
the spectrum changes drastically, as it can be observed in
Fig. 5(j). This change occurs abruptly, indicating once more
that the passage from very low to very high transmission is
a real transition. After the transition, the Fourier spectrum
becomes essentially continuous and rather noisy, while sig-
nificant power is acquired by all the frequencies in the shown
range. Even in this regime, the driving frequency is still visible
and dominant.

The equidistant subharmonics appear because the external
driving force excites and resonates with an internal edge mode
of the semi-infinite system, which can be explained as follows.

Consider the linear parts of Eqs. (1), i.e., set γ = 0 with
f0 = 0, and substitute An = âne−iωt and Bn = b̂ne−iωt . We end
up with an eigenvalue problem for the eigenfrequency ω and
eigenmodes (ân, b̂n), that has been solved numerically for the
same finite number of unit cells. We plot ω in Fig. 2 and obtain

that in addition to the two continuous bands (2), there is an
isolated spectrum shown in the green curve.

The eigenfrequency can be observed to get detached from
the lower band at CA = 1 and persist as an isolated in-gap
eigenfrequency even for large CA. This frequency is associated
with a localized eigenmode having topological origin [27,30].
The inset in Fig. 2 shows it more clearly in a shorter CA

interval. Note that CA = 2CB is a singular case as the in-gap
eigenfrequency merges with the flat band.

The edge eigenmode is highly localized for the parameter
value slightly above CA = 2. This motivates us to consider the
following unit cell at the driven edge:

iȦ1 = CA[ f + B1 − 2A1] + γ |A1|2A1,

iḂ1 = CA(A1 − 2B1) + CB[ f − 2B1] + γ |B1|2B1. (4)

We expect that this system is an approximation of the model
(1) with an error of O(1/|�|) for |�| � 1 [23]. It is standard
to obtain that in the linear limit γ = 0, the solution of Eqs. (4)
involves three frequencies: � and

ω̂± = −(2CA + CB) ±
√

C2
A + C2

B. (5)

We plot ω̂− in Fig. 2, where good agreement is clearly seen
in a relatively wide interval. At CA = 2, ω̂− ≈ −7.236 and it
agrees well with one of the dominant frequencies in Fig. 5 for
f0 ≈ f th

0 . ω̂+ ≈ −2.764 approximates the upper band. This
shows that the external force f (t ) also excites oscillations
with frequencies ω̂±. Resonances between � and ω̂− through
the Kerr nonlinearity then create equidistant subharmonic fre-
quencies in Fig. 5. This also indicates that the system can
potentially be a frequency comb generator [37].

The distance between subharmonics increases due to in-
creasing nonlinearity strength through f0, since the frequency
ω̂− depends on the amplitude of the waves A1 and B1 when
nonlinearities are taken into account.

Features of the spectra in Fig. 5 persist when the band is
nearly flat, i.e., CA ≈ 2. In that case, the excited harmonic
frequencies will mostly lie in band gaps that correspond to
evanescent waves. These spatially localized modes are respon-
sible for the dispersion suppression in the nonlinear lattice
reported in Fig. 3, even though frequency of the injected plane
wave is in the middle of a linear band. Supratransmission
occurs when the modes become unstable.

Conclusion. We have shown properties of flat and nearly
flat band lattices with an injected plane wave. Due to the
interaction of their nearly flat band and nonlinearity, wave
transmission can be suppressed even when its frequency is
inside the band. However, in the defocusing nonlinearity, there
is a threshold amplitude for a massive power surge in the
transmission, i.e., supratransmission. We have shown that this
is due to evanescent waves that become unstable. There is no
supratransmission for the focusing nonlinearity because such
spatially decaying states always exist and are stable.

We also studied the possibility to employ the system as
a frequency comb generator due to nonlinear resonances
between the injected wave and the natural edge mode of the
system. The mode exists because of the topological nature of
the lattice.

L052201-4



SURGE OF POWER TRANSMISSION IN FLAT AND … PHYSICAL REVIEW E 108, L052201 (2023)

Our results are particularly relevant to waveguide arrays
having the sawtooth configuration, where wave localization
due to the presence of an accidental flat band was observed
by fine tuning the intersite coupling coefficients [27]. Hence,
power surge predicted here can in principle be detected in
these systems. Nevertheless, the results will be of interest for
researchers in other fields in physics where flat band systems
may be realized.
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