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Bernoulli trial under restarts: A comparative study of resetting transitions
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A Bernoulli trial describing the escape behavior of a lamb to a safe haven in pursuit by a lion is studied under
restarts. The process ends in two ways: either the lamb makes it to the safe haven (success) or is captured by the
lion (failure). We study the first passage properties of this Bernoulli trial and find that only mean first passage
time exists. Considering Poisson and sharp resetting, we find that the success probability is a monotonically
decreasing function of the restart rate. The mean time, however, exhibits a nonmonotonic dependence on the
restart rate taking a minimal value at an optimal restart rate. Furthermore, for sharp restart, the mean time
possesses a local and a global minima. As a result, the optimal restart rate exhibits a continuous transition for
Poisson resetting while it exhibits a discontinuous transition for sharp resetting as a function of the relative
separation of the lion and the lamb. We also find that the distribution of first passage times under sharp resetting
exhibits a periodic behavior.
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Introduction. Bernoulli trials are ubiquitous in nature, with
examples ranging from the gambler ruin problem [1], multiple
targets in confined geometries [2–4], mortal random walkers
[5–9], chemical selectivity [10], multiple folding options for
a biopolymer [11,12], to mention a few. A stochastic process
is termed as a Bernoulli trial if it can end in two ways and
for such processes it is not unusual to designate a desired
outcome of the trial as success and the remaining outcome(s)
as failure(s).

A well-studied example of a Bernoulli trial comes from
the realm of capture processes [13–19] wherein a hungry lion
pursues a lamb and the lamb has the lifesaving opportunity to
make it to a safe haven [20]. Furthermore, capture processes
have applications ranging from reaction systems [21–23] to
population dynamics [24] to kinetochore capture by spindle
molecules [25], making it imperative to study the properties
of such Bernoulli trials like in Ref. [20] under resetting. This
becomes particularly important in light of the fact that the
success probability of a Bernoulli trial can be optimized via
restarts [26]. In the present work, we study the Bernoulli trial
described in Ref. [20] in presence of restarts. Describing the
lion and the lamb as vicious walkers, which destroy each other
the moment their paths cross [27–35], we study the system of
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two vicious walkers under restarts. This is further corrobo-
rated from the fact that the viciousness property A + A → ∅
[36–40] has been previously applied to study the classic lion-
lamb capture problem [16,41,42].

In the present work, we employ two restart protocols: one
in which the rate of restart is fixed, aka, Poissonian resetting
[43–54]; and the other in which the time between two restarts
is fixed, aka sharp restarts [55–62]. The reason for covering
these two restart protocols is that they lie at the two extremes
of the class of renewal restart protocols: Poissonian reset-
ting being memoryless and sharp restart retaining its entire
memory. Notwithstanding the extensive literature addressing
the effects of both Poissonian and sharp restarts, studies ad-
dressing stochastic processes ending in more than one way
have been rather limited [26,57,63] and specific examples
addressing the effect of sharp restarts on Bernoulli trials is
still missing, to the best of our knowledge.

Two vicious random walkers with an absorbing wall. Con-
sider a pair of vicious Brownian particles on the positive
half-line with 0 < x1 < x2 < ∞ [20]. The process ends when
either the first walker reaches the haven at x1 = 0 (success) or
when the trajectories of the two particles cross each other, that
is x1 = x2, at which point the two vicious walkers kill each
other (failure). The Fokker-Planck equation (FPE) describing
the probability density function (PDF) of the process is

∂t p = D1∂
2
1 p + D2∂

2
2 p, (1)
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where ∂t ≡ ∂
∂t , ∂2

i ≡ ∂2

∂x2
i
, i = 1, 2, and p ≡ p(x1, x2, t ). The

initial condition for the FPE in (1) is p(x1, x2, 0) = δ(x1 −
c1)δ(x2 − c2) with c1 < c2 along with the boundary con-
ditions p(x1 = 0, x2 = x > 0, t ) = 0 (the lamb reaching the
haven) and p(x1 = x, x2 = x, t ) = 0 (lion kills the lamb).
Without any loss of generality we assume that the two Brow-
nian particles have identical diffusion coefficients, that is,
D1 = D2 = D. The FPE in Eq. (1) can be solved using the
method of images and its solution is the antisymmetric linear
combination (see Fig. 5 in Ref. [27]):

p(x1, x2, t ) = f (x1, x2, t ) − f (x2, x1, t ) − f (−x1, x2, t )

+ f (x2,−x1, t ) − f (−x2,−x1, t )

+ f (−x1,−x2, t ) − f (x1,−x2, t )

+ f (−x2, x1, t ), (2)

where f (x1, x2, t ) = 1
4πDt exp [− (x1−c1 )2+(x2−c2 )2

4Dt ] is the PDF
of a pair of noninteracting Brownian particles in one dimen-
sion. It is straightforward to see that p(x1, x2, t ) satisfies the
initial and boundary conditions complementing Eq. (1).

First passage time distribution. The PDF in (2) al-
lows us to estimate the survival probability: q(t ) =∫ ∞

0 dx1
∫ ∞

x1
dx2 p(x1, x2, t ) and from there the first pas-

sage time distribution (FPTD) reads F (t ) = − d
dt q(t ) =

−D[
∫ ∞

0 dx2
∂ p
∂x1

|
x2

0 + ∫ ∞
0 dx1

∂ p
∂x2

|
∞
x1

] leading to

F (t ) = 1√
4πDt3

[
c1erf

(
c2√
4Dt

)
exp

(
− c2

1

4Dt

)

− c2erf

(
c1√
4Dt

)
exp

(
− c2

2

4Dt

)]
+ 1√

8πDt3

×
{

(c2 − c1)erf

(
c1 + c2√

8Dt

)
exp

[
− (c1 − c2)2

8Dt

]

− (c1 + c2)erf

(
c2 − c1√

8Dt

)
exp

[
− (c1 + c2)2

8Dt

]}
.

(3)

The integral leading to Eq. (3) above has been evaluated
using MAXIMA. Using the small argument approximation for

the exponential and error function we have F (t )
t→∞∼ 1/πt3.

As a result, q(t )
t→∞∼ 1/t2, previously derived using a wedge

domain in Ref. [20]. This implies that the unconditional mean
first passage time (MFPT) is finite, and in addition, it is the
only finite moment possessed by the FPTD in Eq. (3). From
this we can write the expressions for the conditional FPTDs,
the process terminating either in a success or failure. Define
F1(t ) as the distribution of first passage times that the process
ends when the first particle reaches the origin irrespective
of the location of the second particle, that is, a successful
completion of the Bernoulli process. Similarly, let F2(t ) de-
note the conditional FPTD for the process to end by the two

FIG. 1. Conditional FPTDs F1(t ) and F2(t ) for the pair of vicious
Brownian particles. The red line is the numerical estimate and the
black dashed lines are the expressions from Eq. (4). Parameter values
are c1 = 1, c2 = 2, D = 1. For these values: E1 = ∫ ∞

0 dt F1(t ) ≈
0.41 (see Ref. [64] for details).

vicious walkers killing each other, that is, a failure. Then,
F (t ) = F1(t ) + F2(t ) and from Eq. (3) we obtain:

F1(t ) = 1√
4πDt3

[
c1erf

(
c2√
4Dt

)
exp

(
− c2

1

4Dt

)

− c2erf

(
c1√
4Dt

)
exp

(
− c2

2

4Dt

)]
, (4a)

F2(t ) = 1√
8πDt3

{
(c2 − c1)erf

(
c1 + c2√

8Dt

)

× exp

[
− (c1 − c2)2

8Dt

]

− (c1 + c2)erf

(
c2 − c1√

8Dt

)
exp

[
− (c1 + c2)2

8Dt

]}
.

(4b)

We find that the analytical result for the FPTD in Eq. (4)
agrees well with numerical calculations (see Fig. 1 and
Ref. [64] for details).

Restarting the Bernoulli process. For reasons discussed
in Ref. [65], we reset the two vicious walkers at the exact
same moment. Furthermore, the time between two successive
restarts is chosen for the purpose of simplicity to be either an
exponentially distributed random variable (Poissonian reset-
ting) or a fixed quantity (sharp resetting). In order to compare
Poissonian and sharp restart for the Bernoulli trial under con-
sideration, let us define 1/τ as the rate of sharp restart, where
τ is the time of sharp restart. This definition puts the two
restart protocols on same footing and we define

ρ =
{

r, for Poisson restart,
1/τ, for sharp restart. (5)

Now, if T is the time of unconditional completion of the
Bernoulli trial under consideration and R is the time of restart
of the process, then the success probability is: p = 〈I (T <R)yT 〉

〈I (T <R)〉
[26], where yT is an auxiliary random variable taking value
one with probability F1(t )/F (t ). And, if 〈T s〉 is the condi-
tional MFPT for a successful trial, then 〈T s〉 = 〈I (T >R)R〉

〈I (T <R)〉 +
〈I (T <R)yT T 〉
〈I (T <R)yT 〉 [26]. Let us now discuss Poisson and sharp restart

protocols one by one.
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FIG. 2. Effect of restarts: (a) Numerically estimated probability
of success under Poisson restart pr (◦) and sharp restart pτ (�) vs the
corresponding analytical results [Eqs. (6a) and (7)]. (b) Numerically
estimated conditional MFPT under Poisson restart 〈T s

r 〉(◦) and sharp
restart 〈T s

τ 〉(�) vs the corresponding analytical results in solid lines
[Eqs. (6b) and (8)]. Parameter values are c1 = 1, c2 = 2, D = 1 and
black dashed lines represent the limit of no restarts.

For Poissonian resetting at a rate r, the PDF of restart times
is Pr (R) = re−rR. As a result, the success probability and the
conditional MFPT, respectively, read [26]:

pr = F̃1(r)

F̃ (r)
, (6a)

〈T s
r 〉 = 〈Tr〉 − d

dr
ln pr, (6b)

where 〈Tr〉 = 1−F̃ (r)
rF̃ (r)

[66] denotes the mean time of completion
of the Bernoulli trial, either with a success or as a failure;
and F̃ (r) = ∫ ∞

0 dt e−rt F (t ) is the Laplace transform of F (t ).
We see from Fig. 2(a) that pr is a monotonically decreasing
function of the restart rate r, while the conditional MFPT for
a successful completion 〈T s

r 〉 exhibits a minima, as seen from
Fig. 2(b). This implies that while resetting makes it slightly
less probable for the lamb to make it to the safe haven, the
time to reach the safe haven can be minimal, for example,
for r ≈ 2. For higher values of restart rate such as r ≈ 10, the
lamb is walking a slippery slope where it takes a longer time to
reach the haven and the chances of it doing so are also severely
diminished, thanks to the fact that it keeps returning home.
It should be noted at this point that the Laplace transforms
in Eq. (6) have been evaluated via numerical integration [67].
Let us now move on to studying the Bernoulli trial under sharp
resetting.

For sharp resetting the PDF of restart times is
Pτ (R) = δ(R − τ ), where τ is the time of sharp restart.
Then 〈I (T < R)yT 〉 = ∫ ∞

0 dRPτ (R)
∫ ∞

0 dtF (t )I (T <

R)yT = ∫ ∞
0 dtF1(t )

∫ ∞
t dRδ(R − τ ) = ∫ τ

0 dtF1(t ) where we
have reversed the order of integration in the second equality
and the δ-function term contributes only when t � τ . In
a similar manner we have 〈I (T < R)〉 = ∫ τ

0 dt F (t ), from
which follows the success probability under sharp resetting

pτ =
∫ τ

0 dt F1(t )∫ τ

0 dt F (t )
. (7)

Evaluating the remaining integrals we get 〈I (T > R)R〉 =
τ

∫ ∞
τ

dtF (t ) and 〈I (T < R)yT T 〉 = ∫ τ

0 dttF1(t ) leading to the
conditional MFPT under sharp restarts:

〈
T s

τ

〉 = τ
∫ ∞
τ

dt F (t )∫ τ

0 dt F (t )
+

∫ τ

0 dt tF1(t )∫ τ

0 dt F1(t )
. (8)

We see in Fig. 2 that the success probability under sharp
restarts pτ asymptotically approaches its value in absence
of any restarts in a monotonic way and remains less than
limτ→∞ pτ [see Fig. 2(a)]. On the other hand, the mean time
taken by the lamb to successfully reach the safe haven 〈T s

τ 〉
exhibits a nonmonotonic dependence (in sharp contrast with
pτ ) on the restart time τ . This implies that sharp resetting is
advantageous for the lamb as it is able to quickly take resort
to the safe haven as compared to the case when there are no
restarts. Unlike its Poissonian counterpart, a sharp restart of
the Bernoulli trial with high value of τ is advantageous for the
lamb, as its probability to make it to the safe haven is close to
E1, and this mode of completion takes a lesser amount of time
on average. This prompts us to make an explicit comparison
between the two restart protocols, and more so their relation
to the dynamics of the Bernoulli trial without restarts. We
proceed with this goal in the next section.

Comparing Poissonian restart with sharp restart. As we
have seen above, for both Poisson and sharp restart protocols,
we have limr→0 pr = limτ→∞ pτ = E1. This is also seen in
Fig. 2(a) for ρ in the neighborhood of zero. However, the
approach of pr and pτ to E1 is completely different in that the
second derivative d2 p/dρ2 near ρ ≈ 0 is positive or negative
depending on whether we consider Poisson or sharp restart
protocol [see Fig. 2(a)]. This can be understood as follows.
For sharp restart ρ near zero means that the time interval be-
tween two successive restarts τ is very large, which means that
the Bernoulli trial stops without being practically perturbed
by any restart event [see the near-horizontal behavior of p for
small ρ in Fig. 2(a)]. On the other hand, since 〈T 〉 < 〈T s〉
[from Eqs. (3) and (4a)], we have for Poissonian restarts:

pr
r→0∼ E1 + E1(〈T 〉 − 〈T s〉)r, which leads to d pr/dr < 0 for

r → 0. Note that we can take this analysis no further as
the higher-order moments of the FPTD F (t ) do not exist.
The difference in the signs of the second derivative of suc-
cess probability eventually lead to pτ < pr for large ρ with
limρ→∞ p = 0 [see inset in Fig. 2(a)]. This follows simply
from the fact that for large ρ both the vicious walkers are reset
to their initial locations very rapidly, making it practically
impossible for the lamb to make it to the safe haven.

It is further evident from Fig. 2(b) that the conditional
MFPT under restarts, viz. both 〈T s

r 〉 and 〈T s
τ 〉 exhibit a non-

monotonic dependence on the restart rate ρ. Let ρ0 denote the
optimal resetting rate (ORR) at which the mean time attains its
minimal value. We study the properties of the ORR for both
Poisson and sharp restarts in Fig. 3 as a function of the initial
locations of the lamb c1 and the lion c2. When studying the
dependence of the inverse ORR 1/ρ0 as a function of c1, a
natural length scale in the system is c2, and the corresponding
time scale is c2

2/D. We thus measure the initial location of
the lamb in units of c2, and the inverse ORR in units of
c2

2/D. We employ a similar procedure when studying 1/ρ0

as a function of c2 (see Fig. 3). Following this scaling we
find that the data for the inverse ORR 1/ρ0 for different sets
of motion parameters collapse on top of each other for both
Poisson [Figs. 3(a) and 3(b)] and sharp restarts [Figs. 3(c)
and 3(d)]. This implies that 1/ρ0 exhibits a dynamical phase
transition as a function of the relative separation of the two
vicious walkers. Furthermore, independent of the nature of
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FIG. 3. For Poisson restarts (a) normalized ORR (1/ρ0)/
(c2

2/D) as a function of the normalized initial location of
the first particle c1/c2 with (c2, D) = (2, 1)(�), (2, 2)(◦),
(1.5, 2)(�), (1.8, 1.5)(�), (2.5, 1.5)(); and (b) normalized
ORR (1/ρ0 )/(c2

1/D) as a function of the normalized
initial location of the second particle c2/c1 with (c1, D) =
(0.5, 1.5)(�), (0.5, 1.0)(◦), (1.3, 2)(�), (2, 2.5)(�), (1, 0.8)().
For sharp restarts (c) normalized ORR (1/ρ0)/(c2

2/D) as a function
of the normalized initial location of the first particle c1/c2 with
(c2, D) = (2, 1)(�), (2.5, 1)(◦), (2, 2)(�), (2, 4)(�), (3, 1)(); and
(d) normalized ORR (1/ρ0 )/(c2

1/D) as a function of the normalized
initial location of the second particle c2/c1 with (c1, D) =
(0.6, 1)(�), (1, 1)(◦), (1, 2)(�), (0.5, 2)(�), (0.5, 1.5)(). Data
collapse for different sets of parameters implies that the ORR varies
continuously for Poisson restarts while it exhibits a jump for sharp
restarts.

the restart protocol, the optimal value of the mean restart time
1/ρ0 decreases when the lamb starts either very close to the
safe haven at x = 0 or close to the initial location of the lion.
This is because when the lamb starts close to the safe haven,
that is c1/c2 � 1, then for restart to be useful the mean restart
time should be less as the mean time to escape to the safe
haven is already small. On the other hand, when the lamb
starts close to the lion, that is, c1/c2 � 1, then if the process
does not restart quickly, then it is more likely that the lion
captures the lamb [see Figs. 3(a) and 3(c)]. This holds true
even when we see this from the perspective of the lion, that is,
mean time of optimal restart 1/ρ0 is small when c2/c1 � 1.
In the other extreme when the initial separation between the
lamb and the lion is very large, that is, c2/c1 � 1, then once
again 1/ρ0 is small [see Figs. 3(b) and 3(d)]. This is because
in the limit c2/c1 � 1, chances of the lamb escaping to the
safe haven are fairly high (without any restart) thus requiring
rapid restart events for the protocol to be of any significance.
In summary, Fig. 3 describes the resetting transition exhibited
by 1/ρ0 as a function of relative separation c1/c2. The phase
boundary separates the regions of the parameter space in
which restart is useful from those in which it is not. The two
domains of the parameter space are c1/c2 ∈ (0, 1) and c2/c1 ∈
(1,∞). There is, however, one crucial difference between
the phase boundaries of the two restart protocols. While the
curve for Poisson restarts is continuous in both the intervals,
that is, 0 < c1/c2 < 1 and c2/c1 > 1, the corresponding curve

FIG. 4. Conditional MFPT under sharp restart 〈T s
τ 〉 as a function

of (a) c1 = 0.4167(�), 0.4162(◦), 0.4158(�), 0.4152(�) for c2 =
2; (b) c2 = 1.92(�), 1.9225(◦), 1.925(�), 1.9275(�) for c1 = 0.4.
In both the cases D = 1.

under sharp resetting exhibits a jump discontinuity, in both the
intervals. This marks a fundamental difference between the
two restart protocols, that is, the ORR (or rather its inverse
1/ρ0) exhibits a continuous dynamical phase transition as a
function of the relative initial separation of the walkers for
Poisson restarts while for sharp restarts the resetting transition
is discontinuous. The location of the jump discontinuity for
sharp resetting is at c1/c2 ≈ 0.2 in Fig. 3(c) or c2/c1 ≈ 5 in
Fig. 3(d), reflecting the fact that the location of jump depends
only on the relative separation between the two vicious walk-
ers.

In order to understand the discontinuous nature of the reset-
ting transition for sharp restarts we study in detail the behavior
of 〈T s

τ 〉 as a function of initial locations of the lamb c1 and the
lion c2. In Fig. 4 we see that 〈T s

τ 〉 exhibits a bimodal behavior
as a function of the initial locations c1/c2: with one local
minima and one global minima. The two switch positions as
we change ci for a fixed c j (i �= j). For example, in Fig. 4(a),
when the initial location of the lamb c1 is varied (for a fixed
c2), we see that a decreasing c1 shifts the global minima from
1/ρ ≈ 0.224 to 1/ρ ≈ 0.124, a significant change leading to
a jump in the value of 1/ρ0 observed in Fig. 3(c). A similar
jump in the location of global minima 1/ρ0 is observed in
Fig. 4(b), going from 1/ρ ≈ 0.224 to 1/ρ ≈ 0.114, when
the initial location of the lion c2 is increased (for a fixed
c1). It is important to notice from Fig. 4 that the location
of the global minima 1/ρ0 goes to lower values with in-
creasing relative separation, occurring either due to the lamb
starting closer to the safe haven or the lion starting farther
from the lamb. This switching of the location of global min-
ima leads to a discontinuous resetting transition for sharp
restarts.

Let us now discuss the effect of resetting on the FPTD
F (t ). Under Poissonian resetting at a rate r, the FPTD is
known to be: F̃r (s) = F̃ (s+r)

s
s+r + r

s+r F̃ (s+r)
[66] and from here follows

the FPTD under Poissonian resetting via the Bromwich
integral [68]: Fr (t ) = 1

2π i

∫ γ+i∞
γ−i∞ ds (s+r)F̃ (s+r)

s+rF̃ (s+r)
est . While an

exact evaluation of the integral is difficult, we can obtain the
long-time behavior of Fr (t ) by looking at the pole of F̃r (s)
closest to the origin. If s0,r is the pole nearest to zero, then it
solves the equation: 0 = s + rL[e−rt F (t )], where L denotes
the Laplace transform, leading to Fr (t ) ≈ es0,r t . In other
words, the long-time behavior of the FPTD under Poissonian
restarts exhibits exponential decay. We compare the analytical
estimate of the FPTD with its numerical counterpart for a
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FIG. 5. Comparing the FPTDs: (a) Fr (t ) under Poissonian
restarts, and (b) Fτ (t ) under sharp resetting. The symbols are nu-
merically estimated and the dashed lines represent the analytical
approximations obtained via inverting the Laplace representations.
The periodic behavior of Fτ (t ) is evident. Parameter values are c1 =
1, c2 = 2, D = 1.

representative value of r = 1 in Fig. 5(a). We find a reasonable
agreement between the two as s0,r ≈ −1.0 (analytically)
while its numerical value is s0,r ≈ −1.25 [see Fig. 5(a)
for comparison], a difference of about 20%. With an exact
representation of the Laplace transform F̃r (s) unavailable, we
cannot provide a plausible explanation for this difference here.

On the other hand, for sharp resetting, the FPTD in Laplace
domain reads [56,65]:

F̃τ (s) =
∫ τ

0 dt F (t )e−st

1 − e−sτ
∫ ∞
τ

dt F (t )
, (9)

and its Laplace inversion at long times is determined by the
pole s0,τ of F̃τ (s) closest to zero. Furthermore, if we consider
a periodic function with a period τ , that is, h(t + τ ) = h(t ),

then its Laplace transform reads [69,70]: h̃(s) =
∫ τ

0 dt h(t )e−st

1−e−sτ .
Comparing this with Eq. (9) shows that it is similar to F̃τ (s),
except for the appearance of the term

∫ ∞
τ

dt F (t ) in the
denominator of the fraction defining F̃τ (s) in Eq. (9). This im-
plies that the FPTD Fτ (t ) exhibits a periodic structure with an
exponentially decaying envelope. Furthermore, this behavior
of the FPTD is generic to any first passage process under sharp
resetting, and not limited to the Bernoulli trial under consid-
eration. Here, however, we can make a comparison of our
analytical approximation against numerical calculations. We
see from Fig. 5(b) that Fτ (t ) does exhibit a periodic behavior
with an envelope tracing the curve Fτ (t ) ≈ e−2.3t (obtained via
Laplace inversion) with the same period τ (= 1), as explained
above.

Conclusions. If we ask ourselves one question, what is the
quintessential problem in life, we will almost always come to
one answer: the problem is choice. Motivated by this line of
thought, we study a Bernoulli trial under restarts. Considering
the well-studied capture problem in which a hungry lion pur-
sues a lamb in presence of a safe haven for the lamb we study
the properties of success probability and mean escape time

for the lamb to make it to the safe haven under Poissonian and
sharp resetting. We find that the success probability decreases
monotonically as a function of the restart rate ρ, though the
nature of decay is different for the two resetting protocols. The
mean time of successful completion, however, exhibits a non-
monotonic dependence on 1/ρ, and furthermore, a bimodal
behavior for sharp resetting. The optimal value of mean restart
time at which the mean success time is minimal, exhibits a
dynamical phase transition, with the resetting transition being
continuous for Poissonian restarts and discontinuous for sharp
restarts. The ubiquity of Bernoulli trials and knowing the way
stochastic resetting affects its properties is important in devel-
oping insights about chemical selectivity, protein folding, etc.
Furthermore, the distinct nature of the resetting transitions for
the two protocols, viz. Poisson and sharp possess a natural
question: is this generic or specific to systemic details? In
other words, what happens to the nature of restart transition
if we change the restart protocol, say, power law distributed
reset times? To answer this question, let us consider Pγ (R) =

γ r
(1+rR)1+γ with r, γ > 0. This leads to

pγ =
∫ ∞

0 dt F1(t )
(1+rt )γ∫ ∞

0 dt F (t )
(1+rt )γ

, (10a)

〈
T s

γ

〉 =
∫ ∞

0 dt F (t ) (1+rt )γ −1−γ rt
r(γ−1)(1+rt )γ∫ ∞

0 dt F (t )
(1+rt )γ

+
∫ ∞

0 dt tF1(t )
(1+rt )γ∫ ∞

0 dt F1(t )
(1+rt )γ

.

(10b)

This implies that the success probability pγ exists ∀ γ > 0,
that is, even when Pγ (R) does not possess any finite moments.
On the other hand, the conditional MFPT for a successful
completion 〈T s

γ 〉, exists only for γ > 1 and possesses a unique
global minima analogous to Poissonian restarts (see Ref. [64]
for details). Does this mean that discontinuous transitions are
unique to sharp resetting? Or are there some generic condi-
tions imposed on the restart time distribution P(R) leading to
a discontinuous transition. Furthermore, we have limited our
analysis to a system of two vicious walkers on a line. It would
be interesting to see how the results of the present work mod-
ify when generalizing to N > 2 (vicious) Brownian particles
on a line [71,72]. We pursue these and related questions in
future works.
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