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Annealing has proven highly successful in finding minima in a cost landscape. Yet, depending on the
landscape, systems often converge towards local minima rather than global ones. In this Letter, we analyze
the conditions for which annealing is approximately successful in finite time. We connect annealing to stochastic
thermodynamics to derive a general bound on the distance between the system state at the end of the annealing
and the ground state of the landscape. This distance depends on the amount of state updates of the system and the
accumulation of nonequilibrium energy, two protocol and energy landscape-dependent quantities which we show
are in a trade-off relation. We describe how to bound the two quantities both analytically and physically. This
offers a general approach to assess the performance of annealing from accessible parameters, both for simulated
and physical implementations.

DOI: 10.1103/PhysRevE.108.L052105

Introduction. Annealing is the process of reaching de-
sired physical and chemical properties by gradual external
temperature control [1]. Systematic cooling allows the physi-
cal system to transition towards energetically more favorable
states—see Fig. 1. This process inspired heuristic algorithms,
known as simulated annealing (SA) [2–5], to solve optimiza-
tion problems for a large variety of scientific disciplines, such
as logistics, manufacturing, computer vision, machine learn-
ing, and bioinformatics [6–9]. Simulated annealing identifies
minima in optimization landscapes through stochastic updates
of the system state in accordance with the energy difference
to a randomly picked nearby candidate state [2]. The success
of finding approximately the global minimum of the opti-
mization landscape (ground state) depends crucially on the
external control schedule of the system temperature. To end
in a global minimum with probability 1, an infinite annealing
time is required [10]. Hence, for finite-time schedules, there
is a priori a risk that the output is strongly suboptimal, such
as a shallow local minimum in the energy landscape. These

*yutong.luo21@imperial.ac.uk
†zhenyizheng@ustc.edu.cn
‡liuxj@mail.bnu.edu.cn
§ebler.daniel1@huawei.com
‖oscar.dahlsten@cityu.edu.hk

issues are not restricted to simulated annealing, appearing in
physical implementations and quantum annealing [9,11].

There has been significant progress in estimating the per-
formance of annealing in finite time. References [10,12–15]
obtained similar bounds on the departure from the optimal
probability distribution over states. The tightness of such a
bound was successfully demonstrated in a specific problem
[15] and a bound was derived for the case of solving a
graph coloring problem for general cooling schedules [16].
Nevertheless, there are significant restrictions remaining in
our understanding of the convergence towards the desired
thermal state in finite time. The bounds in Refs. [10,12–15]
are restricted to the case of the temperature varying as the
inverse of the logarithm of the time. Some reported bounds
moreover require knowledge of the system’s statistical state
at an intermediate time during the annealing [13,14]. The
previous results nevertheless give hope that it may be possible
to overcome these challenges and bound the performance of
annealing more generally, as well as in terms of accessible
parameters rather than the statistical state of the system.

In this Letter, we address the aforementioned challenges
and derive an analytical bound on the performance of anneal-
ing. We employ recent methods from finite-time stochastic
thermodynamics [17–22] and generalize a speed limit related
to entropy production [20–22]. This allows us to bound the
distance of the final system state to the target state (which is

2470-0045/2023/108(5)/L052105(6) L052105-1 ©2023 American Physical Society

https://orcid.org/0009-0008-6816-5000
https://orcid.org/0000-0002-7125-6922
https://orcid.org/0000-0002-2528-2679
https://orcid.org/0000-0003-2696-8354
https://orcid.org/0000-0003-3921-6071
http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevE.108.L052105&domain=pdf&date_stamp=2023-11-13
https://doi.org/10.1103/PhysRevE.108.L052105


LUO, ZHEN, LIU, EBLER, AND DAHLSTEN PHYSICAL REVIEW E 108, L052105 (2023)

0 = (0)

p( )

( )
p( )

( )
0 = ∑ | 0 − | = ∑ | − |

COOLINGi f

FIG. 1. Annealing. The system is initially in thermal equilibrium
with a heat bath at temperature Ti. As the temperature of the bath
decreases to Tf during a time τ , the statistical state of the system
p(t ) (black curve) lags behind the instantaneous thermal state γ (t )
(red curve). The distances to the final thermal state γ (τ ) for p(0)
and p(τ ) are defined as L0 and Lτ , respectively, with Lτ quantifying
the performance error of the annealing. The insets illustrate possible
microstates (black balls) within the energy landscape.

denoted as Lτ as depicted in Fig. 1) in terms of the protocol
time τ . Employing concepts from stochastic thermodynamics
results in a bound that can be evaluated in terms of macro-
scopic thermodynamical quantities such as heat transfer.

The bound applies very generally. It holds for all cooling
schedules and only depends on two case-specific quantities.
These are related to the number of state transitions of the
system and the energy difference to the equilibrium energy,
respectively. We show that these two quantities are in a trade-
off relation.

To illustrate how the bound can be applied, including how
those two quantities can be evaluated without knowing the in-
termediate statistical states, we apply the bound to a simulated
annealing algorithm and to a physical annealing process.

Our results thus link recent results from finite-time stochas-
tic thermodynamics with the problem of annealing, giving
a performance guarantee for annealing based on thermody-
namical parameters. Full details of the derivation and further
studies into the application of the results to simulated anneal-
ing are provided in an accompanying paper [23].

Stochastic thermodynamics of annealing. We first introduce
stochastic thermodynamics (as used, e.g., in Refs. [18,19,21])
as the model for annealing. The anneal process puts a system
into contact with a heat bath of time-dependent temper-
ature T (t ). The system has N energy levels denoted as
{Ei}N

i=1, and the corresponding probabilities of the system to
be in Ei at time t is denoted by pi(t ). The vector p(t ) =
[p1(t ), . . . , pN (t )] is then the statistical state of the system.
A fully thermalized system is modeled to be in the thermal
Gibbs’ state γ = [γi, . . . , γN ] with γi = exp(−βEi )/Z , where
Z = ∑

i exp(−βEi ) is the partition function and β = 1/T is
the (time-dependent) inverse temperature (the Boltzmann con-
stant kB is taken to be 1).

The system evolution under the annealing process is mod-
eled as a master equation [18,24,25] ṗi(t ) = ∑

j �i j (t )p j (t ),
where �i j (t ) is the generator satisfying

∑
i �i j (t ) = 0,∀ j and

�i j (t ) � 0,∀i �= j. We assume the process obeys the detailed

balance condition, �i j (t )γ j (t ) = � ji(t )γi(t ), ∀i, j, as com-
monly assumed in nonequilibrium thermodynamics (see, e.g.,
Refs. [19,20,26]).

In nonquasistatic annealing, the state of the system p(t )
chases after the instantaneous thermal state γ (t ) but fails
to catch up, as is shown in Fig. 1. To characterize the per-
formance of an annealing protocol run in finite time τ , we
employ the commonly used 1-norm distance to the final ther-
mal state γ (τ ):

Lt :=
∑

i

|pi(t ) − γi(τ )|. (1)

For protocols with T (τ ) = 0, the probability of not having the
ground state, p(nonoptimal), respects 1

2 Lτ � p(nonoptimal)
[23]. We will bound the protocol performance error Lτ in
terms of L0 and the protocol time τ .

In quantifying how nonquasistatic is a process, a cru-
cial quantity in stochastic thermodynamics is the entropy
production rate �̇(t ) ≡ Ṡp(t ) − β(t )Q̇(t ), where the system
entropy Sp(t ) ≡ −∑

i pi(t ) ln pi(t ), such that Ṡp(t ) is the rate
of change of system entropy and Q̇(t ) ≡ ∑

i ṗi(t )Ei(t ) is the
rate of heat transferred into the system (see, e.g., Ref. [19]).
One can show that for processes respecting detailed balance,
�̇(t ) � 0 with equality for quasistatic processes.

Universal bound on annealing performance. We now de-
scribe the universal bound and its derivation. The derivation
of our bound tracks the evolution of a thermodynamically
natural measure of the (time-varying) difference between the
statistical state and the thermal state: the relative entropy
S[p(t )||γ (t )] = ∑

i pi(t ) ln[pi(t )/γi(t )]. S[p(t )||γ (t )] has a
thermodynamical meaning as the difference between the sys-
tem’s free energy and the free energy of its thermal state (see,
e.g., Ref. [26]).

During the annealing,

d

dt
S(p||γ ) = ṗ

∂

∂ p
S(p||γ ) + β̇

∂

∂β
S(p||γ ), (2)

since the probabilities p(t ) change (according to the master
equation) and γ (t ) changes (solely) due to the varying tem-
perature. One can verify that ṗ∂pS(p||γ ) = −�̇ (see, e.g.,
Ref. [26]), whereas β̇∂βS(p||γ ) := İ, the rate of change of
relative entropy due to the variation in temperature, is a
different annealing-related quantity.

Integrating Eq. (2) from time 0 (for which the system is in
a thermal state) to time τ to find the final difference between
the statistical and equilibrium states yields

S[p(τ )||γ (τ )] = −�(τ ) + I (τ ), (3)

where the accumulated change in relative entropy due to vary-
ing temperature

I (τ ) ≡
∫ τ

0
[Ep(t ) − Eγ (t )]β̇(t )dt . (4)

Here, Ep(t ) ≡ ∑
i pi(t )Ei and Eγ (t ) ≡ ∑

i γi(t )Ei denote en-
ergy expectation values. We shall later use Eq. (4) to give I (τ )
a more practical operational meaning via calorimetry.

To bound the entropy production �(τ ) in Eq. (3), we adopt
the speed limit proposed in Ref. [20], which shows that the
speed of state transformation in a thermal process is limited by
the entropy production. This speed limit was originally proved
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in the fixed-temperature scenario and we here extend it to the
varying-temperature scenario with full details in Ref. [23],

�(τ ) �
[∑

i |pi(0) − pi(τ )|]2

2〈A〉τ τ � (L0 − Lτ )2

2〈A〉τ τ , (5)

where 〈A〉τ = 1
τ

∫ τ

0 dtA(t ) is the time-averaged activity with
the activity A(t ) defined as [20–22]

A(t ) ≡
∑

i

∑
j( �=i)

�i j (t )p j (t ). (6)

The activity can be shown to equate to the time-averaged
expected number of jumps between states: 〈Njumps〉/τ = 〈A〉τ .

To bound the performance of annealing Lτ , we sub-
stitute Eq. (5) and Pinsker’s inequality [27], that L2

τ �
2S[p(τ )||γ (τ )], into Eq. (3). This yields (see full derivations
in Ref. [23])

Lτ �
L0 +

√
〈A〉τ τ

[−L2
0 + 2I (τ )(〈A〉τ τ + 1)

]
〈A〉τ τ + 1

. (7)

The term L0 in Eq. (7) is the 1-norm distance between the
initial state and the ideal final state. L0 is, by inspection,
constant if the initial and final temperatures (Ti and Tf ) are
fixed, which is normally the case in annealing. L0 moreover
forces, as can be shown from Eq. (7), a trade-off relation
between the activity 〈A〉τ and the relative entropy change
from temperature variation I (τ ): I (τ )(〈A〉τ τ + 1) � L2

0/2.
The trade-off relation shows for example that I (τ ) can only
be small if the expected number of jumps between different
states 〈Njumps〉 ≡ 〈A〉τ τ is large. With this relation, in the
accompanying paper [23] we show that the bound scales as
O(τ−α/2) with 0 < α � 1, for protocols that converge to qua-
sistatic processes as τ → ∞. The bound is hence tight in the
quasistatic limit for any models.

Apart from L0, evaluating the general bound of Eq. (7) in-
volves the relative entropy change from temperature variation
I (τ ) and the time-averaged activity 〈A〉τ . We therefore now
analyze how these can be evaluated in specific protocols.

Annealing an arbitrary two-level system. To illustrate and
motivate a technique we shall use for applying the general
bound of Eq. (7) to specific examples, we consider an ar-
bitrary two-level system undergoing an annealing process.
The energy levels are labeled by 0 and 1, corresponding to
energies E0 = 0 and E1 = E > 0, respectively. The master
equation of any thermalizing state evolution of the two-level
system is known to be equivalent to ṗi(t ) = −μ(t )[pi(t ) −
γi(t )], where i ∈ {0, 1} and μ(t ) = �01(t ) + �10(t ) is the par-
tial swap (PS) rate [26,28,29], so called since the model is
equivalent to swapping the state with a thermal state γ with
probability μdt for time interval dt . The bound in Eq. (7) here
becomes

Lτ �
L0 +

√
2〈μ〉τ τ

[−L2
0 + 2IPS(τ )(2〈μ〉τ τ + 1)

]
2〈μ〉τ τ + 1

, (8)

where 〈μ〉τ = τ−1
∫ τ

0 μ(t )dt and

IPS(τ ) = −
∫ τ

0

∫ t

0
e− ∫ t

s μ(s′ )ds′
Ėγ (s)β̇(t )dsdt, (9)

with Eγ (t ) = E/(1 + eβ(t )E ) (see Supplemental Material [30]
for details).

Importantly, Eq. (9) can be evaluated without the system’s
energy Ep(t ). We shall exploit this property of the partial swap
model, which holds for any number of energy levels, to bound
I (τ ) in other models via a suitable choice of partial swap
rate μ.

Bound for SA. We now derive how to evaluate the perfor-
mance bound for simulated annealing (SA). In SA the time
evolution obeys detailed balance and is discrete, taking place
in κ discrete time steps. As will be described below with full
details in Ref. [23], we modify our arguments to discrete time
and bound I and A, finding

Lκ �
2L0 +

√
2κ

[−L2
0 + IPS(κ )(κ + 2)

]
κ + 2

. (10)

IPS(κ ) is the discrete-time relative entropy change from the
variation of temperature for the partial swap model of thermal-
ization, a model discussed in the previous section. For Eq. (10)
to hold, the choice we make for the partial swap rate is

μPS(k) = 1

n
exp [−β(k + 1)
Emax], (11)

where n is the number of accessible states within each
SA step, 
Emax = maxi Ei − mini Ei. This μPS(k) is cho-
sen to ensure the partial swap model relaxation time
is not faster than a known bound [31] for SA mod-
els [23]. So, IPS(κ ) = ∑κ

k=1[EPS
p (k) − Eγ (k)][β(k) − β(k −

1)], where EPS
p (k) is defined iteratively according to EPS

p (k +
1) = [1 − μPS(k)]EPS

p (k) + μPS(k)Eγ (k + 1).
Equation (10) has two remarkable features. First, it is

history independent, in the sense that IPS(κ ) can be evalu-
ated only by the equilibrium energy Eγ (k). The fact that the
intermediate statistical state p(k) is then no longer required
heavily reduces the computational cost of evaluating the sta-
tistical error Lκ [23]. Second, Eq. (10) holds for all cooling
schedules β(k).

The derivation of Eq. (10) can be broken into three steps.
First, we assume a particular form of dynamics satisfying the
detailed balance associated with SA, the Glauber dynamics
[32–34]. We show that the discrete-time analogy of the speed
limit from entropy production [Eq. (5)] here becomes �(κ ) �
(L0 − Lκ )2/(2〈A〉κκ ) � (L0 − Lκ )2/κ , which rests on the re-
striction that the (discrete-time) activity AD(k) � 1/2, ∀k.
One can show that for the infinite-temperature thermal state
AD = 1/2 and for any lower-temperature thermal states AD <

1/2 with AD = 0 for zero-temperature thermal states. We con-
jecture, based on those and further analytical arguments and
numerics that in general AD � 1/2 for SA with Glauber dy-
namics, which consequently gives 〈AD〉κ � 1/2 (see Ref. [23]
for details).

We then derive, up to a conjecture, that I (κ ) � IPS(κ ).
We show that the relaxation time [25] of the actual process
can be bounded by that of a suitably chosen partial swap
model: τrel(k) � τ PS

rel (k). The conjecture is then that τrel(k) �
τ PS

rel (k) ⇒ μ(k) � μPS(k), where μ(k) is a particular rate as-
sociated with the actual process and μPS(k) is defined in
Eq. (11). From μ(k) � μPS(k) one can prove I (κ ) � IPS(κ )
(see Ref. [23] for details).
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FIG. 2. Bounds on the performance of SA in solving a 7-spin SK
model. Ti = 1.8 is decreased linearly to Tf = 0.8 in κ steps. Left:
The performance error Lκ and our bounds in Eq. (7) and in Eq. (10),
as well as the performance error of the initial state L0. Right: The
accumulated relative entropy due to temperature change I(κ ) with
our upper bound IPS(κ ) and our lower bound from the trade-off
relation between I(κ ) and 〈AD〉κ (for 〈AD〉κ � 1/2).

Finally, as in the derivation of Eq. (7), we combine the
above bounds on �(κ ) and I (κ ), Pinsker’s inequality and
Eq. (3), to obtain Eq. (10).

Tightness of bound. To show the tightness of the SA version
of the bound [Eq. (10)] we present, in Fig. 2, simulation results
on a 7-spin Sherrington-Kirkpatrick (SK) model, which is a
fully connected spin glass with Gaussian couplings [35,36].
The left plot of Fig. 2 shows that both bounds of Lκ out-
perform the constant bound L0 after a few steps, capturing
the relaxation dynamics in SA. The right plot verifies that
IPS(κ ) � I (κ ). The right plot also verifies the trade-off re-
lation between I (κ ) and 〈AD〉κ , given after Eq. (7), (using
〈AD〉κ � 1/2). One sees that the restriction on I (κ ) gets
tighter as κ increases. For large time κ , I (κ ) ∼ 1/κ , in line
with the trade-off relation. A similar agreement was found for
another type of cooling schedule [23].

Further numerical results provided in the Supplemental
Material [30] show the tightness of Eqs. (7) and (10) for
SK models with different sizes n. Equation (10) is found
to be generally tighter for the common case of high initial
temperature.

Physical annealing. In this section, we consider the possi-
bility of implementing our results in real annealing processes.
By outlining a dynamic calorimetry method [37], we will
show that the energy difference Ep(t ) − Eγ (t ) can be mea-
sured during the annealing process. Owing to this technique,
the generally unknown distance Lt [Eq. (1)] can be bounded
by (see Supplemental Material [30] for details)

Lt � L̃t := 2[Ep(t ) − Eγ (τ )]


Emax
, (12)

where 
Emax = maxi Ei − mini Ei as defined previously is the
energy scale of the system. The annealing performance error
Lτ is thus bounded from below and above as

L̃τ � Lτ �
L̃0 +

√
−L̃2

0 + 〈A〉τ τ [2I (τ )(〈A〉τ τ + 1)]

〈A〉τ τ + 1
. (13)

BathSystem Apparatus

sys app

FIG. 3. Calorimetric setup. The system in contact with the heat
bath undergoes an annealing process as the bath temperature is tuned
downwards. The external apparatus is accessible to supply a specific
amount of heat to the bath to control the temperature of the bath and
thus to apply different cooling schedules. The bath is assumed to be
in thermal equilibrium all the time.

In order to measure the quantities in Eq. (13), we propose
a calorimetric setup for the annealing process (see Fig. 3)
where the system is connected to a heat bath whose tem-
perature is controlled by exchanging heat with an external
apparatus. The bath is assumed to be in thermal equilibrium
at all times, such that its heat capacity Cbath(T ) is well de-
fined. The energy change of the bath is given by dEbath

γ =
dQsys + dQapp = Cbath(T )dT bath, where dQsys and dQapp are
the heat transferred to the bath from the system and the ap-
paratus, respectively. The control of Qapp allows us to adjust
the bath temperature to realize different cooling schedules
T bath(t ). By energy conservation, dEp = −dQsys, which gives
dEp = dQapp − Cbath(T )dT bath. Referring to the heat capacity
of the system Csys(T ), we can also calculate the change in
the equilibrium energy dEγ = Csys(T )dT bath. Hence, integrat-
ing from time 0 to t , we obtain Ep(t ) − Eγ (t ) = Qapp(t ) −∫ T (t )

Ti
[Cbath(T ′) + Csys(T ′)]dT ′, where we have used Ep(0) =

Eγ (0). By measuring Qapp(t ), we can calculate I (τ ) using
Eq. (4), gaining

I (τ ) =
∫ τ

0
Qapp(t )β̇(t )dt

+
∫ Tf

Ti

∫ T

Ti

Cbath(T ′) + Csys(T ′)
T 2

dT ′dT . (14)

To evaluate Eq. (13) via this calorimetric scheme, we more-
over need L̃0 = − 2


Emax

∫ Tf

Ti
Csys(T )dT , and L̃τ = 2Qapp(τ )


Emax
−

2
∫ Tf

Ti

Cbath (T )+Csys (T )

Emax

dT . One way to estimate 
Emax, is to
posit that the energy spectrum exhibits certain statistics, e.g.,
Wigner-Dyson statistics [38], and thus obtain a bound on

Emax up to an error probability. As for the time-averaged
activity 〈A〉τ in Eq. (13), it is conjectured that 〈A〉τ relates
to the diffusion coefficient in an overdamped Langevin equa-
tion [21,22]. Under this conjecture, 〈A〉τ could be estimated
by measuring the diffusion coefficient of the system. Taken to-
gether, the above arguments suggest it may be experimentally
viable to evaluate Eq. (13) to gauge the finite-time perfor-
mance of physical annealing.

Summary and outlook. We derived a universal bound on
the distance from the system state to the final thermal state
in a general annealing process. The bound captures the an-
nealing time dependence of the annealing performance and
can be applied to any system and any cooling schedule. Two
evolutionary history-dependent quantities, 〈A〉τ and I (τ ),

L052105-4



GENERAL LIMIT TO THERMODYNAMIC ANNEALING … PHYSICAL REVIEW E 108, L052105 (2023)

appearing in the bound, were shown to follow a trade-off
relation forced by the initial distance L0. We applied this
bound on a general two-level system where the partial swap
model was adopted to remove the history dependence. We
then generalized this method to derive a history-independent
bound on the performance of the simulated annealing algo-
rithm. In real annealing processes, we provided performance
guarantees from both directions and outlined a calorimetric
experimental setup to measure the involved parameters.

Apart from implementing the method presented here for
guaranteeing the performance of annealing in different scenar-

ios, the approach can be generalized in several directions. We
expect that other tools from nonequilibrium thermodynamics
such as fluctuation theorems [39–41] and single-shot statis-
tical mechanics [42–45] can be adapted similarly to analyze
simulated annealing, and that the approach can be generalized
to variants of annealing such as parallel tempering [46].

Acknowledgments. We gratefully acknowledge valuable
discussions with Alexander Yosifov, Barry Sanders, Li Xiao,
and Yu Chai. This work was supported by the National Natural
Science Foundation of China (Grants No. 12050410246 and
No. 12005091).

[1] W. D. Callister and D. G. Rethwisch, Materials Science and
Engineering: An Introduction, Vol. 9 (Wiley, Hoboken, NJ,
2018).

[2] S. Kirkpatrick, C. D. Gelatt, and M. P. Vecchi, Optimization by
simulated annealing, Science 220, 671 (1983).

[3] D. Bertsimas and J. Tsitsiklis, Simulated annealing, Stat. Sci. 8,
10 (1993).

[4] L. Ingber, Simulated annealing: Practice versus theory, Math.
Comput. Model. 18, 29 (1993).

[5] P. Salamon, P. Sibani, and R. Frost, Facts, Conjectures, and
Improvements for Simulated Annealing (SIAM, Philadelphia,
2002).

[6] R. C. Bernardi, M. C. Melo, and K. Schulten, Enhanced
sampling techniques in molecular dynamics simulations of bio-
logical systems, Biochim. Biophys. Acta, Gen. Subj. 1850, 872
(2015).

[7] O. Ekren and B. Y. Ekren, Size optimization of a PV/wind
hybrid energy conversion system with battery storage using
simulated annealing, Appl. Energy 87, 592 (2010).

[8] R. Meiri and J. Zahavi, Using simulated annealing to optimize
the feature selection problem in marketing applications, Eur. J.
Oper. Res. 171, 842 (2006).

[9] N. Mohseni, P. L. McMahon, and T. Byrnes, Ising machines as
hardware solvers of combinatorial optimization problems, Nat.
Rev. Phys. 4, 363 (2022).

[10] B. Hajek, Cooling schedules for optimal annealing, Math. Oper.
Res. 13, 311 (1988).

[11] F. Cai, S. Kumar, T. V. Vaerenbergh, X. Sheng, R. Liu, C. Li,
Z. Liu, M. Foltin, S. Yu, Q. Xia, J. J. Yang, R. Beausoleil,
W. D. Lu, and J. P. Strachan, Power-efficient combinatorial
optimization using intrinsic noise in memristor Hopfield neural
networks, Nat. Electron. 3, 409 (2020).

[12] D. Mitra, F. Romeo, and A. Sangiovanni-Vincentelli, Con-
vergence and finite-time behavior of simulated annealing, in
Proceedings of the IEEE Conference on Decision and Control
(IEEE, New York, 1985), p. 761.

[13] A. Nolte and R. Schrader, A note on the finite time be-
havior of simulated annealing, Math. Oper. Res. 25, 476
(2000).

[14] E. Fontenas and O. François, Improved bounds for the large-
time behaviour of simulated annealing, J. Appl. Probab. 40, 961
(2003).

[15] A. A. Albrecht, A problem-specific convergence bound for sim-
ulated annealing-based local search, Lect. Notes Comput. Sci.
3045, 405 (2004).

[16] A. Nolte and R. Schrader, Simulated annealing and its problems
to color graphs, in Algorithms — ESA ’96, edited by J. Diaz and
M. Serna (Springer, Berlin, 1996), pp. 138–151.

[17] U. Seifert, Stochastic thermodynamics, fluctuation theorems
and molecular machines, Rep. Prog. Phys. 75, 126001
(2012).

[18] M. Esposito and C. Van den Broeck, Three faces of the second
law: I. Master equation formulation, Phys. Rev. E 82, 011143
(2010).

[19] M. Esposito and C. V. D. Broeck, Second law and Lan-
dauer principle far from equilibrium, Europhys. Lett. 95, 40004
(2011).

[20] N. Shiraishi, K. Funo, and K. Saito, Speed limit for clas-
sical stochastic processes, Phys. Rev. Lett. 121, 070601
(2018).

[21] A. Dechant, Minimum entropy production, detailed balance and
Wasserstein distance for continuous-time Markov processes,
J. Phys. A: Math. Theor. 55, 094001 (2021).

[22] T. Van Vu and K. Saito, Thermodynamic unification of opti-
mal transport: Thermodynamic uncertainty relation, minimum
dissipation, and thermodynamic speed limits, Phys. Rev. X 13,
011013 (2023).

[23] Y. Luo, Y.-Z. Zhen, X. Liu, D. Ebler, and O. Dahlsten, fol-
lowing paper, Bound on annealing performance from stochastic
thermodynamics, with application to simulated annealing, Phys.
Rev. E 108, 054119 (2023).

[24] V. N. Kampen, Stochastic Processes in Physics and Chemistry
(Elsevier, Amsterdam, 2007).

[25] D. A. Levin and Y. Peres, Markov Chains and Mixing Times,
Vol. 107 (American Mathematical Society, Providence, RI,
2017).

[26] Y.-Z. Zhen, D. Egloff, K. Modi, and O. Dahlsten, Universal
bound on energy cost of bit reset in finite time, Phys. Rev. Lett.
127, 190602 (2021).

[27] M. Pinsker and A. Feinstein, Information and Information Sta-
bility of Random Variables and Processes, Holden-Day Series
in Time Series Analysis (Holden-Day, San Francisco, 1964).

[28] V. Scarani, M. Ziman, P. Stelmachovic, N. Gisin, and V. Buzek,
Thermalizing quantum machines: Dissipation and entangle-
ment, Phys. Rev. Lett. 88, 097905 (2002).

[29] C. Browne, A. J. P. Garner, O. C. O. Dahlsten, and V. Vedral,
Guaranteed energy-efficient bit reset in finite time, Phys. Rev.
Lett. 113, 100603 (2014).

[30] See Supplemental Material at http://link.aps.org/supplemental/
10.1103/PhysRevE.108.L052105 for the description of the par-

L052105-5

https://doi.org/10.1126/science.220.4598.671
https://doi.org/10.1214/ss/1177011077
https://doi.org/10.1016/0895-7177(93)90204-C
https://doi.org/10.1016/j.bbagen.2014.10.019
https://doi.org/10.1016/j.apenergy.2009.05.022
https://doi.org/10.1016/j.ejor.2004.09.010
https://doi.org/10.1038/s42254-022-00440-8
https://doi.org/10.1287/moor.13.2.311
https://doi.org/10.1038/s41928-020-0436-6
https://doi.org/10.1287/moor.25.3.476.12211
https://doi.org/10.1239/jap/1067436093
https://doi.org/10.1007/978-3-540-24767-8_42
https://doi.org/10.1088/0034-4885/75/12/126001
https://doi.org/10.1103/PhysRevE.82.011143
https://doi.org/10.1209/0295-5075/95/40004
https://doi.org/10.1103/PhysRevLett.121.070601
https://doi.org/10.1088/1751-8121/ac4ac0
https://doi.org/10.1103/PhysRevX.13.011013
https://doi.org/10.1103/PhysRevE.108.054119
https://doi.org/10.1103/PhysRevLett.127.190602
https://doi.org/10.1103/PhysRevLett.88.097905
https://doi.org/10.1103/PhysRevLett.113.100603
http://link.aps.org/supplemental/10.1103/PhysRevE.108.L052105


LUO, ZHEN, LIU, EBLER, AND DAHLSTEN PHYSICAL REVIEW E 108, L052105 (2023)

tial swap model, a lower bound for Lt , and more numerical
results for SK models.

[31] M. P. Desai and V. B. Rao, On the convergence of re-
versible Markov chains, SIAM J. Matrix Anal. Appl. 14, 950
(1993).

[32] R. J. Glauber, Time-dependent statistics of the Ising model,
J. Math. Phys. 4, 294 (1963).

[33] D. A. Levin, Malwina, J. Luczak, Y. Peres, D. A. Levin, M. J.
Luczak, and Y. Peres, Glauber dynamics for the mean-field
Ising model: Cut-off, critical power law, and metastability,
Probab. Theory Relat. Fields 146, 223 (2010).

[34] J. C. Walter and G. T. Barkema, An introduction to Monte Carlo
methods, Physica A 418, 78 (2015).

[35] D. Sherrington and S. Kirkpatrick, Solvable model of a spin-
glass, Phys. Rev. Lett. 35, 1792 (1975).

[36] D. Panchenko, The Sherrington-Kirkpatrick Model (Springer,
New York, 2013).

[37] J. L. Garden, Macroscopic non-equilibrium thermodynamics in
dynamic calorimetry, Thermochim. Acta 452, 85 (2007).

[38] L. D’Alessio, Y. Kafri, A. Polkovnikov, and M. Rigol, From
quantum chaos and eigenstate thermalization to statistical me-
chanics and thermodynamics, Adv. Phys. 65, 239 (2016).

[39] C. Jarzynski, Nonequilibrium equality for free energy differ-
ences, Phys. Rev. Lett. 78, 2690 (1997).

[40] G. E. Crooks, Entropy production fluctuation theorem and the
nonequilibrium work relation for free energy differences, Phys.
Rev. E 60, 2721 (1999).

[41] M. Esposito, U. Harbola, and S. Mukamel, Nonequilibrium
fluctuations, fluctuation theorems, and counting statistics in
quantum systems, Rev. Mod. Phys. 81, 1665 (2009).

[42] O. C. Dahlsten, R. Renner, E. Rieper, and V. Vedral, Inadequacy
of von Neumann entropy for characterizing extractable work,
New J. Phys. 13, 053015 (2011).

[43] L. del Rio, J. Åberg, R. Renner, O. Dahlsten, and V. Vedral, The
thermodynamic meaning of negative entropy, Nature (London)
474, 61 (2011).

[44] M. Horodecki and J. Oppenheim, Fundamental limitations for
quantum and nanoscale thermodynamics, Nat. Commun. 4,
2059 (2013).

[45] J. Åberg, Truly work-like work extraction via a single-shot
analysis, Nat. Commun. 4, 1925 (2013).

[46] D. J. Earl and M. W. Deem, Parallel tempering: Theory, applica-
tions, and new perspectives, Phys. Chem. Chem. Phys. 7, 3910
(2005).

L052105-6

https://doi.org/10.1137/0614063
https://doi.org/10.1063/1.1703954
https://doi.org/10.1007/s00440-008-0189-z
https://doi.org/10.1016/j.physa.2014.06.014
https://doi.org/10.1103/PhysRevLett.35.1792
https://doi.org/10.1016/j.tca.2006.08.017
https://doi.org/10.1080/00018732.2016.1198134
https://doi.org/10.1103/PhysRevLett.78.2690
https://doi.org/10.1103/PhysRevE.60.2721
https://doi.org/10.1103/RevModPhys.81.1665
https://doi.org/10.1088/1367-2630/13/5/053015
https://doi.org/10.1038/nature10123
https://doi.org/10.1038/ncomms3059
https://doi.org/10.1038/ncomms2712
https://doi.org/10.1039/b509983h

