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We investigate the thermodynamics of general nonequilibrium processes stopped at stochastic times. We
propose a systematic strategy for constructing fluctuation-theorem-like martingales for each thermodynamic
functional, yielding a family of stopping-time fluctuation theorems. We derive second-law-like thermodynamic
inequalities for the mean thermodynamic functional at stochastic stopping times, the bounds of which are
even stronger than the thermodynamic inequalities resulting from the traditional fluctuation theorems when
the stopping time is reduced to a deterministic one. Numerical verification is carried out for three well-known
thermodynamic functionals, namely, entropy production, free energy dissipation, and dissipative work. These
universal equalities and inequalities are valid for arbitrary stopping strategies, and thus provide a comprehensive
framework with insights into the fundamental principles governing nonequilibrium systems.
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Introduction. Stochastic thermodynamics extends classical
thermodynamics to individual trajectories of nonequilibrium
processes, encompassing stationary or transient systems with
or without external driving forces [1–4]. A first-law-like
energy balance equality and various second-law-like ther-
modynamic inequalities can be derived from fluctuating
trajectories. Fluctuation theorems emerging from stochastic
thermodynamics, as the equality versions of the second law,
impose constraints on probability distributions of thermody-
namic functionals along single stochastic trajectories [5–19].

Recently, a gambling demon, which stops the processes at
random times, has been proposed for nonstationary stochas-
tic processes without external driving force and feedback of
control under an arbitrary deterministic protocol [20–22]. The
demon employs martingales, a concept that has been proposed
in probability theory for more than 70 years. The authors
constructed a martingale for dissipative work, and obtained
a stopping-time fluctuation theorem by applying the well-
known Doob’s optional stopping theorem, which states that
the average of a martingale at a stopping time is equal to the
average of its initial value [23].

On the other hand, we already know that there are three
faces in stochastic thermodynamics [10,24–26], namely, (to-
tal) entropy production, housekeeping heat (adiabatic entropy
production), and free energy dissipation (nonadiabatic entropy
production). In a system with no external driving force, the
housekeeping heat vanishes and the entropy production is
equal to the free energy dissipation. However, in general
nonstationary stochastic processes with an external driving
force as well as a time-dependent protocol, we are curious
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about whether different martingales can be constructed for
entropy production and free energy dissipation separately,
while the martingale for housekeeping heat is straightforward
to construct without any compensated term [27]. Both entropy
production and free energy dissipation belong to a class of
functionals along a single stochastic trajectory, i.e., general
backward thermodynamic functionals, which has been rigor-
ously defined in [28]. Housekeeping heat belongs to another
class, called forward thermodynamic functionals [27,28], and
entropy production is both a forward and backward martingale
at steady state [28,29].

Therefore, in this Letter, we propose a systematic strat-
egy for constructing a class of martingales applicable to
each general backward thermodynamic functional, and take
entropy production, free energy dissipation, and dissipative
work as illustrative examples. Notably, the construction of
martingales for forward thermodynamic functionals has been
previously established in [28]. By leveraging our constructed
martingales, we derive a class of stopping-time fluctuation
theorems that hold for each general backward thermodynamic
functional, followed by second-law-like thermodynamic in-
equalities for arbitrary stopping times. When the stochastic
stopping time reduces to a deterministic one, we exploit the
additional degree of freedom present in our constructed mar-
tingales, enabling us to obtain a sharper non-negative bound
for the mean thermodynamic functional. In particular, we
obtain a stronger inequality for the dissipative work than that
obtained through classic Jarzynski equality.

Stopping-time fluctuation theorems and thermodynamic in-
equalities. First, we will give an even more general definition
of the backward thermodynamic functional than [28]. We
consider a stochastic thermodynamic system with tempera-
ture β = 1

kBT . We denote the state (discrete or continuous)
of the system at time s � 0 by X (s), whose stochastic
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dynamics is governed by a prescribed deterministic protocol
� = {λ(s) : s � 0}. For a given duration [0, t], the trajecto-
ries are traced by the coordinates in phase space, denoted
by x[0,t] ≡ {x(s)}0�s�t . We further denote the probability of
observing a given trajectory x[0,t] by PX (x[0,t] ), and the prob-
ability density of X (s) by �X (x, s) at any given time s. The
general backward thermodynamic functional in the duration
[0, t] is defined by {X (s)}0�s�t and another stochastic process
{Y (s)} with protocol �̃ = {λ̃(s) : s � 0} (can be either the
same as or different from �). The only condition is that the
processes {X (s)}0�s�t and {Y (s)}0�s�t are absolutely contin-
uous with each other, i.e., the probability PX (x[0,t] ) > 0 if
and only if PY (x[0,t] ) > 0 for any given trajectory x[0,t]. We
define a third process {Zt (s)}0�s�t driven by the time-reversed
protocol �̃r,t = {λ̃(t − s) : 0 � s � t} of {Y (s)} up to time t .
The probability density of Zt (s) is denoted by �Zt

(x, s) for any
given time s � t . Note that there is also an additional degree
of freedom, i.e., the arbitrary choice of the initial distribution
�Zt

(x, 0) of {Zt (s)}0�s�t for any t , because for different t , only
the protocols inherited from {Y (s)} are closely related to each
other, not the initial distributions.

The probability of observing a given trajectory x[0,t] in
{Zt (s)}0�s�t is denoted by PZt

(x[0,t] ). We define a general
backward thermodynamic functional by

Ft (x[0,t] ) ≡ 1

β
ln

PX (x[0,t] )

PZt (x̃[0,t] )
,

where x̃[0,t] ≡ {x(t − s)}0�s�t denotes the time reversal of
x[0,t] in the duration [0, t].

It is straightforward to derive the fluctuation theorem
for Ft :

〈e−βFt 〉 = 1.

However, Ft is generally not a martingale [28].
A stochastic process {M(t )} is called a martingale with

respect to {X (t )} (hereinafter referred to as martingale) if it
is integrable and the average conditioned on the past satisfies

〈M(t )|X[0,s]〉 = M(s),

for any 0 � s � t . Doob’s optional stopping theorem in mar-
tingale theory [30] states that the average of the martingale at
any stochastic stopping time equals the average at the initial
time, i.e.,

〈M(τ )〉 = 〈M(0)〉,
where τ is a stopping time, defined by any stopping strategy to
decide whether to stop a process based on the current position
and past events.

For any given time interval [0, T ], we would like to add a
compensated term δt as a function of X (t ) and t , to Ft , so that
e−β(Ft +δt ) becomes a martingale, i.e.,

〈e−β(FT +δT )|X[0,t]〉 = e−β(Ft +δt ),

for any t ∈ [0, T ].
Then we propose

δt [X (t )] ≡ 1

β
ln

�Zt
(X (t ), 0)

�̃ZT (X (t ), T − t )
, (1)

in which �̃ZT
(·, T − t ) is the distribution of ZT (T − t ) with

any arbitrary initial distribution �̃ZT
(·, 0). �̃ZT

(·, 0) is not nec-
essarily the same as �ZT

(·, 0) and contributes another extra
degree of freedom. It is called “stochastic distinguishability”
in [20], measuring the difference between the distribution
�Zt

(·, 0) with respect to the distribution �̃ZT
(·, T − t ). During

the application to entropy production and free energy dissi-
pation (see below), �Zt

(·, 0) is set to be the distribution of X
at time t , and δt is the stochastic distinguishability between
the distribution of the original process with respect to the
distribution in a reference time-reversed process at the same
time [20].

We apply the optional stopping theorem to derive the gen-
eral stopping-time fluctuation theorem

〈e−β(Fτ +δτ )〉 = 〈e−β{Ft (X[0,t] )+δt [X (t )]}|t=τ 〉 = 1, (2)

where the average 〈·〉 is taken over many trajectories
x[0,τ ], stopped at the stopping time τ , i.e., 〈M(t )|t=τ 〉 =∑

x[0,τ ]
PX (x[0,τ ] )M(τ ). This type of fluctuation theorem has

been proposed for some specific thermodynamic functionals,
such as entropy production [29] and dissipative work [20,22].

By Jensen’s inequality,

〈Fτ 〉 � −〈δτ 〉. (3)

The left-hand side is independent of �̃ZT
. Hence we can im-

prove the above inequality into

〈Fτ 〉 � sup
�̃ZT

−〈δτ 〉. (4)

A special situation is when the stochastic stopping time
τ is fixed at a given deterministic time t with probability 1,
followed by 〈

e−β(Ft +δt )
〉 = 1,

and

〈Ft 〉 � sup
�̃ZT

−〈δt 〉 = 1

β

〈
ln

�X (X (t ), t )
�Zt (X (t ), 0)

〉
� 0, (5)

in which 〈ln �X (X (t ),t )
�Zt (X (t ),0)

〉 is the relative entropy of �X (·, t ) with

respect to �Zt
(·, 0). The inequality (5) is stronger than the

traditional inequality 〈Ft 〉 � 0 derived from the well-known
fluctuation theorem 〈e−βFt 〉 = 1, as long as �X (·, t ) is not the
same as �Zt

(·, 0).
As a corollary, we can derive a certain bound for the in-

fimum of Ft + δt following the strategy in [31], which holds
for both equilibrium processes and for general nonequilibrium
processes. According to Doob’s maximal inequality, we have

Pr

(
sup

0�t�T
e−β(Ft +δt ) � λ

)
� 1

λ
〈e−β(Ft +δt )〉 = 1

λ
,

for any λ � 0. It is equivalent to

Pr

(
inf

0�t�T
{β(Ft + δt )} � −s

)
� 1 − e−s

for s � 0. It implies the random variable − inf0�t�T {β(Ft +
δt )} dominates stochastically over an exponential random
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variable with the mean of 1. Thus, we find the following
universal bound for the mean infimum of β(Ft + δt ), i.e.,〈

inf
0�t�T

(Ft + δt )

〉
� − 1

β
= −kBT.

Applications. The thermodynamic functional Ft becomes
the (total) entropy production Stot(t ) up to time t if the process
{Y (t )} is driven by exactly the same protocol as {X (t )}, and
the initial distribution of Zt is taken to be the distribution of
X (t ) [7,8,32,33], i.e., �Zt

(·, 0) = �X (·, t ). Then

δ
Stot
t [X (t )] ≡ 1

β
ln

�X (X (t ), t )
�̃ZT (X (t ), T − t )

, (6)

and e−β[Stot (t )+δ
Stot
t ] is a martingale. It is followed by

〈e−β[Stot (τ )+δ
Stot
τ ]〉 = 1, (7)

for any stopping time τ , and 〈Stot(τ )〉 � −〈δStot
τ 〉.

The thermodynamic functional Ft becomes the free energy
dissipation (nonadiabatic entropy production) fd (t ) if the pro-
cess {Y (t )} is driven by the adjoint protocol of {X (t )}, and also
the initial distribution of Zt is set as the distribution of X (t ),
i.e., �Zt

(·, 0) = �X (·, t ) [10,24–26,33]. Then

δ
fd
t [X (t )] ≡ 1

β
ln

�X (X (t ), t )
�̃ZT (X (t ), T − t )

, (8)

and e−β[ fd (t )+δ
fd
t ] is a martingale. It is followed by

〈e−β[ fd (τ )+δ
fd
τ ]〉 = 1, (9)

for any stopping time τ , and 〈 fd (τ )〉 � −〈δ fd
τ 〉.

Let πX (t ) be the pseudo-stationary distribution of X (t ) cor-
responding to the protocol λ(t ), i.e., the stationary distribution
of X (t ) if the protocol is fixed at λ(t ). The thermodynamic
functional Ft becomes the dissipative work Wd (t ) up to time
t , if the initial distribution of {X (t )} is πX (0), the process
{Y (t )} is driven by the adjoint protocol of {X (t )}, and the
initial distribution of Zt is taken as the pseudo-stationary
distribution of X (t ), i.e., �Zt

(·, 0) = πX (·, t ) [5–7,20,33,34].
It is a generalized definition of dissipative work, which can be
defined in a nonequilibrium system in the presence of external
driving force, i.e., nonvanishing housekeeping heat. In the
original definition of dissipative work that was used only dur-
ing the nonequilibrium transitions between two equilibrium
states [5–7,20,22], the housekeeping heat vanishes and the
adjoint protocol is the same as the original one. Then

δWd
t [X (t )] ≡ 1

β
ln

πX (X (t ), t )
�̃ZT (X (t ), T − t )

, (10)

and e−β[Wd (t )+δ
Wd
t ] is a martingale. It is followed by

〈e−β[Wd (τ )+δ
Wd
τ ]〉 = 1, (11)

for any stopping time τ , and 〈Wd (τ )〉 � −〈δWd
τ 〉.

For the mean Wd up to any fixed time t , we can obtain a
stronger inequality than 〈Wd〉 � 0. Applying (5), we have

〈Wd (t )〉 � 1

β

〈
ln

�X (X (t ), t )
πX (X (t ), t )

〉
� 0. (12)

The fluctuation relation of the dissipative work Wd at stopping
times is also investigated in [20,22]. The compensated term
in [22] is the same as δ

Wd
t , if we take �̃ZT

(x, 0) = πX (x, T ).
However, the compensated term δt defined in [20] is the
same as δ

Stot
t . The mathematical derivation here implies that

we should use corresponding δt for different thermodynamic
functionals.

Numerical verifications. Many mesoscopic biochemical
processes such as the kinetics of enzyme or motor molecules,
can be modeled in terms of transition rates between discrete
states. We apply our theory to a simple stochastic process with
only three states. The time-dependent transition rates between
different discrete states are set as follows:

k12(t ) = t, k23(t ) = 3t2, k31(t ) = 1;

k21(t ) = t2, k32(t ) = 2, k13(t ) = 2t,

in which the chemical-driven energy

	G(t ) = kBT ln
k12(t )k23(t )k31(t )

k21k32(t )k13(t )
= kBT ln

3

4
< 0.

For the three thermodynamic functionals Stot, fd , and Wd ,
the stopping strategy for τ is set as follows: the process is
stopped at τ < T only when the functional reaches a given
threshold value before T ; while the process is stopped at the
final time τ = T if the threshold value is never reached during
the duration [0, T ].

Figures 1(a)–1(c) show the numerical results of 〈Stot(τ )〉
versus −〈δStot

τ 〉, 〈 fd (τ )〉 versus −〈δ fd
τ 〉, and 〈Wd (τ )〉 versus

−〈δWd
τ 〉, as functions of the threshold value. Figures 1(d)–1(f)

test the stopping-time fluctuation relations (7), (9), and (11),
with and without the compensated term δt .

In the special situation that τ is reduced to a deterministic
t , Fig. 1(g) shows that the inequality (12) for 〈Wd (t )〉 is not
only stronger than the inequality 〈Wd (t )〉 � −〈δWd

t 〉, but also
the traditional Jarzynski inequality 〈Wd (t )〉 � 0.

Another example is the stochastic dynamics of a colloidal
particle with diffusion coefficient D in a time-dependent po-
tential V (t ). The dynamics obeys the Langevin equation

dX (t )

dt
= −∂V

∂x
(X (t ), t ) + ξ (t ),

where ξ is a Gaussian white noise with zero mean and auto-
correlation 〈ξ (t )ξ (t ′)〉 = 2Dδ(t − t ′).

In such a stochastic system, the housekeeping heat equals
to zero and thus the entropy production Stot(t ) coincides with
the free energy dissipation fd (t ). We follow the same stopping
strategy as in the discrete-state model of Fig. 1, and show the
numerical results of 〈Stot(τ )〉 versus −〈δStot

τ 〉 in Fig. 2(a) and
〈Wd (τ )〉 versus −〈δWd

τ 〉 in Fig. 2(b) with T = 3. Figures 2(c)
and 2(d) test the stopping-time fluctuation relations (7) and
(11), with and without the compensated term δt .

In the special situation that τ is reduced to a deterministic t ,
Fig. 2(e) shows that the conclusion (12) for 〈Wd (t )〉 is stronger
than both the inequality 〈Wd (t )〉 � −〈δWd

t 〉 and the Jarzynski
inequality 〈Wd (t )〉 � 0.

In Figs. 1 and 2, the averaged thermodynamic function-
als may be negative under certain stopping strategy, but the
general stopping-time fluctuation relations and related ther-
modynamic inequalities always hold. See [33] for more details
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FIG. 1. Numerical verification through a three-state jumping process (see the main text for details). (a) The entropy production 〈Stot(τ )〉,
(b) the free energy dissipation 〈 fd (τ )〉, and (c) the dissipative work 〈Wd (τ )〉 (blue) versus the corresponding compensation items (orange, red,
and purple) as functions of the threshold value for the duration T = 1. (d)–(f) Test of the stopping-time fluctuation theorems (7), (9), and
(11) with and without the compensated δt . (g) When τ is fixed at a deterministic t , the dissipative work 〈Wd (t )〉 (blue), the corresponding
compensation item −〈δWd

t 〉 (red, orange, and purple), and the relative entropy 〈ln �X (X (t ),t )
πX (X (t ),t ) 〉 (yellow) as functions of t for 0 � t � T . See [33]

for the different initial distributions for different δi
τ , i = 1, 2, 3 of each subfigure. 〈δ1,Wd

τ 〉 in (c) and 〈δ1,Wd
t 〉 in (g) are exactly the bound in [22].

β is set to be 1.

of the numerical verification as well as the expressions of all
three thermodynamic functionals.

Derivation. First, we notice that{
P Z̃T,t

(X̃[0,t] )

PX (X[0,t] )

}
0�t�T

(13)

is a martingale for t � T , where X̃[0,t] ≡ {X (t − s)}0�s�t de-
notes the time reversal of X[0,t] in the duration [0, t], and
P Z̃T,t

(x[0,t] ) denotes the probability of observing a given
trajectory x[0,t] in {Z̃T,t (s) = ZT (s + T − t )}0�s�t . The distri-
bution of ZT (0) is given by �̃ZT

(·, 0).
The Markovian property of the process PX gives

PX (X[0,T ] ) = PX (X[0,T ]|X[0,t] )PX (X[0,t] ), (14)

then we have

〈
P Z̃T,T

(X̃[0,T ] )

PX (X[0,T ] )

∣∣∣∣∣X[0,t]

〉
=

∑
X[t,T ]

P Z̃T,T
(X̃[0,T ] )

PX (X[0,T ] )
PX (X[0,T ]|X[0,t] )

=
∑
X[t,T ]

P Z̃T,T
(X̃[0,T ] )

PX (X[0,t] )
, (15)

where the first equality follows from the definition of condi-
tional expectation, and we use (14) in the second equality.

For 0 � u � s � T , let X̃[0,T ](u, s) be the part of the
trajectory X̃[0,T ] in the duration [u, s], then X[t,T ] and
X̃[0,T ](0, T − t ) are exactly the time reversal of each other.
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FIG. 2. Numerical verification through a diffusion process (see the main text for details). (a) The entropy production 〈Stot(τ )〉 and (b) the
dissipative work 〈Wd (τ )〉 (blue) versus the corresponding compensation items (red, orange, and purple) as functions of the threshold value
for the duration T = 3. (c),(d) Test of the stopping-time fluctuation theorems (7) and (11) with and without δt . (e) When τ is reduced to a
deterministic t , the dissipative work 〈Wd (t )〉 (blue), the corresponding compensation item −〈δWd

t 〉 (red, orange, and purple), and the relative
entropy 〈ln �X (X (t ),t )

πX (X (t ),t ) 〉 (yellow) as functions of t for 0 � t � T . In this example, V (x, t ) = (t + 4)(4x − t )2/128, D = 1. See [33] for the

different initial distributions in different δi
τ , i = 1, 2, 3 of each subfigure. 〈δ1,Wd

τ 〉 in (b) and 〈δ1,Wd
t 〉 in (e) are exactly the bound in [22]. β is set

to be 1.

Thus ∑
X[t,T ]

P Z̃T,T
(X̃[0,T ] ) =

∑
X̃[0,T ] (0,T −t )

P Z̃T,T
(X̃[0,T ] )

=P Z̃T,T
[X̃[0,T ](T − t, T )]

=P Z̃T,t
(X̃[0,t] ), (16)

in which the last equality comes from the definition of P Z̃T,t

and X̃[0,T ](T − t, T ) = X̃[0,t]. Combining (15) and (16) results
in 〈

P Z̃T,T
(X̃[0,T ] )

PX (X[0,T ] )

∣∣∣∣∣X[0,t]

〉
= P Z̃T,t

(X̃[0,t] )

PX (X[0,t] )
,

which is exactly the definition of the martingale for (13).
Second, we show that {e−β(Ft +δt )}0�t�T is exactly the mar-

tingale (13).
By Markovian property, and note that the initial distribu-

tion of Z̃T,t is �̃ZT
(·, T − t ),

P Z̃T,t
(X̃[0,t] ) = P Z̃T,t

[X̃[0,t]|X̃ (0)]�̃ZT
(X (t ), T − t ),

PZt
(X̃[0,t] ) = PZt

[X̃[0,t]|X̃ (0)]�Zt
(X (t ), 0). (17)

Notice that {Z̃T,t (s)}0�s�t and {Zt (s)}0�s�t are driven by the
same protocol {λ̃(t − s) : 0 � s � t}; we have

P Z̃T,t
[X̃[0,t]|X̃ (0)] = PZt

[X̃[0,t]|X̃ (0)],

which combined with (17) implies

P Z̃T,t
(X̃[0,t] )

PZt (X̃[0,t] )
= �̃ZT

(X (t ), T − t )
�Zt (X (t ), 0)

= e−βδt . (18)

And by the definition of Ft , we have

e−βFt = PZt
(X̃[0,t] )

PX (X[0,t] )
. (19)

Combining (18) and (19) shows that

e−β(Ft +δt ) = PZt
(X̃[0,t] )

PX (X[0,t] )

P Z̃T,t
(X̃[0,t] )

PZt (X̃[0,t] )
= P Z̃T,t

(X̃[0,t] )

PX (X[0,t] )
,

so {e−β(Ft +δt )}0�t�T is exactly the martingale (13), and the
general stopping-time fluctuation theorem (2) follows from
the Doob’s optional stopping theorem.

When the stochastic stopping time τ equals a deterministic
time t with probability 1, we decompose

−〈δt 〉 = 1

β

〈
ln

�̃ZT
(X (t ), T − t )

�Zt (X (t ), 0)

〉

= 1

β

〈
ln

�X (X (t ), t )
�Zt (X (t ), 0)

〉
+ 1

β

〈
ln

�̃ZT
(X (t ), T − t )

�X (X (t ), t )

〉
.
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By Jensen’s inequality, we know〈
ln

�̃ZT
(X (t ), T − t )

�X (X (t ), t )

〉
� ln

〈
�̃ZT

(X (t ), T − t )
�X (X (t ), t )

〉
= 0.

Furthermore, for any given t , we can choose �̃ZT
(·, 0) such

that �̃ZT
(x, T − t ) = �X (x, t ), which leads to

sup
�̃ZT

−〈δt 〉 = 1

β

〈
ln

�X (X (t ), t )
�Zt (X (t ), 0)

〉
� 0.

See [33] for more details of the derivation.
Conclusion. In summary, our study contributes a general

framework for understanding martingales constructed upon
thermodynamic functionals. We have successfully derived
and proven the stopping-time fluctuation theorems, accompa-
nied by second-law-like inequalities for mean thermodynamic
functionals stopped at stochastic times. Our results generalize
the recent gambling strategy and stopping-time fluctuation

theorems [20–22] to a very general setting. Our framework
encompasses the general definition of thermodynamic func-
tionals, accommodates various types of stochastic dynamics,
and allows for arbitrary stopping strategies. The validity and
applicability of our framework are supported by numerical
verifications conducted in stochastic dynamics with both dis-
crete and continuous states.

Furthermore, we highlight the significance of the addi-
tional degree of freedom introduced through the compensated
term δt , which leads to a strengthening of the inequality for
dissipative work compared to the well-known Jarzynski in-
equality when the stopping time is reduced to a deterministic
one. Overall, our results provide insights, detailed interpre-
tations, and improved bounds for the fundamental principles
underlying the second law of thermodynamics in the context
of stochastic processes.
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