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Speed limit, dissipation bound, and dissipation-time trade-off in thermal relaxation processes
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We investigate bounds on speed, nonadiabatic entropy production, and the trade-off relation between them for
classical stochastic processes with time-independent transition rates. Our results show that the time required
to evolve from an initial to a desired target state is bounded from below by the information-theoretical
∞-Rényi divergence between these states, divided by the total rate. Furthermore, we conjecture and provide
extensive numerical evidence for an information-theoretical bound on the nonadiabatic entropy production and
a dissipation-time trade-off relation that outperforms previous bounds in some cases..
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Introduction. Optimal control of a system’s evolution from
an initial to a desired target state is a crucial task [1–4],
with close ties to the optimal transport problem [5,6]. The
definition of “optimal” varies depending on the specific cost
function employed, which may include time, energy con-
sumption, dissipation, error, robustness, or trade-offs between
them. In addition to optimal control protocols, non-model-
specific fundamental bounds on the cost functions are of
significant interest [7]. For instance, in quantum systems,
rapid state transformations are usually desirable, thereby mo-
tivating extensive investigations of the so-called “quantum
speed limit” [8–10]. For a quantum system with a time-
independent Hamiltonian H , the time it needs to evolve from
the initial state ρ(i) to the final state ρ(f) is bounded from below
by (h̄ = 1)

τ � max

{L(ρ(i), ρ(f) )

�H
,

2L2(ρ(i), ρ(f) )

π〈H〉
}
, (1)

where L(ρ(i), ρ(f) ) is the Bures angle that quantifies the dis-
tance between the end points, and �H and 〈H〉 are variance
and average of the Hamiltonian, respectively [11,12].

Recent developments have extended the concept of speed
limits to classical stochastic processes, where entropy produc-
tion plays a crucial role [13–18]. For Markovian stochastic
processes with given initial and final probability distributions
p(i) and p(f), speed limits can be expressed as a trade-off
between entropy production � and time duration τ given by
(kB = 1)

� � fp(i)→p(f) (Rτ ), (2)

where f is a monotonically decreasing function of Rτ . The
subscript p(i) → p(f) denotes the dependence of the function
on the end points, and R quantifies the system’s timescale.
This inequality encompasses the following three important
cases in the literature.

In generic processes entropy production can be split into
adiabatic and nonadiabatic (Hatano-Sasa [19]) contributions
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[20]. The former persists even when the probability distri-
bution equals the instantaneous steady state, while the latter
arises from deviations from this state. It was reported that
nonadiabatic entropy production �na is lower-bounded by
(referred to as activity bound) [15,16]

� � �na �
L2(p(i), p(f) )

2Aτ
, (3)

where L(p(i), p(f) ) represents the total variation distance be-
tween end points and A denotes time-averaged dynamical
activity [21].

In the quasistatic limit with τ → ∞, the time-averaged
dynamical activity becomes time independent, resulting in
an inequality �na � O(1/τ ). This observation bears resem-
blance to the result for slow but finite-time Markovian
stochastic processes [22–26], where the entropy production
bound is given by � � L2

T/τ . Here LT denotes the thermody-
namic length [27–44], which already encodes the information
about the timescale derived from the transition rates.

For relaxation processes with a time-independent transition
rate matrix satisfying the detailed balance condition,
the general dissipation-time trade-off relation Eq. (2) is
superseded by a simpler τ -independent bound [45]

� � D1(p(i)‖p(f) ), (4)

where D1(p(i)‖p(f) ) is the 1-Rényi divergence [46,47], also
known as Kullback-Leibler divergence or relative entropy
[48]. Since the bound is independent of time duration,
the trade-off between dissipation and evolution time is, in
fact, concealed. In the context of these kinds of simple
but important processes, i.e., relaxation processes with
time-independent transition rates where the detailed balance
condition is not necessarily met [49], three natural questions
arise. First, given the similarity between a quantum process
with a time-independent Hamiltonian and a thermodynamic
process with a time-independent transition matrix, one
may wonder whether there exists a speed limit analogous
to Eq. (1), where the bound is given by the distance
between the end points divided by a timescale constant
[50]. Second, it is tempting to see whether Eq. (4) also holds
for the nonadiabatic entropy production. Third, one may
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FIG. 1. (a) �na(τ )/D1(p(i), p(f) ) represented by black dots and �na(τ/2)/D1(p(i), p(f) ) represented by gray circles. (b) Nonadiabatic entropy
production �na vs corresponding two-state entropy production ��i . The inset depicts a schematic of the pseudo-coarse-graining procedure.
(c) Nonadiabatic entropy production �na vs dimensionless time duration Wτ , with the end points fixed. The inset presents the two-state curves
for different partitioning schemes, and the horizontal and vertical dashed lines represent the asymptotes. In both (a) and (b), there are 105 data
points, with each generated as follows. An initial three-state probability distribution is sampled randomly, together with a transition rate matrix
with positive entries drawn uniformly from [0,1]. An evolution time τ is also drawn uniformly from [0,1]; then the state at t = τ/2 and the
final state are calculated. Using Eq. (7), we compute the nonadiabatic entropy production �na(τ/2) and �na(τ ). We then randomly partition
the states into two disjoint nonempty sets and use Eqs. (8) and (7) to calculate ��i . In (c) there are 40 000 data points, each corresponding to
a transition from p(i) = [0.5, 0.3, 0.2]T to p(f) = [0.6, 0.22, 0.18]T with different W and τ obtained as follows: We randomly select a transition
rate matrix W and an evolution time τ as initial guesses and minimize the total-variation distance between exp(W τ )p(i) and p(f) with the error
threshold set to 10−6. The optimal values of W and τ are then used to calculate and plot the nonadiabatic entropy production as a function of
Wτ .

inquire the trade-off relation in the form of Eq. (2), if any,
between dissipation and time in these relaxation processes.
Specifically, it is desirable to obtain a suitable timescale
constant.

In this Letter we answer these three questions and show
that the relevant timescale constant is the total rate, i.e., the
sum of all positive transition rates. We also demonstrate with
examples that our dissipation-time trade-off relation outper-
forms previous bounds.

Speed limit. Consider a stochastic Markov jump process
with finite N states. The dynamics of the probability distri-
bution p = [p1, p2, . . . , pN ]T is described by a Pauli master
equation [49]

dpm

dt
=

∑
n

Wmn pn, (5)

where pm is the probability of state m, Wmn(m �= n) is the
time-independent transition rate from state n to m, and Wmm =
−∑

n,n �=m Wnm. For later use, we define the total rate as

W =
∑
m �=n

Wmn = −TrW. (6)

In experiments, the transition rate matrix and its trace can be
inferred from trajectory data [51]. Provided that the Markov
chain is ergodic, a steady-state distribution p(ss) is expected,
satisfying

∑
n Wmn p(ss)

n = 0. Steady states can be divided into
two categories depending on whether they meet the detailed
balance condition, Wmn p(ss)

n = Wnm p(ss)
m , which is not assumed

throughout this Letter. The total entropy production � con-
sists of an adiabatic contribution and a nonadiabatic one, both
of which are non-negative. Given an initial state p(i) and a
target state p(f), the nonadiabatic entropy production is given

by [15,52]

�na = D1(p(i)‖p(ss) ) − D1(p(f)‖p(ss) ), (7)

where D1(p‖q) = ∑
n pn ln(pn/qn) is the 1-Rényi divergence

between the two probability distributions [46–48]. For ar-
bitrary dynamics, � � �na, and the equality is attained
when the detailed balance condition is satisfied. Notably, the
detailed balance condition is always fulfilled in two-state sys-
tems.

The fixed end points impose constraints on the transition
rate matrix W but generally do not uniquely determine it.
The choice of W affects the magnitude of entropy � and �na

produced by the stochastic process connecting the same end
points over time τ . For two-state systems, the steady state p(ss)

is uniquely determined, with p(ss)
1 expressible in terms of Wτ

as [53]

p(ss)
1 = p(i)

1 + p(f)
1 − p(i)

1

1 − e−Wτ
, (8)

with p(ss)
2 = 1 − p(ss)

1 .
By substituting Eq. (8) into (7), it can be observed that,

given the end points, the nonadiabatic entropy production in
a two-state system is a monotonically decreasing function of
Wτ , see the inset of Fig. 1(c). In other words, the � versus
Wτ curve indicates a trade-off between entropy production
and time duration and is bounded by a vertical and a horizontal
asymptote. The horizontal asymptote signifies that the mini-
mum of the entropy production is reached when Wτ → ∞.
In this limit, p(ss) = p(f), so Eq. (7) implies that the minimum
entropy production is given by (4).

It is unphysical for the population pss
1 to be 0 or 1, as this

would require one of the transition rates to vanish. Combining
Eq. (8) with this constraint (0 < p(ss)

1 < 1), we obtain a speed
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limit represented by the vertical asymptote, i.e., a lower bound
for the evolution time τ :

τ >
max

{
ln

(
p(i)

1 /p(f)
1

)
, ln

(
p(i)

2 /p(f)
2

)}
W . (9)

The numerator coincides with the ∞-Rényi divergence, de-
fined as D∞(p‖q) = maxn{ln pn/qn} [46,47]. Specifically, the
lower bound on evolution time is given by the quotient of the
∞-Rényi divergence between the two end points and the total
rate of transitions W .

This lower bound reflects an information-theoretical limit
on speed in two-state systems; hence, it is relevant to examine
whether this bound can be extended to generic N-state sys-
tems. The answer is affirmative. We state our main result here
while deferring the proof to the end of the Letter: the time it
needs to evolve from the initial state p(i) to the final state p(f)

is bounded from below by

τ >
D∞(p(i)‖p(f) )

W , (10)

where D∞(p(i)‖p(f) ) is the ∞-Rényi divergence between the
distributions p(i) and p(f), and W is the total rate. Remark-
ably, this lower bound on evolution time resembles the
distance-based formulation in Eq. (1), where a constant rate
characterizes the timescale. It is noteworthy that the ∞-Rényi
divergence plays a significant role in the resource theory of
thermodynamics [47,54,55], and its application to speed limits
highlights its versatility and significance in various physical
contexts. If p(f) = p(ss), the time it needs to reach the steady
state is infinite, so this bound is trivially satisfied. When the
final state p(f) is not of full rank, both the ∞-Rényi divergence
and the bound of time diverge. This is a manifestation of the
third law of thermodynamics, which states that nonfull rank
states cannot be attained in finite time [56].

Information-theoretical bound on nonadiabatic entropy
production. Building upon the information-theoretical bound
on entropy production described in Ref. [45] for systems with
detailed balance, we extend our findings to scenarios without
detailed balance. Our second result introduces a conjecture
(referred to as divergence bound):

�na � D1(p(i)‖p(f) ). (11)

This conjecture, presented as an extension of Eq. (4), sug-
gests a lower bound on the nonadiabatic entropy production
given by the 1-Rényi divergence between the end points.
Figure 1(a) provides numerical evidence for three-state sys-
tems to support it, and the code used to generate numerical
verification for other numbers of states can be found in the
Supplemental Material [53]. In fact, we confirm a tighter
bound, �na(τ/2) � D1(p(i)‖p(f) ), where �na(τ/2) represents
the nonadiabatic entropy production during the time interval
[0, τ/2], which strengthens our conjecture. Our findings have
implications for the excess entropy production �ex, which is
defined by a variational principle and is always greater than
�na [57,58]. As a consequence, we observe the following
relationships:

�ex(τ ) � �ex(τ/2) � D1(p(i)‖p(f) ), (12)

as reported in Refs. [57,58].

Trade-off between dissipation and time. Let us state the
third main result: for N-state dynamics evolving from p(i) to
p(f) during τ with a total rate W , the conjecture is that the
entropy production � is bounded from below by (referred to
as trade-off bound)

�na � ��i (Wτ ) i = 1, 2, . . . , S(2)
N . (13)

Here, ��i (Wτ ) is the entropy production of two-state dy-
namics obtained from a pseudo-coarse-graining procedure
as follows: partition the set of N states into two nonempty
sets where the first set is denoted by �i, then we have the
two end points P(i)

�i
= [

∑
n∈�i

p(i)
n , 1 − ∑

n∈�i
p(i)

n ]T to P(f)
�i

=
[
∑

n∈�i
p(f)

n , 1 − ∑
n∈�i

p(f)
n ]T. We then use Eq. (8) to find

the steady-state distribution, where W and τ of the original
N-state dynamics are used. The entropy production of the
two-state dynamics is obtained by substituting the steady-
state distribution into (7). The inset of Fig. 1(b) gives a
schematic of the pseudo-coarse-graining procedure for three
states. As shown in the upper panel, the system evolves
from p(i) = [0.5, 0.17, 0.33]T to p(f) = [0.1, 0.4, 0.5]T, visu-
ally depicted by bars of varying colors and lengths. There
are three partitioning schemes, and the lower panel shows
one in which the second and third state are grouped together,
resulting in P(i)

�1
= [0.5, 0.5]T and P(i)

�1
= [0.1, 0.9]T. Given

N states, we have S(2)
N different ways of partitioning the

N states into two nonempty sets, where S(2)
N is the Stirling

number of the second kind [59]. Explicitly, S(2)
N = 2N−1 − 1.

For example, four states can be partitioned in S(2)
4 = 7 ways,

where �i = {1}, {2}, {3}, {4}, {1, 2}, {1, 3}, {1, 4}, with the el-
ements in each set being the indices of states. Thus there
are S(2)

N different two-state bounds in total, jointly bounding
�na. As discussed above, these two-state bounds are mono-
tonically decreasing function of Wτ , which has the form
of Eq. (2), with W playing the role of R. We stress that
the two-state dynamics cannot be obtained from the standard
coarse-graining procedure [60,61]: the population P�(t ) is
in general not equal to

∑
n∈� pn(t ) except at the two end

points; the transition rate matrix for each two-state dynam-
ics is time independent, and its entries are not simple linear
combinations of the original transition rates. In the following
we consider the three-state case as an example, and nu-
merical evidence to support Eq. (13) for other numbers of
states can be generated using the code in the Supplemental
Material [53].

As a direct verification of the inequality (13), Fig. 1(b)
shows a plot of the nonadiabatic entropy production �na ver-
sus the corresponding two-state ��i . All data points lie above
the diagonal, confirming the new bound given by (13). In the
long-τ limit, the entropy production of the two-state dynamics
is D1(P(i)

�i
‖P(f)

�i
). By applying the theorem that refinement can-

not decrease divergence [62], which is essentially the log-sum
inequality, this quantity is not greater than D1(p(i)‖p(f) ) and
also �na. This leads to two questions: (1) Can the bound ever
be saturated, as it is not evident from Fig. 1(a)? (2) Is the new
bound ever tighter than the divergence bound and the activity
bound, or is it otherwise redundant?

There are at least two simple cases in which the bound is
(nearly) saturated. By examining the condition for equality
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FIG. 2. Nonadiabatic entropy production �na, corresponding di-
vergence bound (4), activity bound (3), and the trade-off bound (13)
as a function of the dimensionless time Wt . There are three ways
to partition a set with three states: one of the two nonempty sets is
�i = {1}, {2}, and {3}, respectively.

in the log-sum inequality, it can be observed that as long as
a subset � of the states such that p(i)

m /p(ss)
m are equal for all

m ∈ �, the bound is saturated in the long-τ limit. Another
scenario in which the bound is nearly saturated throughout the
entire process is when all the N − 2 states’ initial populations
and the transition rates between them are vanishingly small,
effectively reducing the dynamics to only two states. This case
also partially addresses the second question, as the divergence
bound is not generally saturated. The superiority of the new
bound over the previous bounds is also evident in nontrivial
cases, as will be seen in Figs. 1(c) and Fig. 2. We will also
prove that there always exists a parameter range in which
the trade-off bound outperforms the divergence bound for any
given pair of end points.

Figure 1(c) displays a representative scenario where the
end points are given and fixed, while also demonstrating uni-
versal behavior. Equations (4), (11), and (13) jointly bound
�na, as represented by the shaded area. The trade-off between
dissipation and evolution time quantified by Eq. (13) is clearly
exemplified in this figure. It demonstrates that, when the end
points are fixed, faster state transformations are accompanied
by larger amounts of dissipation. As shown in the inset, each
pseudo-coarse-grained two-state dynamics also has a speed
limit, and the log-sum inequality implies that it is not greater
than the speed limit of the N-state dynamics. The vertical
asymptote of the two-state curve for �3 is exactly the speed
limit for three states, and this is not a coincidence. For any
given pair of end points, there must be at least one two-state
curve whose vertical asymptote coincides with the genuine
speed limit for N states. Thus there must exist a parameter
range in which the trade-off bound outperforms the divergence
bound.

Figure 2 shows the entropy production � and the
corresponding divergence bound, activity bound, and
the new bound as a function of the dimensionless time
Wt for a representative case whose initial distribution
and transition rate matrix (in arbitrary units) are

given by

p(i) = [
1/3 1/3 1/3

]T
,

W =
⎡
⎣−1.60 0.20 0.10

0.70 −0.80 0.70
0.90 0.60 −0.80

⎤
⎦. (14)

At each time instant t , we calculate the instantaneous distribu-
tion p(t ) = exp(W t )p(i) and calculate the divergence bound
and the new bound using corresponding equations by re-
placing p(f) therein with p(t ). The time-averaged dynamical
activity is calculated using Eq. (8) in Ref. [15], with the upper
bound of the integral set to t . Hence the time derivative of the
divergence bound, the activity bound, and the new bound can-
not be regarded as entropy production rate and are not guar-
anteed to be non-negative. The divergence bound is initially
loose but saturates as t → ∞, as expected. The activity bound
has a much better performance than the divergence bound in
the beginning but gradually loses its advantage. The activ-
ity bound even decreases as the steady state is approached,
showing the expected 1/τ asymptotic behavior as previously
mentioned. The new bound with �1 = {1} has a performance
that is almost all the time better than both the divergence
bound and the activity bound. As discussed above, in the
long-time limit the divergence bound’s performance should
be the best as it saturates. For this special case, the trade-
off bound is almost as good, as can be numerically verified.
The steady-state distribution is p(ss) = [0.086, 0.467, 0.447]T,
and the divergence bound is 0.2405. The trade-off bound
in the long-time limit is given by the divergence between
[1/3, 2/3]T and [0.086, 0.914]T, which is 0.2403.

Proof of the speed limit. Let us prove that Eq. (10) gives
a speed limit for relaxation processes in generic N-state sys-
tems, where the denominator is still the total rate W ≡ −TrW ,
i.e., the sum of all the positive rates. First of all, let us divide
[0, τ ] into K 
 1 intervals so a time sequence t0 = 0 < · · · <

tk < · · · < tK = τ is obtained. Consider an arbitrarily selected
infinitesimal interval [tk, tk+1], then the master equation (5)
gives

δp(k)
m = (tk+1 − tk )

∑
n

Wmn p(k)
n , (15)

where δp(k)
m = p(k+1)

m − p(k)
m . Without loss of generality,

we assume the state l satisfies ln (p(k)
l /p(k+1)

l ) =
max

n
{ ln (p(k)

n /p(k+1)
n )}. Therefore

tk+1 − tk = δp(k)
l

Wll p(k)
l + ∑

n �=l Wln p(k)
n

. (16)

If the sum of all positive rates is fixed, it is not hard to see
that if Wll = −W with all the other transition rates vanishing,
tk+1 − tk reaches the minimum,

tk+1 − tk � δp(k)
l

(−W )p(k)
l

≈ 1

W ln
p(k)

l

p(k+1)
l

= 1

W max
1�n�N

{
ln

p(k)
n

p(k+1)
n

}
, (17)
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where ≈ is exact to first order in δp(k)
l /p(k)

l . Technically
speaking, the equality is not achievable in physical processes
because Wll = −W is impractical. Summing over k results in

Wτ >

K−1∑
k=0

max
1�n�N

{
ln

p(k)
n

p(k+1)
n

}
. (18)

The inequality that the maximum of sum is at most the sum of
maxima gives

K−1∑
k=0

max
1�n�N

{
ln

p(k)
n

p(k+1)
n

}
> max

1�n�N

{K−1∑
k=0

ln
p(k)

n

p(k+1)
n

}

= max{ln(p(i)
n /p(f)

n )}.
(19)

Combining with (18) completes the proof.

Conclusion. We present a speed limit, a bound on the nona-
diabatic entropy production and a trade-off relation between
dissipation and evolution time for time-independent relaxation
processes. Our result in Eq. (10) resembles the quantum speed
limit (1) and indicates that the minimum transition time from
an initial to a target state is constrained by the ratio of their
∞-Rényi divergence to the total rate. Equation (11) gives a
lower bound on the nonadiabatic entropy production in terms
of 1-Rényi divergence. Furthermore, Eq. (13), implicitly in
the form of Eq. (2), reveals a new trade-off between dis-
sipation and time that surpasses the divergence bound for
certain parameters. Given successful quantum extensions of
both divergence and activity bounds [6,63–65], we anticipate
that our results can also be generalized to quantum settings.
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