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Through numerous experiments that analyzed rare event statistics in heterogeneous media, it was discovered
that in many cases the probability density function for particle position, P(X, t ), exhibits a slower decay rate
than the Gaussian function. Typically, the decay behavior is exponential, referred to as Laplace tails. However,
many systems exhibit an even slower decay rate, such as power-law, log-normal, or stretched exponential.
In this study, we utilize the continuous-time random walk method to investigate the rare events in particle
hopping dynamics and find that the properties of the hop size distribution induce a critical transition between the
Laplace universality of rare events and a more specific, slower decay of P(X, t ). Specifically, when the hop size
distribution decays slower than exponential, such as e−|x|β (β > 1), the Laplace universality no longer applies,
and the decay is specific, influenced by a few large events, rather than by the accumulation of many smaller
events that give rise to Laplace tails.
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According to Wikipedia, ”Rare or extreme events are
events that occur with low frequency, and often refer to
infrequent events that have widespread impact and might
destabilize systems”. Notable examples of rare events include
the stock market crash [1], earthquakes [2], and cyclones
[3]. The frequency and the scale of rare events in each field
are very important. If the rare events are not “too rare” and
large enough, then the usual statistical behavior is completely
dictated by such rare events. A perfect example of situa-
tions when rare events fundamentally modify the nature of
a physical process is sub-diffusion [4–10]. While for normal
diffusion, the mean squared displacement (MSD) of a tracked
particle grows linearly with time, for subdiffusion, the MSD
grows in a nonlinear fashion, i.e., 〈X 2〉 ∼ tα , while 0<α<1.
For systems where the transport is defined by the existence
of trapping regions, e.g., glasses [11], filamentous networks
[12] or living cells [13,14], the distribution of the trapping
times defines the type of diffusion. When the mean trapping
time is finite, diffusion is normal. But when the trapping time
distribution decays as a power law, ψ (τ ) ∼ τ−1−α , subdiffu-
sive behavior emerges when α < 1. The rare events, in the
form of long trapping times, are responsible for transforming
the universal linear growth of the MSD to a specific, i.e.,
α-dependent, sublinear growth.

Subdiffusive behavior may stem from different sources,
such as persistent long-range correlations between positional
increments (as exhibited by models like fractional Brown-
ian motion [15]) or large heterogeneity in the system [11]
and a broad spectrum of interactions. However, in systems
where subdiffusion arises from trapping events, the dynamics
can give rise to unusual physical phenomena, such as aging
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[16–18], weak ergodicity breaking [16,19,20], and non-self-
averaging [16,21–25]. Nevertheless, there are cases where
such phenomena occur even when trapping times are not
involved [26]. Theoretical models where trapping is present,
like the continuous time random walk (CTRW) [27] and the
quenched trap model [28] show that there is a critical tran-
sition to subdiffusion, aging, and nonergodic behavior, when
the mean trapping time is diverging. This transition is also
accompanied by a transformation of the positional probability
density function (PDF). The universal Gaussian center of the
positional PDF turns into an α-stable Lévy type [29,30], i.e.,
shape that depends on a specific parameter α of the trapping
time distribution. This transition between a universal PDF
that is determined by an accumulation of many events, and a
nonuniversal PDF that follows the properties of one single rare
event is a key feature associated with the appearance of new
physical phenomena. Our study highlights the transition from
the universal to the nonuniversal shape of the positional PDF,
focusing on the decay properties at large |X | values of the
positional PDF. The identification of this transition within the
tails of the PDF suggests the presence of an underlying criti-
cal transition, unveiling the potential for unforeseen physical
phenomena. In the nonuniversal regime, we derive a general
formula for the PDF that is applicable to many decay forms,
including, power laws, log normal, and stretched exponential.

Recently, a huge number of experiments demonstrated ex-
ponential (and not Gaussian) decay of the PDF for large |X |.
Such decay of the PDF is termed as Laplace tails [31,32].
Notable examples include colloidal beads [33], zooplanktons
[34], glass-forming liquids [35], nanoparticles in polymer
melts [36], particles at the liquid-solid interface [37], and
close to glass and jamming transitions [38,39], etc. The
CTRW model was used [40–42] to prove the suggested uni-
versal convergence [43] to Laplace tails for a broad class
of processes, showing that the PDF tails are governed by

2470-0045/2023/108(5)/L052102(6) L052102-1 ©2023 American Physical Society

https://orcid.org/0000-0002-2816-2218
https://orcid.org/0000-0003-1065-174X
http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevE.108.L052102&domain=pdf&date_stamp=2023-11-02
https://doi.org/10.1103/PhysRevE.108.L052102


R. K. SINGH AND STANISLAV BUROV PHYSICAL REVIEW E 108, L052102 (2023)

the accumulation of multiple events and decay exponentially
(with logarithmic corrections).

While the exponential decay of PDF tails has established
itself as a universality class [40,41], the decay behavior of
P(X, t ) for a wide class of systems is even slower. For exam-
ple, a power-law decay of the PDF P(X, t ) has been observed
in nonequilibrium cytoquake dynamics in cytoskeletal sta-
bilization [44], heavy-tailed fluctuations of active arrays in
cytoskeleton [45], swimming algal cells on two-dimensional
films [46], active steps of Janus particles under chemotaxis
[47], displacement patterns of private vehicles in Italy [48],
extreme price fluctuations in bitcoin markets [49] and the
famous inverse-cube laws of econophysics [50,51]. Another
class of heavy tailed distributions like the log-normal have
been observed for example, in the individual modes of human
transportation [52], chromatin dynamics [53], intra-cellular
reaction dynamics [54], single molecule fluorescence bursts
[55], multimedia file size [56], post lengths involving internet
discussions [57], wealth distribution of low-middle income
groups [58], and the returns distribution in Nairobi secu-
rities exchange [59], while stretched-exponential decay has
been observed in local intermittent movement in a sporting
arena [60], internet media access patterns [61], empirical
distribution of stock returns [62], and avalanche sizes in
superconducting vortices [63], to mention a few. In hetero-
geneous media power-law fluctuations can emerge as a result
of force dipoles [64] while stretched-exponentials can arise
due to multiplicative processes [65,66]. Following the above
discussion we ask: do the universal Laplace tails act as an
attractor even when we take into account heavy tailed jumps?
Or there is a breakdown of universality similar to the critical
transition from diffusion to subdiffusion? In other words, are
the PDF tails of a tracer particle determined by the occur-
rence of one single rare event [67–71] or they represent an
accumulation of many realizations of not-so-large but more
frequent events [72–76]? Similar to the case of subdiffusion
to diffusion transition, we use the celebrated CTRW model,
originally exploited for explaining transport in amorphous
materials [26,77–79]. In CTRW, a particle performs random
jumps in space and waits for a random amount of time be-
tween jumps. All the jumps and waiting times are independent
and identically distributed (IID) random variables. The distri-
bution of a jump x is given by f (x), while each waiting time τ

has a distribution ψ (τ ). The position of the process X at time
t is determined by the random number of jumps Nt performed
by time t , i.e., X = x1 + · · · + xNt where xi, is the size of a
single jump. The positional PDF P(X, t ) is readily obtained
in terms of the subordination equation by conditioning on the
number of jumps N [4,28,80,81],

P(X, t ) =
∞∑

N=0

PN (X )Qt (N ), (1)

where PN (X ) is the distribution of X for a given N(=Nt for
a fixed measurement time t) and Qt (N ) is the distribution of
the number of jumps up to time t . The mentioned phenom-
ena, like anomalous transport and aging, appear for CTRWs
with ψ (τ ) ∼ τ−1−α (τ → ∞) when α < 1. For such ψ (τ ),
the sum τ1 + · · · + τNt is dominated (in the t → ∞ limit)
by the maximal summand [82], as can be observed from the
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FIG. 1. Fβ (X ) for a CTRW with jumps x ∼ f (x) with mean zero
and variance one as a function of β. The waiting time distribution
ψ (τ ) = e−τ and the measurement is done at t = 0.6 for trajectories
reaching a position ±X . The inset shows the behavior of φα (t ) for
ψ (τ ) ∼ τ−1−α for large τ for different values of α from top to
bottom.

behavior of

φα (t ) =
〈

max
{
τ1, ..., τNt

}
∑Nt

i=1 τi

〉
(2)

for large t . While the maxima of a set of random variables has
been extensively studied [83–86], the definition of φα (t ) has
the advantage that it belongs to the unit interval [0, 1], making
it an appropriate order parameter. For more details see the
Supplementary Material (SM) [87]. We see in Fig. 1 (inset)
that φα (t ) saturates to a finite value for α = 0.5, 0.8, 0.9
while for α = 1.1, 1.2, 1.5 exhibits a decaying behavior at
large times. This difference in the properties of φα (t ) follows
from the fact that for α < 1, 〈τ 〉 = ∫ ∞

0 dττψ (τ ) → ∞, while
it is finite for α > 1. This implies that as we move from α > 1
to α < 1, the rare fluctuations in the sequence of waiting times
{τ1, ..., τNt } exhibit qualitatively different behaviors. Conse-
quently, the thermodynamic limit in which the system behaves
extensively (all waiting times τi are of the same order of mag-
nitude) ceases to exist for α < 1. Can we see similar behavior
if we focus on spatial fluctuations? This question comes up
naturally once we realize that the system has access to the
entire phase space in the thermodynamic limit. The phase
space can be swept by focusing on large spatial fluctuations
without going to the t → ∞ limit. Namely, we take the large
|X | limit at fixed t and expect the system to visit many states
during its evolution.

Motivated by this, let us look at a CTRW described by
Eq. (1) with jumps following f (x) ∼ e−|x|β with β > 0 [88]
for reasons that will be clear shortly. In analogy with φα (t ) we
define,

Fβ (X ) =
〈

max{|x1|, ..., |xNt |}∑Nt
i=1 |xi|

〉
. (3)

We see in Fig. 1 that even for a well behaved ψ (τ )
like the exponential distribution, lim|X |→∞ Fβ (X ) decreases
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monotonically for β � 1 and seemingly takes a finite value
for trajectories with β < 1. Now, for large X , Fβ (X ) ≈∑∞

N=1 Qt (N ) 1
XP(X,t )

∫
xm

dxmxm p(xm, X |N ) with X > 0 [87].
Here xm = max{x1, . . . , xN } and p(xm, X |N ) is the joint dis-
tribution of xm and X such that

∑N
i=1 xi = X . As xi are

IID, p(xm, X |N ) = N f (xm)pN−1(X − xm) where pN−1(X −
xm) is the distribution of the sum

∑N−1
i=1 xi such that

xi � xm ∀ i = 1, ..., N − 1. This is where the regions β <

1 and β � 1 become different. For β < 1 the function
xm p(xm, X |N ) is maximal around xm ∼ X and thus, the inte-
gral above can be extended to the whole real line leading to∫

xm
dxmxm p(xm, X |N ) ≈ XPN (X ) ⇒ Fβ (X ) ≈ 1. On the other

hand, for β � 1 the function is peaked at xm ≈ X/N . However,
as xm � X/N only the tail part of xm p(xm, X |N ) contributes to
the integral, leading to smaller values as more jumps are taken
into account. In the limiting cases, Fβ (X ) → 0 (see the SM for
details [87]). In other words,

lim
|X |→∞

Fβ (X ) ≈
{

1, β < 1
0, β � 1,

(4)

reminiscent of a jump transition with the transition point at
β = 1. While the analysis above has been performed in the
limit of |X | → ∞ and fixed t , a pertinent question at this point
is how does the transition modify at large times, i.e., fixing
|X | and taking t → ∞. In this limit, the process will reach
X executing a large number of jumps such that X/N 
 1.
As a result, pN−1(X − xm) can be easily approximated by a
Gaussian (following the central limit theorem), and due to
its rapidly decaying nature, the integral

∫
xm

dxm xm p(xm, X |N )
exhibits a saturating behavior only for sufficiently small β like
β = 1/2 or 0.6, while Fβ (X ) for higher values of β exhibit a
decaying behavior for large X (see the SM for details [87]).
This suggests that for large t the transition boundary will no
longer be sharp as compared to the previously discussed case
for small t . Generally speaking, in the limit of large t the
critical transition will be smeared out.

To summarize, in the limit of large |X | and fixed t for
β < 1, a single maximal jump contributes to the fraction
significantly, while for β � 1 its contribution is comparable
to all the other jumps of the CTRW. While the transition
for φα (t ) occurs when the the temporal moments (〈τ n〉)
diverge, in the case of Fβ (X ) all the spatial moments
(〈X n〉) are finite. Nevertheless, the effective behavior of
limt→∞ φα (t ) and lim|X |→∞ Fβ (X ) is similar. As a function of
the parameters α/β, there is a transition from a state defined
by the accumulation of many events to a state dominated by
a single large event.

At this point, it is worth noticing that the role played
by φα (t ) for describing temporal fluctuations is taken over
by Fβ (X ) for spatial fluctuations. While the emergence of a
non-Gaussian center accompanying the transition of φα (t ) is
well understood [29,30] the corresponding behavior of P(X, t )
accompanying the transition of Fβ (X ) is not known. It was
shown in Ref. [40] that P(X, t ) exhibits universal tails exhibit-
ing exponential decay for β > 1 and ψ (τ ) analytic near τ =
0. Furthermore, just like φα (t ) → 0 marks the emergence of a
universal Gaussian center following the central limit theorem,
Fβ (X ) → 0 at |X | → ∞ characterizes the universal exponen-
tial tails of P(X, t ) [40]. On the other hand, a finite value of

φα (t ) for α < 1 is reminiscent of the α dependent Lévy PDF
characterized solely by the rare fluctuations in the temporal
domain. Given that we observed the convergence of Fβ (X ) to
a nonzero value as X → ∞ for β < 1, we aim to explore the
properties of the tails of P(X, t ) within the β � 1 regime.

For β < 1 the distribution of jumps belongs to the class
of stretched exponential distributions [67] which possesses
heavy tails as

∫ ∞
0 dx eλx f (x) = ∞∀ λ > 0 and does not

admit a large deviation form [76]. But, the family of
stretched exponential distributions satisfies the big jump

principle P(x1 + · · · + xN � X )
|X |→∞∼ P(max{x1, ..., xN } �

X )[67,89–92], with the distribution of maxima evaluating to
1 − [1 − ∫ ∞

X dx f (x)]N for IID xi. Hence, from Eq. (1) we
have∫ ∞

X
dX ′ P(X ′, t )

|X |→∞∼ 1 − Gt

(
1 −

∫ ∞

X
dx f (x)

)
, (5)

where Gt (z) = ∑∞
N=0 zN Qt (N ). Furthermore, for large |X | we

have
∫ ∞

X dx f (x) ∼ 0, as a result we can analyze P(X, t )
in terms of the behavior of Gt (z) for z in the neigh-
borhood of unity. Now Gt (1 − η) ≈ Gt (1) − ∂G

∂z |z=1η for

small η and ∂G
∂z = ∑∞

N=1 NQt (N )zN−1. This implies Gt (1 −∫ ∞
X dx f (x)) ≈ 1 − 〈Nt 〉

∫ ∞
X dx f (x) and from here it follows

that ([87])

P(X, t )
|X |→∞∼ 〈Nt 〉 f (X ). (6)

Equation (6) implies that the probability of being at a location
X at time t equals the mean number of jumps 〈Nt 〉 up to time
t times the distribution of a single jump f (X ). It is to be noted
at this point that in the derivation of Eq. (6) we have nowhere
explicitly used the fact that f (x) is stretched-exponential and
it holds for heavy-tailed distributions in general, including
power laws, lognormal, and stretched exponentials. With the
distribution of a single jump known, we only need to esti-
mate 〈Nt 〉. The mean number of jumps 〈Nt 〉 attains a simple
form in Laplace domain [27] 〈Ñs〉 = ψ̃s

s(1−ψ̃s )
, where ψ̃s =∫ ∞

0 dt e−stψ (t ) is the Laplace transform of ψ (τ ). The PDF
P(X, t ) derived in Eq. (6) holds at arbitrary times, and is in
excellent agreement with numerical simulations as seen from
Fig. 2 for different classes of heavy tailed distributions: (a)
power law, (b) log-normal, (c) generalized Gaussian forms,
and (d) Cauchy distribution. Notwithstanding the fact that
P(X, t ) for different f (x) look similar, deciphering the behav-
ior of the latter from the former is a difficult task from the
perspective of experiments [65,93]. The average number of
jumps 〈Nt 〉 that appears in Eq. (6) was previously found to
be an important quantity determining the tails of the PDF for
Lévy walks [89,91,94].

Let us now consider the point β = 1. As this is a transi-
tion point on the β axis, separating the regions β > 1 and
β < 1, it should be approached with caution. For example,
for β = 1, f (x) = a

2 exp(−a|x|), which implies that the large
deviation form of the distribution of position X after N jumps

is PN (X ) ∼ exp [ − NIN ( |X |
N )] with the rate function IN ( |X |

N ) =
− a|X |

N + log ( a|X |
N ). This implies that for large deviations, the

distribution of the sum possesses exponentially decaying tails
with logarithmic corrections. For ψ (τ ) analytic near zero
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FIG. 2. Numerically estimated P(X, t ) for a CTRW with
jump distribution f (x) and waiting time distribution ψ (τ ).
(a) f (x) = 3

2x4 with |x| � 1, ψ (τ ) = τ 2e−τ /2 at t = 15.
(b) f (x) = 1

2
√

2π |x| exp(−(ln |x|)2/2), ψ (τ ) = e−τ at t = 6.

(c) f (x) = β

2�(1/β ) e−|x|β with β = 1/3, for ψ (τ ) = √
2/πe−τ2/2

(red) at t = 0.4 and β = 1/2 for ψ (τ ) = 1
(1+τ )2 (blue) at t = 1.5.

(d) f (x) = 1
π

1
1+x2 , ψ (τ ) = e−τ at t = 15. The circles represent

numerically estimated P(X, t ) and the black dashed lines are the
analytical form Eq. (6) with appropriate f (x).

ψ (τ )
τ→0∼ CAτA + CA+1τ

A+1 + CA+2τ
A+2 + · · · [40], where A

is a non-negative integer, Qt (N ) admits a large deviation

form Qt (N )
N→∞∼ exp[−NIN (t )] with a universal rate function

[40,95] IN (t ) = −CA+1

CA

t
N − (A + 1)[1 + log { (CA�(A+1))

1
A+1

A+1
t
N }].

Using PN (X ) from above and Qt (N ) in Eq. (1) we have for
large |X |/t [87]

P(X, t ) ∼
|X |/t→∞

√
2π

A + 2
μ(a|X |) 1

A+2

× exp

[
−t

{
C+ a|X |

t
−

(
CA�(A+ 2)

a|X |
t

) 1
A+2

}]
.

(7)

From Fig. 3 we see that the large deviation form of
P(X, t ) evaluated in Eq. (7) agrees with numerically estimated
P(X, t ) for different waiting time distributions. In other words,
P(X, t ) possesses exponentially decaying tails in the limit of
large |X |/t when the distribution of jumps is Laplace dis-
tributed.

The results in Eqs. (6) and (7), in conjunction with the
large deviation description in Ref. [40], show that two distinct
behaviors of P(X, t ) exist: (I) universal exponential decay
when f (x) decays as exp(−x/a) or faster and (II) very specific
decay dictated by the form of f (x), i.e., Eq. (6), when the jump
size distribution decays slower than exponential. The intricate
differences between β = 1 and β > 1 (see the SM) imply that
the PDF of a CTRW critically changes at β = 1, the value for
which the order parameter Fβ (X ) shows a critical transition.
The evaluation of P(X, t ) further corroborates our assertion of
a universal to nonuniversal transition as seen from the analysis
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FIG. 3. Comparison of numerically estimated P(X, t ) (red cir-
cles) against the solution given in Eq. (7) (black dashed line). The
waiting time distributions are the following: (a) exponential mix-
ture ψ (τ ) = p1r1e−r1τ + p2r2e−r2τ with r1 = 1/4, r2 = 5/2, p1 =
1/4, p2 = 3/4 at t = 0.7; (b) gamma distribution ψ (τ ) = τ 3e−τ /6
at t = 0.8; (c) half-Gaussian distribution ψ (τ ) = √

2/πe−τ2/2 at t =
1.5; (d) power-law distribution ψ (τ ) = 1/(1 + τ )2 at t = 0.4.

of Fβ (X ) (see Fig. 1). The fact that lim|X |→∞ Fβ (X ) = 0 for
β � 1 is analogous to saying that P(X, t ) ∼ exp[−t I (|X |/t )]
exists with a nontrivial rate function I (|X |/t ) for every β � 1.
This rate function I (z) attains a linear growth for large z and,
therefore, the universal exponential decay of the PDF. On
the other hand, for β < 1, lim|X |→∞ Fβ (X ) = 1 and Eq. (6)
further shows that for β < 1, the rate function I (|X |/t ) is triv-
ially zero. The decay of P(X, t ) can attain any mathematical
form that decays slower than the exponential, like power-law,
stretched-exponential or log normal. Notice that the transition
from universal to non-universal behavior, as determined by
Fβ (X ), takes place at finite times but for large values of X .
In contrast to the Gaussian to α stable Lévy transition, which
is characterized by φα (t ), occurs at large times but for finite
values of X . Furthermore, the diffusion-to-subdiffusion transi-
tion is accompanied by divergences of the mean trapping time,
the critical transition reported in the present study is free from
such divergences.

Hopping dynamics which is an intrinsic feature of CTRW,
has been ubiquitously observed in polymer melts [96], col-
loidal suspensions [97], rodlike particles through smectic
layers [98,99], polymer glasses [100], binary mixtures [101],
in one, two, and three spatial dimensions [102], to mention
a few. A characteristic feature of motion in glassy materi-
als [38,39,43,103] and at the liquid-solid interface [37,104],
where hopping dynamics is observed, has been the exponen-
tial decay of the tails of the positional PDF. In sharp contrast
there are a class of systems which are intrinsically out of
equilibrium and are either active like dynamics of cytoskele-
ton [44,45], swimmers [46], Janus particles [47], chromatin
dynamics [53], intracellular reactions [54] or involving mul-
tiple players like market fluctuations [49–51,59,62], income
distributions [58], movement of vehicles [48] or individu-
als moving in a sporting arena [60], etc., where the jump
sizes typically exhibit a slower than exponential decay. In the
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present work we show that such out of equilibrium systems
belong to a totally different class for which the rare fluctua-
tions are singular and not characterized by an accumulation of
many events.
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