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Elastocapillary menisci mediate interaction of neighboring structures at the surface
of a compliant solid
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Surface stress drives long-range elastocapillary interactions at the surface of compliant solids, where it has
been observed to mediate interparticle interactions and to alter transport of liquid drops. We show that such an
elastocapillary interaction arises between neighboring structures that are simply protrusions of the compliant
solid. For compliant micropillars arranged in a square lattice with spacing p less than an interaction distance
p∗, the distance of a pillar to its neighbors determines how much it deforms due to surface stress: Pillars that
are close together tend to be rounder and flatter than those that are far apart. The interaction is mediated by the
formation of an elastocapillary meniscus at the base of each pillar, which sets the interaction distance and causes
neighboring structures to deform more than those that are relatively isolated. Neighboring pillars also displace
toward each other to form clusters, leading to the emergence of pattern formation and ordered domains.
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Surface stress can completely change the shape of the in-
terface of a compliant solid at sufficiently small scales [1–23],
just as it leads to large deformation of small fluid volumes
[24,25]. The excess tangential stress in a liquid-air interface
promotes the instability of a cylindrical liquid jet, causing
it to break into droplets [24] and surface stress has been
observed to cause an analogous instability for cylinders of
compliant solid gels [1]. Compliant solids routinely undergo
large deformation in response to stresses that they are exposed
to. However, the consequences for an interfacial structure that
deforms subject to surface stress remain poorly understood.

The typical scale at which elastocapillary phenomena are
expected to be observed is defined by the ratio of the surface
stress ϒ to the material’s shear modulus G and is called
the elastocapillary length �ec = ϒ/G [26]; this arises from a
comparison of capillary pressure to the strain in the bulk [2,3].
For structures at a solid-fluid interface with radius of curva-
ture R below �ec, surface stress prompts rounding and large
deformations [2,4]. In this way, regions of a surface that have
initially small radius of curvature, such as the corners of a
sharp feature, deform into regions of large radius of curvature
that extend farther from the original feature and are in some
cases reminiscent of liquid menisci. It is unknown how the
deformation of a single structure influences the deformation
of other structures at the interface and ultimately the entire
interface geometry.

Here we probe the mutual interaction of deforming struc-
tures at the interface of compliant gels by molding grids
of three-dimensional (3D) cuboid micropillar features with
size similar to the material’s elastocapillary length and vary-
ing the center-to-center spacing p between the microtextures.
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Following release from the mold, the solid-air interface de-
forms due to surface stress. We experimentally study the
deformed micropillar surface profiles through two metrics:
their final deformed height hd and mean curvature H . An
elastocapillary interaction emerges below an interaction dis-
tance p∗. At distances p < p∗, pillar deformation is strongly
dependent on the location of neighboring pillars.

The spacing-dependent pillar deformation generates two
regimes of the system’s behavior: Above the interaction dis-
tance p∗, a pillar’s deformation depends only on its initial
shape and material properties (�ec). Below p∗, however, prox-
imity to neighboring structures increases deformation. The
interaction is shown to be mediated by elastocapillary menisci
formed at the base of each pillar. Within the elastocapillary
interaction regime, besides the increase of individual pillar
deformation, additional behaviors such as clustering emerge.
In addition to its relevance for practical applications in mi-
crofabrication and other areas [5], our study also improves
our fundamental understanding of surface stress, including
highlighting the emergence of ordered domains.

Crucially, pillar interaction and clustering emerge in this
system as a direct consequence of the pillars’ aspect ratio,
where their height h0 is of a similar scale to their width w0

(Fig. 1). Interaction between pillars is only observable due to
large deformation of the pillar and the bulk material, which
does not occur when h0/w0 � 1 [5–9].

Textured compliant surfaces are typically cast in a mold
and separated by peeling once cured [5–9,27–29]. While this
works well for low-aspect-ratio textures (h0/w0 � 1), it is
ineffective for large-aspect-ratio textures where h0 ∼ w0, be-
cause the compliant (G � 1 kPa) and highly adhesive material
becomes stuck within the deep channels in the mold. During
peeling, the material fails, destroying the surface textures.
Thus, we developed a microfabrication technique based on
dissolution where we cast a compliant silicone gel (PDMS
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FIG. 1. Surface fabrication using a dissolvable mold. (a) The
mold shape is a grid of recessed rectangular prisms with center-to-
center spacing p. (b) After dissolving the mold, the PDMS deforms
to height hd and width wd . [(c)–(e)] Optical microcoscopy images for
p = 90 μm of the (c) dissolvable mold; (d) stiff surface, G ≈ 60 kPa;
and (e) compliant surface, G ≈ 1 kPa. The mold is well replicated
by the stiff PDMS, whereas compliant PDMS significantly deforms.
Scale bars are 100 μm.

CY 52-276, Dow Europe GmbH) into a dissolvable mold
[Figs. 1(a)–1(b)]. The method of using a dissolvable mold has
previously been used to study surface stress deformation of
millimeter-scale elastic rods using styrofoam molds dissolved
in toluene [1,10] and we demonstrate that this idea can also be
applied to produce micrometer-scale patterns.

Using photolithography techniques, a grid of cuboid holes
is patterned into a polymer-based photoresist to form a rigid
mold (see Appendix A). A schematic of the mold is shown in
Fig. 1(a), where each hole has depth h0 = 26 μm and width
w0 = 30 μm. The holes are arranged on a square lattice with
spacing p varying between 45 and 480 μm. Figure 1(c) is an
image of the mold for p = 90 μm. The initial mold dimen-
sions were verified by optical microscopy (for w0) and optical
profilometry (for h0). After spin-coating a compliant gel into
the mold and curing the material by baking, the gel layer is
bonded to a glass surface for support. The whole ensemble is
then placed in an acetone bath, where the mold dissolves, but
the cast gel is left intact [30]. After dissolution of the mold,
we remove the surface from acetone, immerse the surface in
deionized water to rinse off the acetone, and dry the PDMS by
leaving it in air [31].

Pillar height h0 is small compared to the bulk thickness,
estimated to be 200 μm based on the spin-coating speed. To
vary the material stiffness, we vary the ratio of part A to part
B in PDMS CY 52-276, producing a compliant surface (1:1
A:B ratio) and a stiff surface (1:10 A:B ratio). A schematic
of the released textures is shown in Fig. 1(b), where they
deform to a final height hd and width wd . The height hd

is defined as the distance between the pillar’s peak and the
surrounding surface after deformation, where we note that the
deformation involves both pillar material displacing into the
bulk material region and bulk material surrounding the pillar
moving upward in the +z direction [6]. Thus, hd characterizes
the deformed height of the pillar relative to the deformed final
surface position.

FIG. 2. Deformed surface profiles. (a) Height profile for a stiff
micropillar, G ≈ 60 kPa. (b) Height profile for a compliant micropil-
lar, G ≈ 1 kPa. Grid spacing in both cases is p = 90 μm. (c) Profiles
of the stiff and compliant pillars as viewed along the dashed lines
in (a) and (b). Data points are compared to a theoretical model for
low-aspect-ratio features [11] in the stiff (dotted line) and compliant
(solid line) cases. For the compliant pillar hd is less than predicted.
(d) Deformed height hd of stiff pillars (squares) and compliant pillars
(circles) as a function of grid spacing p. For compliant pillars, hd

decreases as p becomes small. The theory (solid lines) [11] is plotted
with a shaded confidence band representing a 95% confidence inter-
val in the shear modulus. The confidence band for the stiff material
is too small to be visible.

To characterize the elastocapillary length, we measure the
gel’s shear modulus G with a rheometer (Anton Paar MCR
302). For the compliant material G = 0.84 ± 0.07 kPa and
for the stiff material G = 63 ± 2 kPa. The surface stress is
ϒ = 35 ± 5 mN/m and was measured by imaging the wet-
ting ridge of a glycerol drop deposited on the PDMS with a
confocal fluorescence microscope (Leica SP8 STED 3X with
a 93× glycerol immersion lens, NA = 1.3). See Supplemental
Material for material characterization details [32].

An interferometric profilometer (Bruker Contour X) is
used to measure the solid-air interface profile. Figure 2
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compares the deformed profiles of stiff [Fig. 2(a)] and compli-
ant [Fig. 2(b)] micropillars at p = 90 μm. The stiff pillar has
replicated the mold with fidelity, having the mold’s original
height h0 = 26 μm, and also retaining the original lateral
dimensions of the mold (30 μm × 30 μm), whereas the com-
pliant one has become much shorter, rounding into an almost
circular profile and expanding significantly in the xy plane.
Figure 2(c) displays a side view of the profiles. We compare
the profiles to the predicted deformation in a theory for 3D
structures with low aspect ratio proposed by Hui et al. [11]
and find that it models the stiff pillar well but overpredicts
the height of the compliant one. This suggests that the theory
may need modification for structures that have a characteristic
scale similar to �ec but that do not satisfy the assumption of
infinitesimal aspect ratio. Significant rounding and flattening
of compliant pillars were similarly observed for all spacings
p = 45–480 μm.

Figure 2(d) displays the deformed height hd measured at
the pillar center as a function of spacing p for surfaces of
different stiffness. Error bars are 95% confidence intervals,
where each data point represents the mean height of 30–
146 pillars. The elastocapillary length of the stiff material
is �ec ≈ 0.5 μm, so that we expect surface stress to have a
minimal effect on structures at a 30 μm scale. Indeed, the stiff
pillar heights match the original mold design (h0 = 26 μm)
across all spacings p. By contrast, the elastocapillary length of
the compliant material is �ec ≈ 42 μm, so we expect surface
stress to drive significant deformations. A compliant pillar’s
height hd is highly dependent on spacing for low values of p,
whereas hd reaches a constant value as p increases [Fig. 2(d)].
We identify the length scale for the transition between these
two behaviors around p∗ ≈ 120–150 μm, which defines the
elastocapillary interaction distance. For p < p∗, a pillar’s de-
formation is affected by its neighbors, whereas for p > p∗,
deformation depends only on the pillar’s initial shape and
material properties G and ϒ .

We observe a similar trend in the mean curvature H as
a function of p [39]. We show in Appendix B that pillars
deform into approximately spherical caps, with a well-defined
curvature H0 and radius of curvature R = 1/|H0|. Figure 3
displays R as a function of p for compliant pillars. Error
bars have the same meaning as in Fig. 2(d). R is largest at
small spacings, whereas it decreases to a constant value as p
increases, indicating that close pillars flatten significantly
more (having larger radius of curvature) than relatively iso-
lated ones. Notably, the transition to a constant curvature
occurs at the same distance p∗ ≈ 120–150 μm identified in
the analysis of hd [Fig. 2(d)].

The increased deformation and rounding for p < p∗ sug-
gests an elastocapillary interaction between pillars. To probe
this interaction, we measure the curvature field H (x, y) around
a relatively isolated pillar, as shown in Fig. 4(a). In Fig. 4(b),
we observe that the curvature field has almost constant neg-
ative curvature near the top of the pillar, which becomes
positive where the pillar meets the surface and subsequently
decays to zero. By doing the same analysis for several pillars
[Fig. 5(c)], we observe that the curvature consistently decays
with a characteristic distance of s∗ ≈ 60 μm. This horizontal
decay length defines the scale of an elastocapillary meniscus.
The elastocapillary meniscus scale s∗ is of the same order

FIG. 3. Radius of curvature R as a function of p. Deformed
curvature depends on spacing. As p → 0, radius of curvature
increases—in other words, pillars are flatter. Dashed line is the elas-
tocapillary length �ec. (inset) Curvature |H0| as a function of p.

as the elastocapillary length �ec. Notably, the pillar shape
that was originally square in the xy plane becomes nearly
axisymmetric, as is evident in Fig. 4(a) and discussed in detail
in Supplemental Material [32].

The scale of the curvature decay s∗ ≈ 60 μm is about half
of the scale of the interaction distance p∗ ≈ 120–150 μm.
This relation s∗ = p∗/2 is a clear indication that the inter-
action between pillars is mediated by their elastocapillary
menisci: For a pair of pillars, the length scale 2s∗ is the scale
at which the meniscus of one pillar touches that of another
pillar—schematically illustrated in Fig. 5(a). This is the same
length scale p∗ = 2s∗ at which we observe spacing-dependent
deformation. As the meniscus scale s∗ is of the same order as
�ec, we also observe p∗ ∼ 2�ec, which relates the interaction
distance p∗ to the elastocapillary length �ec.

To illustrate more clearly what happens to the elastocap-
illary menisci in the valley between neighboring pillars as
compared to isolated ones, in Fig. 5(b) we overlay profiles
of two isolated pillars (gray) whose original spacing was p =
360 μm as if they were separated by a distance of p = 60 μm.
The superposition of two relatively isolated pillars represents
a hypothetical scenario where elastocapillary interaction with
neighboring pillars does not affect deformation. The region
where the menisci overlap near x = 0 μm in this hypothetical
situation has a higher curvature than the tops of the pillars,
and we observe that the profile of a real interface (orange)
is rounder by comparison. Thus, as a result of rounding and
lifting bulk material between pillars, as well as decreasing
pillar height, the meniscus decreases the surface area and
curvature, likely reducing the total energy of the system.

Elastocapillary interaction not only increases individual
pillar deformation but also leads to displacement of pillar
centroids, such that groups of pillars form clusters [Figs. 5(c)
and 5(d)]. Clustering for a group of pillars can be quantified by
the root-mean-squared deviation (RMSD) of pillar centroids
from their ideal grid positions, divided by the initial space
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FIG. 4. Elastocapillary meniscus scale. (a) Mean curvature field
H (x, y) around a pillar with p = 480 μm. (b) H as a function of
position s along y = 0 (light blue) and x = 0 (dark blue). The pillar
profile is plotted in gray. (c) Curvature along y = 0 for eight different
pillars with p = 480 μm. The red dashed line is a moving average
using bin width of 3 μm. Beyond ∼60 μm from the pillar center,
curvature decays to zero.

(p − w0) between two pillar edges. If the deviation of a pillar
and its neighbor toward each other is equal to half the distance
between two pillar edges ( p−w0

2 ), then the pillars will touch.
The RMSD of the ensemble of compliant pillars has a value
such that RMSD/(p − w0) ≈ 1/2 for the lowest spacings p =
45–75 μm, indicating high levels of clustering that are not
observed for the stiff material [Fig. 5(e)]. A single pair of
pillars that have displaced toward each other is depicted in
Fig. 5(f).

In this work, we demonstrate that neighboring structures
at a solid-air interface can interact through an elastocapillary
meniscus, leading to pronounced deformation and round-
ing. We introduce a microfabrication technique for producing
structures at the surface of a compliant solid and study how
their deformation to final height hd and mean curvature H
depends on grid spacing p. Deformation depends on spacing
for p < p∗ where p∗ ≈ 2s∗ is set by the horizontal scale s∗ of
the elastocapillary meniscus around a deformed pillar. Excess
deformation due to elastocapillary interaction is significant—
the most closely spaced pillars shrink to around 20% of their

FIG. 5. Interaction of elastocapillary menisci. (a) Schematic of
a pair of pillars depicting elastocapillary meniscus scale s∗ ≈ p∗/2.
When the distance between adjacent pillars is below p∗, pillars
interact. (b) Profile of adjacent pillars (orange) at spacing p =
60 μm. Gray profile is a pillar at large spacing (p = 360 μm) that
is duplicated so we can visualize the hypothetical overlap of its
elastocapillary meniscus with another isolated pillar. [(c) and (d)]
Optical microscopy of compliant pillar clusters at (c) p = 45 μm
and (d) p = 60 μm. Scale bars are 200 μm. (e) Clustering behavior,
quantified by pillar centroids’ root-mean-squared deviation (RMSD),
divided by (p − w0). (f) Profilometry data depict arrested coales-
cence of a clustered pair for p = 90 μm.

initial height, hd ≈ 0.2h0. This is much less than the deformed
height of a relatively isolated pillar, hd ≈ 0.5h0.

In addition to large deformations, pillar centroids dis-
place from their initial grid positions, similarly to droplet
“durotaxis” or the attraction between glass beads at a gel-air
interface, which are also mediated by regions of nonzero cur-
vature between the objects [12–14]. Here we observe similar
long-range elastocapillary interaction between structures that
are part of the interface itself, without introducing external
objects. This system is an attractive alternative for studying
elastocapillary interaction at interfaces, because the singular-
ity at the contact line is not present. Interaction between pillars
also differs from the interactions between external objects,
however: First, a pillar’s displacement toward its neighbor is
limited due to the elastic energy cost. Second, a pillar’s final
shape is affected by the interaction, which does not occur for
objects such as rigid beads. Excess deformation and rounding
are added mechanisms by which pillars decrease the surface
area of their elastocapillary menisci. Intriguingly, we observe
the emergence of pattern formation in a system driven solely
by the solid’s surface stress; by contrast, clustering patterns
previously observed for stiff micropillar arrays are driven by
liquid-air surface tension [40–45]. Our observations suggest
future directions for introducing defects or varied initial con-
ditions to better characterize emergence of order at low p.

Beyond the fundamental study of surface stress, our
experiments suggest new directions toward probing self-
assembly on gel and elastomer interfaces [12,13,46] by using

L043001-4



ELASTOCAPILLARY MENISCI MEDIATE INTERACTION … PHYSICAL REVIEW E 108, L043001 (2023)

Si PDMS
Glass

Photoresist (patterned)
Photoresist (base)

(a)

(b)

(c)

(d)

(e)

(f)

FIG. 6. Microfabrication procedure. A silicon wafer is coated
with (a) a 2-μm layer of photoresist (AZnLOF2020, Merck), fol-
lowed by (b) a 30-μm layer of photoresist (AZ40XT, Merck). (c) The
top layer is patterned using photolithography. (d) An approximately
200-μm thick layer of compliant gel (PDMS CY 52-276, Dowsil)
is spin coated on the mold and cured by baking. (e) A glass wafer
is bonded to the gel surface using oxygen plasma. (f) Photoresist
layers are subsquently dissolved with acetone, after which the surface
is immersed in water to rinse and then allowed to dry in ambient
conditions; thus, the textured surface is released.

underlying surface texture to further control self-assembly
of particles or droplets on surfaces, which may open new
avenues for microfabrication techniques. Future study of the
dynamic response of solid surfaces to changing outer fluids
may also lead to new directions for producing environmen-
tally responsive soft machines, valves, or other tools to be
used, for example, in microfluidic devices.

Data and code supporting this study are openly available
from Ref. [47].
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APPENDIX A: MOLD FABRICATION

To produce the rigid mold, first, we spin-coat and cure
two polymeric layers onto a silicon wafer: The first is a
sacrificial photoresist layer in contact with the tops of the
pillars [Fig. 6(a)] and the second is a photoresist that will
be patterned by photolithograpy [Fig. 6(b)], which shapes
the pillars’ side walls. After exposure and development, the
desired pattern of cuboid holes is produced [Fig. 6(c)]. PDMS
(Dowsil CY 52-276) is spin-coated into the mold and cured
by baking at 80◦C for 30 min [Fig. 6(d)]. To support the com-
pliant material, a glass surface is bonded to the PDMS using

FIG. 7. Pillars deform into approximately spherical caps.
(a) Mean curvature field H (x, y) for a compliant micropillar (G ≈ 1
kPa) with spacing p = 90 μm. Negative curvature indicates that the
pillar curves toward the −ẑ direction. (b) Histogram of H considering
data within the box shown in (a). A Gaussian fit (solid line) has peak
at Hpeak = −0.010 ± 0.003 1/μm (68% confidence interval). (c) Cir-
cular arc (dashed red line) with radius of curvature R = 94 μm
superimposed on the pillar profile (gray points).

oxygen plasma [Fig. 6(e)]. Then, by dissolving the mold in
acetone, the compliant micropillars are released, after which
they are rinsed by immersion in deionized water and dried
in air at room temperature [Fig. 6(f)]. This technique can be
used to produce 3D pillars [see Figs. 1(d)–1(e)] as well as
more complex shapes. Complete fabrication steps, tools, and
parameters are provided in detail in Supplemental Material
[32].

APPENDIX B: CURVATURE

It can be shown that each deformed pillar has an approxi-
mately constant curvature H0; that is, each pillar deforms into
approximately a spherical cap, allowing us to measure well-
defined H0 values that are plotted in Fig. 3. As an example, the
curvature field for a pillar at p = 90 μm is shown in Fig. 7(a).
Curvature across the top of the pillar is negative, indicating
that the pillar curves toward the surface. Moreover, H varies
little across the pillar center, as demonstrated by the narrow
spread in the histogram of H shown in Fig. 7(b), indicating
that the initial cuboid has deformed into an approximately
spherical cap with radius R = 1/|H0|, where H0 is the value
of H at the location of the Gaussian peak. The radius of curva-
ture is R = 94 μm and a circular arc with this radius overlaid
onto the profile is an excellent match [Fig. 7(c)]. Thus, H0 is a
well-defined measure of curvature for the deformed compliant
pillars.
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