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Dipole screening in pure shear strain protocols of amorphous solids
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When amorphous solids are subjected to simple or pure strain, they exhibit elastic increase in stress,
punctuated by plastic events that become denser (in strain) upon increasing the system size. It is customary
to assume in theoretical models that the stress released in each plastic event is redistributed according to the
linear Eshelby kernel, causing avalanches of additional stress release. Here we demonstrate that, contrary to the
uniform affine strain resulting from simple or pure strain, each plastic event is associated with a nonuniform
strain that gives rise to a displacement field that contains quadrupolar and dipolar charges that typically screen
the linear elastic phenomenology and introduce anomalous length scales and influence the form of the stress
redistribution. An important question that opens up is how to take this into account in elastoplastic models of
shear induced phenomena like shear banding.
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Introduction. Amorphous solids, including a host of sub-
stances, from metallic and silica glasses to gels and powders,
pose exciting theoretical challenges in understanding their
mechanical properties and failure modes [1,2]. Contrary to
perfect elastic media, amorphous solids experience plastic
events in response to any amount of external stress [3,4]. For
large external shear strain, accumulation of plastic responses
can lead to mechanical failure of amorphous solids through
shear banding and the appearance of cracks [5–7].

The phenomenon of shear banding is a limiting factor
for the usefulness of amorphous solids in applications, and
as such it attracted an enormous amount of attention, espe-
cially in the context of failure under pure or simple shear.
Both simulations and experiments abound, leading to an ac-
tive development of models which are collectively known
as “elastoplastic” models [8–10]. While the available mod-
els differ in detail, elastoplastic models handle the material
as a collection of “mesoscopic” blocks alternating between
an elastic behavior and plastic relaxation, when they are
loaded above a threshold. Plastic relaxation events redistribute
stresses in the system; the lost stress is distributed between
all the other cells, such that the amount of stress that each
cell receives is determined by the “Eshelby kernel,” a function
that was computed by Eshelby in the 1950’s for a quadrupolar
strain perturbation in a perfectly elastic medium [11]. This
protocol can induce avalanches of “plastic events” and at a
certain global strain the avalanche causes a shear band.

Even before the onset of shear banding, plastic responses
can not only renormalize the elastic properties of the sys-
tem, but can also induce a qualitative deviation from an
elastic response. This puts doubts on the relevance of Es-
helby’s kernel as solved within linear elasticity theory. In
fact, we have recently developed a geometric model of me-
chanical screening via quadrupole and dipole elastic charges,

which predicted new phenomenology within linear response,
that was later fully observed in experimental and numerical
systems [12–16]. In this theory the response to local perturba-
tion is screened by various geometric multipoles. The theory
developed runs parallel to electrostatics, in which dipoles
renormalize the dielectric constant, but monopoles introduce
screening with a typical scale as is shown for example in the
Debye-Hücel theory. The difference is that in the context of
elasticity quadrupoles renormalize the elastic moduli [12,16]
but dipoles introduce screening and typical scales [14]. In
elasticity theory monopoles appear only upon melting. All
this previous work was done in a radial geometry to allow
for analytic solutions. In this Letter we report results for
pure shear, and for this purpose we introduce algorithms to
extract directly from experimental or simulation data infor-
mation about dipole elastic charges. We use the algorithms
to examine the role of screening before the onset of shear
banding, an issue which appears fundamental to elastoplastic
models in general. If dipole screening is nonexistent at small
strains, then the common protocol of using the classical Es-
helby kernel is justified. If, however, dipole screening exists
at small strains, it suggests that a modified version of the
classical Eshelby kernel should be developed. The aim of this
Letter is to test the screening mode prior to shear banding.
We provide theoretical and simulational evidence below that
in fact every plastic event creates quadrupolar and dipolar
effective charges in the displacement field that follows the
event. We demonstrate these issues in the context of pure
shear strain of a generic model of amorphous solids, but
elastoplastic modeling of simple strain will suffer from very
similar issues. Note that the algorithms offered can be equally
applied to other straining protocols and also to experimen-
tal data. All that is required is measuring the displacement
field.
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FIG. 1. Shear stress vs accumulated affine strain in pure shear.
Shown are two initial pressures P0 = 720 (upper panel) and P0 =
4.5, our highest and lowest pressures. In both cases one sees elastic
increase in stress punctuated by plastic events, that are denser and
more violent when the pressure is smaller.

Simulations. To demonstrate the issues we chose as our
example frictional granular matter, to be as close as possible
to realizable experiments. Our simulations employed amor-
phous granular assemblies of 16 000 disks, half of which have
a radius R1 = 0.35 and the other half with R2 = 0.49. The
details of the contact forces and the protocols for creating
an equilibrated configuration at any desired pressure P0 are
standard, and are presented in the Appendix.

Having a mechanically stable configuration at different
pressure values P0 with box dimensions Lx0 and Ly0 along
x and y directions, respectively, we apply volume-preserving
pure shear on the samples, involving the following steps.

(i) We reduce the box lengths along x by 0.000 02% and
expand it along y directions such that volume of the system
remains constant at Lx0 × Ly0.

(ii) We run constant NV E simulation, until the force and
torque on each and every particle are smaller than 10−7 in
reduced units.

We repeat these two steps 2000 times for all the pressures.
We measure the instantaneous pressure P and the accumulated
affine strain

uaff ≡ 1

2

(
Lx0 − Lx

Lx0
+ Ly − Ly0

Ly0

)
, (1)

where Lx and Ly are the instantaneous box lengths along x
and y directions respectively. Typical shear stress vs (affine)
strain plots are shown in Fig. 1 for our lowest and highest
initial pressures. As is usual in such simulations, we observe

intervals of increase in stress when the strain increases, inter-
rupted by sharp drops in stress due to plastic events. These are
the events that we focus on next.

Displacement fields associated with plasticity. Presently
we focus on the displacement field that is triggered by the
plastic drop. Denoting the positions of our N disks before
and after the event as ra

i and rb
i respectively, we compute the

displacement field as d i ≡ ra
i − rb

i . Next we compute the total
strain field as

ui j = 0.5(∇id j + ∇ jdi ). (2)

The nonaffine strain uq is obtained by subtracting the affine
strain generated in the last step from utot:

uq
11 ≡ u11 − 1

2

(
Lxb − Lxa

Lxb

)
,

uq
22 ≡ u22 − 1

2

(
Lya − Lyb

Lyb

)
,

uq
12 ≡ u12, uq

21 ≡ u21. (3)

where again a and b refer to after and before. Having the
nonaffine strain we decompose it into its trace and its traceless
components (see Ref. [17], p. 6):

uq = mI + Quts, (4)

where I is the identity tensor and uts is a traceless symmetric
tensor. In the last equation m = 0.5Truq and

Q2 = (
uts

11

)2 + (
uts

22

)2
. (5)

The quadrupolar charge Q is obtained as the square root, and
its orientation is computed from Ref. [17]:

� = 0.5 arctan
[(

uts
12

)
/
(
uts

11

)]
. (6)

A typical map of the quadrupolar fields computed in this
fashion, with the arrows in the direction of the angle �, are
shown in Fig. 2 for the low pressure exhibited in Fig. 1. The
upper panel shows the map for the whole system and below a
zoom on the most active region. The map for the high pressure
is similar, but with a difference in scale—the quadrupolar field
is considerably more intense in the case of lower pressure. The
arrows are pointing in the direction of the angle �; note that
here there is no preferred angle with respect to the principal
stress axis [5,6].

Since the quadrupolar field is obviously nonuniform, we
expect that its divergence would be quite important. Thus we
swiftly proceed to compute the dipolar field P , as the latter
is expected to be crucial for the way stress is distributed as
a result of the plastic event. The dipolar field is simply com-
puted as Pα ≡ ∂βQαβ [12–16]. In the upper panel of Fig. 3
we present the divergence of the quadrupolar field Q that is
shown in the lower panel of Fig. 2. At this point the important
observation is that this field is not zero.

Theoretical considerations. Examining the dipolar heat
maps and the direction of the dipoles one gets the impression
that this field is quite disordered, with arrows pointing in
all directions. In fact, the theory presented in Refs. [12–16]
predicts that the dipole field should be proportional to the
displacement field, and the latter is indeed quite disordered.
As a brief summary of the theory, we recall that classical
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FIG. 2. Heat map of the quadrupolar field for our system after a
plastic event at a lower pressure P0 = 4.5. The darker region indi-
cates high values of Q [see Eq. (5)] and light region low values. The
arrows are in the direction of the angle � [see Eq. (6)]. In the upper
panel we show the whole system and then a zoom into the most active
region.

elasticity in two dimensions can be derived from a Lagrangian
by minimizing the energy F :

F =
∫

L dxdy −
∮

tβdβ dS,

L = 1

2
Aαβγ δuαβuγ δ = 1

2
σαβuαβ, (7)

where A is the usual elastic tensor, and dS is the area element
on the boundary. Minimizing the energy one derives the clas-
sical result ∂ασαβ = 0. In Refs. [12–16] it was shown that in
the presence of quadrupolar plastic response the elastic tensor
is renormalized, yielding a tensor Ãαβγ δ and a renormalized
stress field satisfying the same equation ∂ασ̃ αβ = 0. On the
other hand, once there exist gradients of the quadrupolar field,
generating dipoles, Pα ≡ ∂βQαβ , the appropriate Lagrangian
takes into account the dipoles in the form

L = 1
2 Ã

μνρσ uμνuρσ + 1
2�αβ∂μQμα∂νQνβ + � β

α ∂μQμαdβ,

(8)

where the tensors � and � are coupling tensors that do not
exist in classical elasticity theory. Minimizing the energy as-
sociated with this Lagrangian results in an equation satisfied
by the stress field:

∂ασαβ = −�β
αPα. (9)

FIG. 3. Upper panel: Heat map of the dipole field Pα ≡ ∂βQαβ

for P0 = 4.5, in the window of the lower panel of Fig. 2. Lower panel:
Minus the displacement field in the same window. The arrows in both
panels are in the local direction of the respective field.

One should note that this equation breaks translational
symmetry as explained in Refs. [12–16]. In isotropic homo-
geneous media the coupling tensors simplify, reading �β

α =
μ1gα

β and �αβ = μ2gαβ where g is the Euclidean metric
tensor, μ1 and μ2 being scalar moduli that do not exist in
classical elasticity. Finally, and importantly for our purposes
here, it was shown that the dipolar field satisfies the equation

P = −κ2d, (10)

where κ is an inverse scale that acts as a screening parameter.
This is the reason that the dipole field appears as chaotic as
the displacement field. The constitutive relation Eq. (10) is of
fundamental importance, and was never put to direct test in a
context where the data are just the displacement field obtained
directly from simulations or experiments. The nonaffine re-
sponses in such protocols were analyzed in the past in terms
of normal modes, nonlinear modes, etc., which are all based
on expansions of the Hamiltonian around equilibrium. Here
we offer a method relating the existence of the dipole field to
the phenomenon of screening, with the screening parameter
connecting the dipole field and the displacement. The consti-
tutive relation Eq. (10) was never tested before in the context
of simple or pure shear. To establish that the theory is relevant
in the present context we test Eq. (10) in our simulations.

Test of theory. In the lower panel of Fig. 3 we show (mi-
nus) the displacement field from which the data of the upper
panel of Fig. 3 were computed, following the recipe presented
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FIG. 4. The screening parameter κ ≈ 0.68 ± 0.2 computed by
dividing the two integrals in Eq. (11) computed on square loops
of different sizes and taking the square root. Results pertain to an
average over 20 central grid points; error bars reflect statistical error.

above. Indeed, to the eye it appears that the two fields are
proportional to each other, as expected from the theory. To
provide a quantitative test we can integrate Eq. (10) around
any closed loop and test whether∮

∂�

P (x, y) · n dl = −κ2
∮

∂�

d(x, y) · n dl, (11)

where n is the unit vector normal to the integration path,
pointing outward [14,18]. In the present case it is natural to
choose square trajectories for the integrals, thus using the x
component of the field for paths along y and the y components
for paths along x, with appropriate signs. We have chosen 20
central points on the grid that was used to digitize the dis-
placement field, and for each such point we computed the two
line integrals on squares of edge sizes 6–23. After taking the
ratio of the two integrals in Eq. (11) we computed the square
root and averaged κ over the 20 central points. One should
point out that the protocol described in Eqs. (2)–(6), including
the computation of the divergence of the quadrupolar field
at the end, is not free of numerical noise (at each step). It
is therefore quite remarkable that the resulting value of κ as
shown in Fig. 4 is quite stable, κ ≈ 0.68 ± 0.2. A priori it is
not even guaranteed that the ratio of the two integrals would
be negative definite, resulting in a real value of κ . We thus
interpret the results of the calculation as a strong support for
the constitutive relation Eq. (10).

Having demonstrated that generic plastic drops induce
a displacement field that is typically exhibiting effective
dipoles, we must realize that the fundamental change in
physics that is embodied in Eq. (9) requires reassessment of
the redistribution of the stress that is lost in the plastic drop.
It is no longer likely that the regular power law decay of the
Eshelby kernel would describe properly this redistribution. It
was amply demonstrated that the appearance of dipoles results
in the introduction of a typical scale (which is actually of the

order of κ−1) and it can even reverse the displacement field
that is expected from linear elasticity to decay monotonically.
It is our proposition, on the basis of the analysis presented
above, that the consequences of these results in the context of
elastoplastic models should be carefully assessed.

In the future it will be important to seek similar clarification
of the role of dipole charges also in three spatial dimensions.
Contrary to the hexatic [19] and Kosterlitz-Thouless [20]
phase transitions, which are relevant in two dimensions, the
presence of dipoles as divergences of quadrupolar fields has
been recently demonstrated in three dimensions [16]. The use
of Eshelby kernels that were derived for purely elastic media
must be reassessed.
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Appendix. The contact forces, which include both nor-
mal and tangential components due to friction, are modeled
according to the discrete element method developed by Cun-
dall and Strack [21], combining a Hertzian normal force
and a tangential Mindlin component. Full details of these
forces and the equations of motion solved can be found in
Refs. [22–25]. Simulations are performed using the open
source codes LAMMPS [26] and LIGGGHTS [27] to properly
keep track of both the normal and history-dependent tangen-
tial force. Initially, the grains are placed randomly in a large
two-dimensional box while forbidding the existence of over-
laps or contacts. The system is then isotropically compressed
along x and y directions while integrating Newton’s second
law with total forces and (scalar) torques acting on particle i
given by F i = ∑

j F (n)
i j + F (t )

i j and τi = ∑
j τi j with

τi j ≡ − 1
2

(
ri j × F (t )

i j

) · ez (A1)

the torque exerted by j onto i. Compression is performed
using a series of steps which involves (i) one molecular
dynamics step during which we reduce the box lengths
along x and y directions by 0.002% and (ii) a constant
NV E run until the force and torque on each and every
particle are smaller than 10−7 in reduced units. This guar-
antees that the cell remains square throughout the process.
We repeat these compression and relaxation cycles until
the system attains a jammed (mechanically balanced) con-
figuration at the different final pressures, fixed to P0 =
4.5, 18, 72.0, 144, 288, and 720 (in reduced units) [25]. Of
course, in the final mechanically equilibrated states obtained
at the end of compression the total forces and torques F i and
τi vanish with 10−7 accuracy, as well as all the velocities.
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