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The experimental control of synergistic chemomechanical dynamics of catalytically active microgels (mi-
croreactors) is a key prerequisite for the design of adaptive and biomimetic materials. Here, we report a
minimalistic model of feedback-controlled microreactors based on the coupling between the hysteretic polymer
volume phase transition and a volume-controlled permeability for the internal chemical conversion. We catego-
rize regimes of mono- and bistability, excitability, damped oscillations, as well as sustained oscillatory states
with tunable amplitude, as indicated by experiments and representable by the FitzHugh-Nagumo dynamics for
neurons. We summarize the features of such a “colloidal neuron” in bifurcation diagrams with respect to microgel
design parameters, such as permeability and relaxation times, as a guide for experimental synthesis.
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Introduction. In all living matter, the switching between
states, sustained oscillations, or excitability to external stimuli
are integral to biofunctional processes, such as spatiotemporal
self-organization, intercellular communication, homeostasis,
memory and learning, and collective decision making [1–4].
These features typically exploit dissipative biochemical feed-
back loops across multiple length scales and timescales,
inspiring new dynamic functionalities and pathways in the
design of bioinspired and “smart” synthetic materials [5–8].
In particular, chemomechanical transduction, i.e., the trans-
formation of a chemical into mechanical energy through
oscillations or waves, or vice versa [9,10], is a key prerequi-
site for mechanical adaption and signal propagation in smart
materials [11,12].

Recent research is diving into the challenging realm of
synergistic chemomechanical dynamics at the microscale,
and is increasingly employing synthetic, stimuli-responsive
microgels because of their versatile tunability. Catalytically
active hydrogels (nano- or microreactors [13]) are particularly
promising for applications since the volume phase transition
(VPT), and physicochemical properties, such as diffusion and
reaction timescales, are well controllable by rational polymer
design [14,15]. Among the numerous dynamical behaviors,
synergistic oscillations are remarkably fascinating, where in
contrast to the simpler “enslaved” microgels (driven by intrin-
sically oscillating chemical reactions [9,16–19]), neither the
chemical reaction nor the polymer alone exhibit oscillations.
Only by chemomechanical coupling, and under the prereq-
uisite of a hysteretic VPT, sustained oscillations may result
[20,21].

Synergistic oscillations can in principle be achieved by
the negative feedback and self-regulation mediated through
the bistable switching of the microgel permeability, triggered
by the rising concentration of products as, e.g., in glucose
[20–28] or bromate-sulfite driven pH-induced VPTs [29,30].
However, the few reported clear experimental realizations

required either very complex hierarchies [3] or took place
only on macroscopic scales [26,27,30]. Only recently, indica-
tions of chemomechanical oscillators based on permeability
changes were reported for spherical, catalytically active mi-
crogels on smaller scales [31,32]. However, for the desired
miniaturization to milli- to microscales the precise control
and rational guidance of the experimental process parameters
seems essential to achieve robust oscillations.

In this Letter, we present such a theoretical guiding
map for the stationary dynamics of a permeability-controlled
chemomechanical microreactor. Remarkably, our model is
mathematically akin to the well-studied FitzHugh-Nagumo
(FHN) dynamics for excitable media, such as chemical oscil-
lators [33–35] and neurons [36,37]. This allows an amenable
stability analysis, a facilitated connection to experiments,
as well as the extrapolation to collective behavior of cou-
pled as well as noisy oscillators [38–43] for smart material
design in future. Our model of a “colloidal neuron” con-
verges all essential ingredients as put forward in previous
pioneering works [9,20–29,44] using more elaborate mod-
els into a minimalist framework. It thus allows a holistic
description of the robust phenomena observed for vari-
ous chemicals and geometries, while representing the same
physics. In particular, we explicitly consider the microgel
relaxation dynamics within a generic bistable Landau-like
energy landscape [45] for the hysteretic VPT [46,47] to
include a Flory-Rehner-like elastic response [9,48,49], an ex-
ponential volume-dependent permeability (sieving) function
[50,51], as supported by recent simulations [52,53], and the
(in meaningful limits) adequate first-order rate equations for
the internal chemical conversion [24,54]. Importantly, our ap-
proach allows us to identify the governing timescales and to
summarize the dynamical regimes in state diagrams with re-
spect to physical and experimentally controllable parameters,
such as microgel relaxation time, permeability, and the fuel
concentration.
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FIG. 1. Model and feedback cycle. (a) Glucose (with outside
concentration g0) diffusively enters the gel according to a permeation
rate kg

D exp(−Bφ) which depends on polymer density φ and produces
protons h with rate kR through catalysts (bluish background); protons
h diffuse out of the microgel with rate kh

D. (b) Sketch of the oscillation
cycle (i)–(iv): The production of h increases when the particle is
swollen, (i) to (ii); φ decreases with large h concentration, (ii) to (iii),
inhibiting glucose uptake, (iii) to (iv), and thus yielding a negative
feedback loop with activator h and inhibitor φ. Oscillations can only
occur with spatial instabilities, i.e., the volume phase transition of
φ(h) must show hysteresis implying bistability in the free energy
F (φ) [(c)–(e)] in the vicinity of the crossover concentration hc.

Model and methods. In our model, a reactant with a
permeability-controlled, homogeneous inside concentration g
(e.g., glucose) converts within the microreactor by a cat-
alytic process into inert nonrelevant species and a product
of concentration h (e.g., protons) to which the gel volume
is responsive [cf. Fig. 1(a)]. The gel volume is described by
a time-dependent and intrinsically bistable polymer packing
fraction φ, assumed to be homogeneous in space. We chose
φ, instead of the particle volume or diameter as used, for
instance, in Ref. [32], because of its general applicability
to different finite microreactor geometries. In Fig. 1(b) we
sketch spherical gels to illustrate the feedback cycle (i)–(iv)
of a single chemoresponsive microreactor. Importantly, in
the product-driven collapsed state, the large polymer density
hinders transport of the fuel to the catalyst, thus imposing a
time-delayed negative feedback on the fueling process, where
h plays the role of the activator and φ the inhibitor. After
the products have diffused out of the microgel the volume
transition is reversed and can be refueled.

To access the dynamics of such a chemomechanical feed-
back, we assume overdamped viscous dynamics of the gel
volume fraction, via τφφ̇ ∝ −β∂F/∂φ, where F is the poly-
mer’s coarse-grained conformational free-energy landscape,
β = (kBT )−1 the inverse thermal energy, and τφ the character-
istic microgel swelling/shrinking relaxation time [32,55,56]
in the linear response regime. To account for the typical

hysteresis in the microgel switching response with respect to
the stimulating concentration h [20], we model F (φ) by a
phenomenological Landau-like quartic form of a double-well
potential [45] [see Figs. 1(c)–1(e)], resembling bistable Flory-
Rehner free energies for a mean-field description of phase
transitions [9,48,49]. Further, we assume that the effects of
products h on the volume transition can be described in first
order by perturbations of F (φ) linear in h − hc, and the “or-
der parameter” φ (as the typical external field in the Landau
theory), resulting in

τφφ̇ = (φ − φc) − a(φ − φc)3 + m(h − hc), (1)

where hc defines the critical concentration at which swollen
and collapsed state are equally likely. The parameters a and
φc of the quartic potential as well as m and hc can be obtained,
in principle, by fitting Eq. (1) to experimentally accessi-
ble cosolute-driven hysteresis and transition curves (see the
Supplemental Material [57] for details). The linear perturba-
tion term tilts the double-well potential [cf. Figs. 1(c)–1(e)]
and is well established to describe the action of simple coso-
lutes on the coil-to-globule (or two-state folding) transition of
biomolecules within the popular linear “m-value” framework
[58–60] and can also be justified for weakly charged electro-
static systems [61].

Regarding reactants and products we make use of a com-
partmental model with homogeneous chemical concentrations
and constant outside fuel g0 by assuming ideally stirred con-
ditions, e.g., as commonly applied for continuous(-flow) tank
reactors given sufficient stirring or flow rates, respectively
[62]. Hence, the rate equations for the homogeneous glucose
concentration inside the gel g(t ), and the corresponding H+
concentration h(t ), can be written as [57]

ġ = kg
Dg0e−Bφ − (

kg
D + kR

)
g, (2a)

ḣ = kRg − kh
D(h − h0). (2b)

In Eq. (2a), g is produced by diffusive influx with a perme-
ation rate P = kg

De−Bφ [51,54], where we approximate kg
D with

the diffusive rate in the limiting collapsed state [57]. Note
that in equilibrium (ġ = 0 and kR = 0), we obtain the correct
partitioning g/g0 = e−Bφ . Early theory [50,63], supported by
recent simulations [52,53], demonstrated the exponential de-
pendence in φ with the “sieving” parameter B reflecting, e.g.,
the solute-to-polymer area ratio in the Ogston model [63].
We restrict B > 0, implying smaller partitioning for denser
microgels. The volume dependence of the permeation rate
P is key for the negative feedback in this system, including
the hysteretic switch to block the fuel in the collapsed state
[21,25,32,44,51]. Moreover, in Eq. (2b), h is produced from g
with rate kR and diffusively leaves the gel by rate kh

D without
any φ dependence. We may further set h0 = 0 without loss of
generality as it invariantly shifts h and hc while preserving the
model dynamics.

One can safely assume that the small and free protons (H+)
diffuse significantly faster than the glucose can penetrate and
react. Thus, the dynamics of the inside proton concentration
h(t ) are limited by the glucose timescales, i.e., we obtain h =
gkR/kh

D from Eq. (2b). Using the time derivative in Eq. (2a),
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FIG. 2. (a) Phase plane of Eq. (4) depicting the h-nullcline
(dashed), the φ-nullcline (solid), the vector field (gray streamlines),
and one example trajectory in the limit cycle (dotted) for relaxation
oscillations with Khg0/hc = 3, B = 3.6, and ε = 0.05. The corre-
sponding time series for h (red) and φ (blue) are presented in (b).
(c)–(g) Time series of other behaviors for different sets of parameters
with the same axes ranges and labels as in (b) (omitted for clarity).
The parameter values are depicted in Fig. 3. The arrows in (f) and (g)
indicate small external perturbations of h into the shown direction.
The roman numerals label the different behaviors.

ḣ = ġ kR/kh
D, and we find

ḣ = kg
D

kR

kh
D

g0e−Bφ − (
kg

D + kR
)
h. (3)

We identify (kg
D + kR)−1 = τh as the effective relaxation

time of the proton concentration as well as the station-
ary distribution constant for the protons Kh := k/kh

D =
kg

DkR/[(kg
D + kR)kh

D]. The latter determines the steady-state
H+ concentration given a fixed φ and g0 through h =
Khg0e−Bφ , while k is the standard general rate constant in
diffusion-influenced bimolecular reactions [54]. With that we
arrive at the final kinetic equations for the inhibitor and acti-
vator, φ and h,

τφφ̇ = (φ − φc) − a(φ − φc)3 + m(h − hc), (4a)

τhḣ = Khg0e−Bφ − h. (4b)

We can now define the important timescale separation
parameter ε = τφ/τh. It quantifies the ratio between mechan-
ical versus chemical relaxation times and is thus the key
physical parameter tuning the dynamical behavior of the
system.

Results and discussion. Equation (4) can be studied ge-
ometrically in the planar phase space [see Fig. 2(a)] with a
straightforward linear stability analysis [57,64]. Remarkably,
the system is conceptually identical with the FitzHugh-
Nagumo (FHN) model, which is famous for modeling the
rich neural excitation dynamics [36,37]. Compared to the
FHN model, the polymer volume fraction φ takes the role of
the nerve membrane potential and the proton concentration
h acts as the recovery variable (physiologically motivated
by the voltage-gated, inactivating ion kinetics) [65]. In fact,

linearizing Eq. (4b) leads to a set of equations that is formally
identical with the FHN model except for the opposite sign in
Eq. (4a) and an invariant shift of φ and h by φc and hc.

Because of the similarity of our system to the FHN model,
one can rely on the extensive literature on relaxation oscil-
lators [66] and dynamics in neuroscience [65,67] in general.
Here, we reproduce the most probable dynamical regimes
feasible for colloidal microreactors, and, most importantly,
present phase diagrams with respect to experimentally mean-
ingful system parameters.

We fix the parameters a = 25, m = 0.4/hc, φc = 0.3,
express all concentrations in terms of hc [Eq. (4a)], and
demonstrate that the experimentally important parameters
Khg0, ε = τφ/τh, and B can be used to tune the system to
exhibit the different dynamic behaviors presented as the typ-
ical nullcline analysis in Fig. 2. In experiments g0 is the fuel
concentration, and B the sieving parameter of the microgel
[63]. The timescale parameter ε could possibly be varied
by changing the stiffness of the microgel, e.g., by tuning
cross-link densities, and thereby its mechanical response time
[32,55,56], or by changing the size of the hydrogel particle
(or membrane), affecting mechanical and diffusion timescales
simultaneously as discussed later in more detail.

The corresponding domains in parameter space are sum-
marized in the state diagrams in Fig. 3. For relatively fast
microgel relaxation, e.g., ε = 0.05 in Fig. 3(a), the microgel
can be tuned from (monostable) collapsed to swollen. These
two domains are separated by the bistable (small values of
Khg0 and B) and the oscillating regime (large values) with
the color-coded frequency. We already conclude that high fuel
sieving promotes oscillations, since the system can be driven
into the oscillatory regime by increasing the fuel concentra-
tion. However, sufficient timescale separation is also required
for sustained oscillations.

The dashed line in Fig. 3(a) denotes Khg0/hc = 3, cor-
responding to Fig. 3(b), where more details with respect to
ε are presented. The microgel must relax sufficiently fast,
i.e., ε < 1, in order to observe sustained oscillations at all.
In the oscillatory domain (with color-coded frequencies), we
find small sinusoidal oscillations for τφ � τh with small fre-
quencies ( f ∝ 1/

√
τhτφ), and a gradual crossover to large

high-frequency ( f ∝ 1/τh) relaxation oscillations if the mi-
crogel responds instantaneously (τφ → 0) (see Supplemental
Material [57] for details of the derivation of the scaling laws).
This implies that the frequency is limited by the reaction and
diffusion timescales (τh) of the fuel and is further delayed by
the microgel dynamics (τφ).

Finally, we demonstrate the explicit applicability of our
model to recent experimental works on spherical, catalyti-
cally active and pH-responsive gel particles using the glucose
conversion [32]. Since the cross-link ratio of these spheres is
roughly 5%–10%, we assume a polymer volume fraction of
φc ≈ 0.2 [52,68]. The fit to our model [57] predicts a strong
sieving (B > 20) and further shows that τh ≈ (18 ± 1) min,
being significantly smaller than τφ ≈ (70 ± 10) min. Accord-
ing to our analysis, this leads to underdamped oscillations
[57], as consistently observed in the experiments [32], in con-
trast to the desired sustained ones. The position in parameter
space is depicted in the inset of Fig. 3(b), indicating that
slightly smaller sieving, or higher fueling, and faster microgel
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FIG. 3. (a) Stability of Eq. (4) in the B-g0 plane with ε = 0.05.
The system is either monostable (collapsed or swollen), bistable,
or exhibits sustained oscillations (color-coded frequency obtained
from numerical simulations). The insets sketch the nullclines and
the fixed points in the φ-h phase plane. Sustained oscillations can
occur if the fixed point is on the central (decreasing) branch of the
φ-nullcline [cf. Fig. 2(a)], tuned by B. Trajectories of an excitable
(V) and a switchable state (VI) are shown in Figs. 2(f) and 2(g).
(b) Details of the dynamic regimes in the B-ε plane with g0 =
3hc/Kh. Corresponding example trajectories of states (I)–(IV) are
shown in Figs. 2(b)–2(e). The timescale separation parameter ε =
τφ/τh needs to be at least smaller than unity for oscillatory behavior.
In the monostable regime we find overdamped and underdamped
oscillations. In the oscillatory regime, ε tunes the frequency (color
coded) and the amplitude. The black lines originate from a stability
analysis and separate the oscillatory and stable regime (solid), and
different kinds of oscillatory/damped behavior (dashed); for details,
see Supplemental Material [57]. The small inset displays the position
of one paramater set (pink symbol: B ≈ 22, ε ≈ 4), obtained from
fitting experimental data [32,57], and the same bifurcation lines in
the ε-B plane with g0 ≈ 46hc/Kh and m ≈ 0.2/hc for orientation.

relaxation is necessary for sustained oscillations. In order to
stabilize the oscillations, we suggest to increase the fuel con-

centration g0, and, most importantly, reduce ε, dominated by
the ratio of the swelling kinetics versus the glucose diffusion
timescale kg

D, e.g., by manufacturing smaller microgels, using
different copolymerization, or cross-link ratios.

In Ref. [32], different microgel radii R (reference at
swollen state) were studied, which showed a strong impact
on the system’s dynamics. From a theoretical point of view,
R impacts on critical system parameters simultaneously: The
hydrogel swelling kinetics are delayed with an increased ra-
dius, τφ ∝ R2 [69,70], and the diffusion rates roughly scale
antiproportional, kD ∝ R−1, due to the reduced surface-to-
volume ratio [21]. The rough overall scaling thus ranges from
ε ∝ R to ε ∝ R2. We suggest to synthesize smaller particles
to decrease ε. Note that with improperly tuned feed concen-
trations g0, a reduction of R, and thus ε, can also overdamp
the dynamics [cf. the inset in Fig. 3(b)], as observed in the
experiment [32].

Moreover, we assume that the particular high sensitivity of
the system’s dynamics found at low flow rates (poor stirring
conditions) in Ref. [32] are caused by local inhomogeneities,
precisely, concentration gradients at the microgel interface
(large diffusive layers). Although low flow rates lead to larger
diffusive layers with the desired decrease of kg

D (and smaller
ε), higher flow rates (yet far below the occurrence of hydro-
dynamics effects) contribute to our model’s compartmental
assumption, allowing for a more robust control of the system
dynamics as proposed in the present Letter.

Conclusion. Our work presents simple kinetic equa-
tions capturing the reaction-diffusion dynamics in a catalytic
chemoresponsive microgel colloid, which is mathematically
akin to the FitzHugh-Nagumo model for prototypical ex-
citable systems and also a realization of self-oscillating Ising
model “gedankenexperiments” [71]. Compared to previous,
more elaborate models of mechanochemical feedback, our
model displays a convenient phase plane representation dis-
mantling the system control parameters leading to neural
behavior. The conceptual similarities of catalytically active,
responsive microgels, and established neural models marks
a great potential for future intelligent soft matter devices.
Further intriguing research is enabled towards smart and adap-
tive materials [5], particularly for the experimental control
of the complex dynamics and communication of collectively
coupled synergistic oscillators, such as in splay and chimera
states, [40–43], the inclusion of noise [38,39,72,73], and the
adaptation of our model to other feedback-controlled fueling
sources, such as light [6].
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