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Contrarian role of phase and phase velocity coupling in synchrony of second-order phase oscillators
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Positive phase coupling plays an attractive role in inducing in-phase synchrony in an ensemble of phase
oscillators. Positive coupling involving both amplitude and phase continues to be attractive, leading to complete
synchrony in identical oscillators (limit cycle or chaotic) or phase coherence in oscillators with heterogeneity of
parameters. In contrast, purely positive phase velocity coupling may originate a repulsive effect on pendulumlike
oscillators (with rotational motion) to bring them into a state of diametrically opposite phases or a splay state.
Negative phase velocity coupling is necessary to induce synchrony or coherence in the general sense. The
contrarian roles of phase coupling and phase velocity coupling on the synchrony of networks of second-order
phase oscillators have been explored here. We explain our proposition using networks of two model systems, a
second-order phase oscillator representing the pendulum or the superconducting Josephson junction dynamics,
and a voltage-controlled oscillations in neurons model. Numerical as well as semianalytical approaches are used
to confirm our results.
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Depending on the length of the bob, a forced pendulum
may reveal qualitatively distinct periodic orbits. For instance,
investigations suggest [1,2] that shortening the length of a
pendulum leads to rotational motion, in which the external
torque rotates the pendulum in full swing, i.e., 360◦. On the
other hand, motion is confined to nonoverturning motion if
the length of the pendulum is increased beyond a critical
value. This is called librational motion. The motion of such
an isolated pendulum is captured by two variables: φ de-
scribes the phase angle, and φ̇ reflects the phase velocity (or
frequency). This description is equivalently mapped in the su-
perconducting Josephson junction [3–12] and the sine-Gordon
equation [13]. In particular, in a Josephson junction, the phase
velocity variable evolves as the voltage across the junction that
is proportional to the frequency variable. In this setup, several
investigations suggest that a chain of such pendula may reveal
spatiotemporal chaos if there is specific heterogeneity in the
model, and may emerge at a high degree of complete synchro-
nization if there is strong positive coupling through the phase
variable [1,2,14,15]. A key observation of the emergence of
complete synchronization (CS) in such systems relies on the
fact that the system is in rotational motion and attractive posi-
tive coupling is always applied involving the phase variables.
By contrast, in an array of classical Josephson junctions (see
the model M1, Fig. 1), in which the system exhibits rotational
motion, negative coupling is essential for the realization of
CS if the coupling is applied using a voltage (phase velocity)
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variable [16]. In earlier investigations, it was observed that the
oscillators may also arrive at a state of out-of-phase synchrony
or a splay state [17,18] for positive voltage coupling. Negative
voltage coupling is a necessity for the realization of in-phase
coherence in nonidentical junctions (CS in the identical case)
if the system reveals rotational motion (see the model M1,
Fig. 1). Such negative voltage coupling was used in earlier
studies [17,19] for the realization of stable coherent dynam-
ics, but never categorically discussed regarding the repulsive
effect of voltage coupling. The information was hidden within
the mathematical formulation and missed the attention of re-
searchers until recently [5,16,20,21].

Thus, the conventional paradigm [22–32] of synchrony,
in which a usual second-order (continuous) synchronization
transition occurs under positive phase/amplitude coupling,
drastically fails in arrays of oscillators with a second-order
pendulumlike dynamics if it is connected with phase velocity
or voltage coupling.

Motivated by these observations, we study the impact of
phase and phase velocity (or voltage) coupling in a class of
pendulumlike models (see the models in Fig. 1) that show
either librational or rotational motion. The phase velocity (or
voltage) and phase variables appear disparately in the model
description. To decipher our observation [16,20], we explore
the impact of phase and phase velocity coupling separately,
using a semianalytical approach and more rigorous numerical
studies, on an array of the second-order phase model that
represents the Josephson junction dynamics. Furthermore,
we explore a network of a voltage-controlled oscillations in
neurons (VCON) model [33,34] that is also described by an-
other second-order phase model and shows either rotation or
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FIG. 1. Globally coupled networks under phase and phase velocity interactions. M1: A classical Josephson junction model. M2: VCON
model. M1 reveals the rotation for the choice of I and α (I = 1.5). In M2, the parameter α determines the transition of the attractor from
libration to rotation for a range of β and I values. ε1 and ε2 represent diffusive phase coupling and diffusive phase velocity coupling,
respectively. Ai j denotes the adjacency matrix of the networks; in our present case, all nodes are all-to-all coupled, i.e., Ai j = 1 if i �= j.
φi and yi are the phase and phase velocity variables in both models.

libration [1,2,14,21], to confirm the generality of our results.
Our result suggests that if the uncoupled system is in libra-
tional (rotational) motion, the phase coupling should be nega-
tive (positive). The contrasting effect emerges if the oscillators
are connected by phase velocity variables. This particular
effect is not system specific but rather related to the coupling
framework of the autonomous second-order phase models
that exhibit libration or rotation depending on the system
parameters.

Network models. We consider globally coupled networks
of two model systems with distributed parameters and explore
the effect for two different coupling configurations (phase and
phase velocity), separately. The model systems, namely the
Josephson junction (M1) and voltage-controlled oscillations
in neurons (M2), are used to form the networks. The net-
works using M1 and M2 models are described in Fig. 1.
A single Josephson junction (M1) usually shows rotation on
a cylindrical surface alike an inverted pendulum for a broad
range of parameters [32], but on occasion, especially in the
coupled state [5], may show libration as a simple pendulum
with a to-and-fro small oscillation. In libration, the trajec-
tory never encircles the cylindrical surface although it lives
on the surface. The network with VCON node dynamics
(M2) has an almost similar mathematical description, but
with an additional cubic nonlinearity controlled by β, and α

is the coefficient of a linear function. This model is related
to the neuronal membrane dynamics [33,34], however, we
are not interested here in its neural properties. A variation
of a system parameter (α) can easily transform the system
from libration to rotation as given in Fig. 1. This helps
us explore the contrarian role of phase and phase velocity
coupling on synchrony with changes in specific dynamics.
Here, the phase velocity θ̇ represents the membrane potential
of neurons. For a suitable choice of parameters, the system
shows rich complex behavior—the existence of a saddle point,
an unstable spiral, a stable limit cycle (libration, restricted
to one sheet of a cylinder), and a stable running periodic
solution (rotational motion)—thus revealing subthreshold and
superthreshold neuronal oscillations.

We consider globally coupled networks of the two models,
separately, with a distribution of α and an appropriate choice
of other fixed parameters of both systems. First, we define an

order parameter r (where rei� = 1
N

∑N
j=1 eiφ j ) as a function

of phase coupling (ε1 �= 0, ε2 = 0) as well as phase velocity
coupling (ε1 = 0, ε2 �= 0) and numerically calculate it to ex-
plore the synchronization processes. Positive phase coupling
(ε2 = 0) is a necessity for the second-order transition to phase
coherence as shown in Fig. 2(a) for both the network models
(yellow and blue lines) as usual. An opposite scenario appears
in Fig. 2(b) when only the phase velocity coupling (ε1 = 0) is
considered. Note that, for the calculation of r, the parameters
of both the isolated models are chosen such that the dynamics
are in rotation.

Next, we search for the stability conditions for complete
synchrony and explore the contrarian roles of phase and phase
velocity coupling in identical networks. A semianalytical ap-
proach [19] is adopted for deriving the stability conditions
of complete synchrony for both the model networks, thereby
demarcating the synchronized and desynchronized regions in
the coupling parameter plane. For the M1 system, the glob-
ally coupled network with diffusive phase and phase velocity
coupling is described for an arbitrary kth node,

φ̈k + αφ̇k + sin φk

= I + ε1

N

N∑

j=1

(φ j − φk ) + ε2

N

N∑

j=1

(φ̇ j − φ̇k ). (1)

The time evolution of phase φ and φ̈ variables is controlled
[7] by the damping parameter α and a constant bias I . We
remind here that this network model represents the dynamics
of the superconducting Josephson arrays where the phase φk is
connected with the supercurrent and the phase velocity φ̇k =
yk appears as the voltage across the kth junction (M1), and it
is proportional to the frequency of oscillation [3]. For I > 1,
the isolated system is in rotation on the φ̇ − φ cylindrical
surface. In a completely synchronized state of the array, all
of the junctions oscillate in unison when the synchronization
manifold is defined by φk = φ0. In the synchronous state, the
N-dimensional system is reduced to

φ̈0 + αφ̇0 + sin φ0 = I. (2)
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FIG. 2. Emergent synchrony in globally coupled networks. Or-
der parameter r against (a) phase coupling ε1 �= 0 (ε2 = 0) and
(b) phase velocity coupling ε2 �= 0 (ε1 = 0). A Cauchy or Lorentz
distribution of α is considered around α = 1.5, and I = 1.5 for the
system M1. On the other hand, a similar Cauchy or Lorentz dis-
tribution of α is considered around α = 0.95 for the second system
M2; other parameters are I = 0.5 and β = 0.5. Positive coupling
is required for phase coherence. An opposite scenario appears in
(b) where phase velocity coupling (ε1 = 0, ε2 �= 0) is introduced, and
phase coherence emerges for a negative ε2. Note that, for calculating
the order parameter r, the parameters of both the isolated models are
chosen such that the dynamics is rotational. Network size: N = 100
nodes.

To derive the stability of complete synchrony, we apply a
small perturbation, φk = φ0 + ηk , and linearize around the
synchronized state φ0,

η̈k + αη̇k + cos φ0ηk = ε1

N

N∑

j=1

(η j − ηk ) + ε2

N

N∑

j=1

(η̇ j − η̇k )

(3)

⇒ η̈k + (α + ε2)η̇k + (cos φ0 + ε1)ηk

= ε1

N

N∑

j=1

η j + ε2

N

N∑

j=1

η̇ j . (4)

There is permutation symmetry in the system. Any permu-
tation η j ↔ ηk leaves this equation unchanged. Considering
the transformation with mean coordinate v = 1

N

∑N
j=1 ηk and

(N − 1) relative coordinates ζk = ηk − ηk+1, we can write
Eq. (4),

ζ̈k + (α + ε2)ζ̇k + (cos φ0 + ε1)ζk = 0. (5)

We simulate Eqs. (2) and (5) simultaneously and derive where
the relative errors ζk decay to zero in ε1-ε2 space that demar-
cates the region of stable synchrony.

A similar semianalytical approach is adopted for a globally
coupled network with the node dynamics of M2. The trans-
formed equation of the relative errors appears,

ζ̈k + (
3βφ̇2

0 − αβ + ε2
)
ζ̇k + (cos φ0 + ε1)ζk = 0. (6)

We simulate Eq. (6) together with the coherent solution,

φ̈0 + βφ̇0
(
φ̇2

0 − α
) + sin φ0 = I. (7)

(See Supplemental Material [35] for a detailed analysis.)
The regions of synchrony (yellow color) and desynchrony

(orange color) are illustrated in the ε1-ε2 coupling parameter
plane in Fig. 3 for the two networks. A stable synchronization
line (dashed line) is drawn as obtained using the semianalyt-
ical approach for both models that marks the separating line
between the synchronous and asynchronous regions. For the
network with the M1 model, the regular graph (N = 100)
emerges into complete synchrony (yellow region) for ε2 < 0
when the transition occurs at a critical value along the vertical
line (ε1 = 0) as shown in Fig. 3(a). The network is desynchro-
nized (orange region) for ε2 > 0 (ε1 = 0). The corresponding
trajectories of all the units (color circles) are shown on a y-φ
cylindrical plane immediately below each phase diagram of
the ε1-ε2 plane. In the desynchronized state, the dynamical
units are in rotation on the cylindrical surface. They are dis-
tributed in phase space during desynchrony, but converge to
one cluster (red circle), rotating once again on the cylindrical
surface when synchronized. Of course, there exists a broad
region of synchrony (yellow) for ε1 �= 0 and ε2 �= 0 when both
the phase velocity and phase coupling are active, however, it
is not the main focus of our work. For a regular graph with dy-
namical units using the model M2, a similar synchronization
scenario is seen in Fig. 3(b), when the individual units are also
in rotation for α > 0.84 (β = 0.5 and I = 0.5). Synchrony
emerges at a critical negative value of phase velocity coupling
(ε1 = 0). The corresponding trajectories once again confirm
the scenarios on the cylindrical surface either as distributed
(asynchronous) or convergent (synchronous) in rotation.
Figure 3(c) shows the opposite picture of collective dynamics,
when the model M2 in isolation is in libration for α < 0.84.
A broad parameter space in the ε1-ε2 plane exists where we
find complete synchrony (yellow) delineated from the desyn-
chronized region (orange) by the semianalytical stability line
(dashed line). Positive phase velocity coupling (ε1 = 0) is a
necessity for synchrony, otherwise, negative phase coupling
(ε2 = 0) is necessary to achieve synchrony. The trajectories
are plotted below for both the synchronous and asynchronous
states in a cylindrical plane. The trajectories make a small
cycle, but never rotate around the cylindrical surface that
indicates their libration. The whole scenario is further clarified
in a phase diagram in Fig. 4 that shows regions of rotation
and libration in the dynamics of the M2 and the correspond-
ing collective dynamics. There exists a region of synchrony
(yellow) of the network under phase velocity coupling ε2 < 0
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FIG. 3. Phase diagram in an ε1-ε2 plane. The synchronization region is shown in yellow color and desynchronization in orange. The
dashed line represents the semianalytical line for stable synchronization. This line separates the synchronization phase space from the
desynchronization phase space. (a) Model M1: For ε1 = 0 (vertical black line), the regular graph emerges into complete synchronization
for ε2 < 0. An exactly opposite scenario occurs, when ε2 = 0 (horizontal black line). (b) Model M2: It shows a scenario similar to (a), when
the individual units are in rotation (I = 0.5, α > 0.84, β = 0.5). (c) Model M2: The scenario is reversed when the individual units are in
libration (I = 0.5, α < 0.84, β = 0.5). The corresponding trajectories of all the emergent states are illustrated in cylindrical phase space
immediately below each phase diagram and for synchronization (all oscillators in color circles converge into one, in rotation or libration) and
desynchronization (all oscillators in color circles are distributed along the trajectories, in rotation or libration) regimes. Number of globally
coupled oscillators: N = 100.

(ε1 = 0) when the system is in rotation (α > 0.84). The
network needs positive phase velocity coupling ε2 > 0 for
synchrony (yellow region) when the individual units are in
libration for α < 0.84. A bistable region (blue color) exists
where synchronous and asynchronous regimes coexist and
appear as depending on the initial conditions.

FIG. 4. Phase diagram in an α-ε2 plane. Emergent dynamics in
a globally coupled network of the M2 model system. Synchronous
(yellow) and desynchronous (orange) regimes are demarcated. The
isolated nodes are in rotation (α > 0.84). The system is purely in
libration (α < 0.8). A bistable region (blue color) of the system dy-
namics exists where no such synchrony is possible, where synchrony
and asynchrony coexist.

Mechanism. The results raise a pertinent question: Why is
negative phase velocity (or positive phase) coupling essen-
tial for the synchronization of connected second-order phase
oscillators that resemble pendula dynamics with rotational
motion? From a mathematical standpoint, our semianalyti-
cal approach provides a solution [see Eqs. (6) and (7) for
the VCON model]. To delve deeper, we analyze Eq. (6) as
a damped simple harmonic oscillator, by assuming that the
coefficient of the damping term is constant, i.e., (3βφ̇2

0 −
αβ + ε2) is not a function of t . Thus, φ̇2

0 which is coming
from the time-dependent solution of Eq. (7) should be consid-
ered as time independent. With this approximation, we take
the average of φ̇2

0 in time. On the other hand, we also treat
the frequency term (cos φ0 + ε1) as constant by substituting
cos φ0 with its average value. Note that changing the parame-
ter α0 will change the solution of the uncoupled VCON model
[Eq. (7)], leading to rotational motion from the librational dy-
namics. Therefore, the strength of the damping and frequency
terms will also change. Accumulating all the information,
we show that ε1c = 1

4 [3β(φ̇0)2
avg − αβ]2 − (cos φ0)avg, and

ε2c = 2
√

(cos φ0)avg + αβ − 3β(φ̇0)2
avg. Clearly, if (φ̇0)2

avg is
too high (that is the case for rotation), the phase velocity
coupling ε2c will be negative. The contrasting effect occurs
for the phase coupling ε1c. For more details, please see the
Supplemental Material [35]. A similar argument also explains
the collective dynamics for the Josephson junction arrays in
rotation. We acknowledge that the analysis is carried out with
some approximations (damping coefficient and frequency are
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assumed constants) and thereby try to develop an under-
standing of why the counterintuitive phenomenon happens,
although the exact mechanism is still elusive.

Conclusion. An ensemble of phase oscillators transits from
a disordered state to an ordered phase coherent state for posi-
tive coupling that has been necessarily defined by pure phase
coupling. Positive coupling attracts the phase oscillators to
converge into one cluster. A network of chaotic oscillators
(identical or distributed parameters) also follows a similar
trend of transition for positive coupling via the state variables.
Both the phase and amplitude are imbibed in the state vari-
ables and in the definition of the coupling function. As usual,
positive phase coupling or the coupling via the state variables
(amplitude and phase coupling in combination) thus attracts
different trajectories of the dynamical nodes to converge into
a coherent state. This conventional concept of the attractive
nature of positive coupling using simply phase variables or the
state variables of limit cycle systems is reversed for pure phase
velocity coupling, when the phase velocity variable happens
to appear separately from the phase variable in dynamical
systems. The oscillators can synchronize only for negative
phase velocity coupling. We have extended here our previ-
ous results [16,20] on a network of Josephson junctions that
represents a second-order phase dynamics and shows rota-
tional dynamics for a broad range of parameters. We confirm

this scenario using another VCON model to form a regular
graph and explore the transition to synchrony for identical and
nonidentical cases. This VCON model shows both rotation
and libration for a change of parameters. Thereby, we come
to a conclusion that synchronization emerges in an ensem-
ble of second-order phase oscillators in rotation for negative
phase velocity coupling. Positive phase velocity (or negative
phase) coupling plays an attractive role for the oscillators in
libration to emerge into a coherent state. Recently, the role
of contrarians has been explored in the synchrony of phase
oscillators under higher-order interactions [36] and chaotic
oscillators under cross-repulsive coupling [37–40], however,
none of them focused specifically on phase velocity coupling.
We delineate here the contrarian roles of phase velocity and
phase coupling on synchrony in oscillators where the phase
and phase velocity appear as separate variables. For physi-
cal devices such as the Josephson junction, phase velocity
coupling appears as voltage across the junction and it has
an important role in the collective dynamics of the arrays of
junctions for practical purposes.

All data are available for free on request from the authors.
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