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The oscillation of fluctuation with two state observables is investigated. Following the idea of Ohga et al.
[Phys. Rev. Lett. 131, 077101 (2023)], we find that the fluctuation oscillation relative to their autocorrelations is
bounded from above by the entropy production per characteristic maximum oscillation time. Our result applies
to a variety of systems including Langevin systems, chemical reaction systems, and macroscopic systems. In
addition, our bound consists of experimentally tractable quantities, which enables us to examine our inequality
experimentally.

DOI: 10.1103/PhysRevE.108.L042103

Introduction. Entropy production plays a pivotal role in
nonequilibrium statistical mechanics, quantifying the degree
of the thermodynamic irreversibility of processes. The cel-
ebrated fluctuation theorem [1–5] and its variants [6–10]
clearly show the mathematical structure of the thermodynamic
irreversibility in an equality form. In addition, entropy produc-
tion satisfies not only equalities but also various inequalities
as the upper bounds of quantities [11]. One famous exam-
ple is the classical speed limit inequalities [12–15] and the
trade-off relation between the efficiency and power of heat
engines [16,17]. Here, entropy production bounds the speed of
processes: A quick process should accompany much entropy
production. The thermodynamic uncertainty relation [18–24]
is another example, where entropy production bounds the
relative fluctuation of general currents. Furthermore, entropy
production serves as a restriction on possible paths in state
space observed in relaxation processes [25,26].

We investigate this direction further in the context of os-
cillation phenomena. Our main subject in this Letter is the
fluctuation oscillation in the stationary distribution with two
state variables a and b defined as

αab := 1
2 〈aḃ − bȧ〉, (1)

with time derivative ȧ := limΔt→0[a(t + Δt ) − a(t )]/Δt ,
which is also called the irreversible circulation of fluctua-
tion [27] and asymmetry of cross-correlation [28] (see Fig. 1).
The fluctuation oscillation αab can be interpreted as the an-
gular momentum in the a-b plane, and therefore αab quantifies
the strength of rotation in terms of a and b. Since the stationary
fluctuation oscillation takes a nonzero value only at nonequi-
librium stationary states, this quantity is sometimes regarded
as the characterization of thermodynamics irreversibility [27]
(i.e., far from equilibrium).

Oscillation phenomena including chemical oscillations
were investigated in the field of nonlinear physics [29–31],
and have attracted renewed interest from the viewpoint
of stochastic thermodynamics [32–42]. Recently, interesting
progress was provided by Ohga et al. [28], which proposes a
bound on fluctuation oscillation relative to autocorrelation by
using the maximum cycle affinity in the transition network.
This bound builds a bridge between fluctuation oscillation and

some thermodynamic quantity. However, the maximum cycle
affinity of systems with multiple cycles is sometimes not easy
to measure in experiments. In particular, the connection to
entropy production has not yet been addressed.

In this Letter, we prove the upper bounds on fluctuation os-
cillation by entropy production per characteristic time length
of oscillation. Our result clearly shows that a long-lived oscil-
lation inevitably accompanies much dissipation. Employing
the geometric interpretation proposed by Ohga et al. [28],
we can derive our results transparently. Our result has wide
applicability from particle systems in continuous space to
chemical reaction systems. Another advantage of our result is
that the inequality consists only of the fluctuation oscillation,
autocorrelation, the operator norm of observables, and the
entropy production rate, all of which are tractable in various
experiments. Thus, our relation serves as a good stage to test
the thermodynamic properties in oscillation phenomena.

Setup and main result. We consider a Markov jump pro-
cess on discrete states, whose time evolution is given by the
following master equation:

d

dt
pi =

∑
j

Ri j p j . (2)

Here, pi is the probability distribution of state i, and R is a
transition matrix satisfying non-negativity Ri j � 0 (i �= j) and
the normalization condition

∑
i Ri j = 0. We assume the local

detailed-balance condition, with which the stationary entropy
production rate σ̇ is expressed as

σ̇ =
∑
i, j

Ri j pss
j ln

Ri j pss
j

R ji pss
i

, (3)

with the stationary distribution pss.
The stationary fluctuation oscillation with a and b can be

expressed as

αab = 1

2

∑
i, j

(a jbi − aib j )Ri j pss
j = 1

2

∑
(i, j)

(a jbi − aib j )J
ss
i j ,

(4)
where Jss

i j := Ri j pss
j − Rji pss

i is the stationary current between
j and i, and

∑
(i, j) represents the sum over a pair of i and
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FIG. 1. An example of state space and its geometric interpreta-
tion of fluctuation oscillation and other quantities in the a-b space.
Here, a and b are two observables which take values ai and bi at state
i. The terms in the fluctuation oscillation αab = 〈aḃ − bȧ〉 can be
interpreted as the area with dark green (with transition probability).
We also express �i j = √

(ai − aj )2 + (bi − bj )2 and ri = √
a2

i + b2
i .

All points (ai, bi ) are in the circle with diameter ‖√a2 + b2‖ :=
maxi

√
a2

i + b2
i drawn in light green.

j (i.e., we take only one of i j and ji). We introduce the
autocorrelation of a defined as

Da := −〈aȧ〉 = 1

2

∑
i, j

(ai − a j )
2Ri j pss

j , (5)

which quantifies the speed of decay of a since Da is the half
of d (a2)/dt . Here, ȧ is defined in a manner presented below
Eq. (1). We normalize the fluctuation oscillation αab by the
average of autocorrelations of a and b; (Da + Db)/2.

Below we present two upper bounds on the normalized
fluctuation oscillation 2αab/(Da + Db) with the stationary en-
tropy production rate σ̇ relative to the maximum speed of
oscillation. Two inequalities employ different measures of the
speed of oscillation. In the first inequality, we characterize the
speed of oscillation by the fluctuation oscillation divided by
the area of the circle with a diameter equal to the maximum
of

√
a2 + b2. The obtained bound is

2|αab|
Da + Db

� σ̇

2πwosci
, (6)

which is our first main result. Here, wosci is defined as

wosci := |αab|
π‖a2 + b2‖ , (7)

with the operator norm ‖a2 + b2‖ = maxi[a2
i + b2

i ]. The de-
nominator represents the area of the circle with diameter
‖√a2 + b2‖. Since αab can be regarded as the area of a circular
sector (see Fig. 1) with a diameter less than ‖√a2 + b2‖, we
can see wosci as the maximum angular velocity. We remark
that in the definition of wosci we can replace the position of
the origin to (a′, b′) and define as wosci = |αab|/π‖(a − a′)2 +
(b − b′)2‖, with which we can derive the same bound (6).

The idea behind the second inequality is closer to that
shown in Ohga et al. [28], which relies heavily on the isoperi-
metric inequality. From the viewpoint of the isoperimetric
inequality, the area of a circle is connected to the square of
the perimeter of the circle. In this line, we claim our second
main result:

2|αab|
Da + Db

� σ̇

2πvosci
. (8)

Here, vosci is defined as

vosci := 4π |αab|(
maxC∈Cucd �C

)2 , (9)

where �C := ∑
(i, j)∈C

√
(ai − a j )2 + (bi − b j )2 is the length

of cycle C in the a-b plane, and Cucd is a set of cycles in
the uniform cycle decomposition [43]. The uniform cycle
decomposition is a cycle decomposition [44] such that the
direction of cycles and that of current coincide on any edge,
whose existence is established. As mentioned above, �2

C/4π

corresponds to the area bounded by C.
These two inequalities clearly show that possible fluctu-

ation oscillation is bounded above by the dissipation. Some
arguments shown in the remainder suggest that the first in-
equality (6) is more useful in several places than the second
one (8). We remark that the denominator of wosci depends only
on the state variables a and b, and that of vosci depends only
on a, b, the topology of the transition map, and the form of the
uniform cycle decomposition, and the effects of the transition
rates and the stationary distribution are only seen through the
uniform cycle decomposition.

Comparison with previous theoretical works. Before going
to the proof of these bounds, we here discuss their physi-
cal implications and compare our bounds with other relevant
works.

We first remark on the connection to the response the-
ory. Consider a macroscopic stationary system with a and b
as conserved quantities supplied from reservoirs. We apply
the system size expansion [27,45], which is an established
method to evaluate small fluctuations around the averaged
macroscopic dynamics by the Kramers-Moyal expansion. In
the lowest order, the fluctuation of observables in the vec-
tor form X = (Δa,Δb)
 obeys a stochastic equation Ẋ =
LX + ξ, where L is the response matrix and ξ is the noise
term. Around an equilibrium state, the celebrated Onsager
reciprocity theorem states that two off-diagonal elements are
equal, L12 = L21, which follows from the microscopic re-
versibility of dynamics. In contrast, around a nonequilibrium
stationary state, the Onsager reciprocity relation no longer
holds, L12 �= L21, and its discrepancy is known to be equal
to the fluctuation oscillation (the irreversible circulation of
fluctuation): (Lab − Lba)/2 = αab [27]. Thus, our results also
serve as a bound on the antisymmetric part of the response
matrix by entropy production, which is sometimes referred to
as a characterization of microscopic irreversibility (the degree
of nonequilibriumness).

A further implication is seen in the bifurcation phenomena.
When bifurcation occurs, the fluctuation of an observable (Da

or Db) diverges, and in some cases, the oscillation fluctuation
(αab) also diverges simultaneously, which are called soft-mode
instability and hard-mode instability, respectively [30]. Since
the entropy production rate σ̇ does not diverge at the bifurca-
tion point, our results can also be read as a bound on the speed
of divergence of these two instabilities in terms of entropy
production.

Next, we compare our results with the conjecture raised
by Oberreiter et al. [41], which conjectures that the sec-
ond largest eigenvalue λ of the transition matrix R satisfies
(Im λ)2/Re λ � σ̇ . To compare our results, we introduce the
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FIG. 2. An example of ai and bi in a unicyclic system. By taking
the n → ∞ limit, the point (ai, bi ) moves on the circumference of
the light green circle. In this case, the point in a-b space rotates twice
per single period.

corresponding eigenvector v normalized as
∑

i |vi|2/pss
i = 1.

By setting ai = Re vi/pss
i and bi = Im vi/pss

i and comparing
the relation λv†v = v†Rv, the oscillation fluctuation and the
autocorrelation become equivalent to the real and the imag-
inary part of the second largest eigenvalue: Im λ = αab and
Re λ = Da + Db [28]. However, to proceed to the above con-
jecture or a similar relation from our bounds, we need to
evaluate the eigenvector v, which appears in the form of
‖a2 + b2‖ in the case of Eq. (6). At present, we do not have
good tools to examine this eigenvector in detail, which is left
as a future problem.

We finally compare our results to the relations shown in
Ohga et al. [28]. In both inequalities, the fluctuation oscilla-
tion relative to the autocorrelation is bounded from above. The
difference lies in the fact that the bound shown in Ref. [28]
employs the maximum cycle affinity as a thermodynamic
quantity, while our bounds employ an entropy production rate.
To compute the cycle affinity, we need detailed information on
the system. In contrast, the stationary entropy production rate
depends only on stationary currents of conserved quantities
such as heat currents and particle currents. These quantities
can be measured not only by tracking microscopic trajectories
but also by measuring the total change in energy or number of
particles of baths. In particular, Eq. (6) connects the oscillation
fluctuation, autocorrelation, and entropy production rate di-
rectly. We expect that the experimental verification of Eq. (6)
is tractable in several micro- and mesoscale stochastic systems
and chemical systems. Candidates are KaiC proteins [46],
the genetic repressilator [47], and many other oscillating bio-
chemical system (see Ref. [32] for further examples).

Example: Unicyclic system. To shed light on the power
of our inequalities, we apply them to the simplest setup, a
uniform unicyclic system with n states, which is analyzed in
Ref. [41]. We set the transition rates as Ri+1,i = keβF/n and
Ri,i+1 = k, where we identify state n + 1 with state 1. The
stationary entropy production rate is computed as

σ̇ = k(eβF/n − 1)
βF

n
. (10)

We set two observables as ai = sin ωi and bi = cos ωi with
ω = 2πm/n, where m is a natural number (the case of m = 2
is drawn in Fig. 2). Then, both the fluctuation oscillation
and the autocorrelation are calculated as αab = 1

2 k(eβF/n −

1) sin ω and Da = Db = k(eβF/n + 1) sin2(ω/2), whose ratio
behaves as

2|αab|
Da + Db

= sin ω tanh βF
2n

2 sin2(ω/2)
� βF

2πm
, (11)

where the last approximation is valid under the large
n situation. In addition, by noting ‖a2 + b2‖ = 1 and
�C = 2n sin(πm/n), two definitions of a characteris-
tic maximum speed of oscillation are calculated as
wosci = |αab|/π = 1

2 k(eβF/n − 1) sin(2πm/n)/π and vosci =
4π |αab|/�2

C = 1
2 k(eβF/n − 1)π sin(2πm/n)/n2 sin2(πm/n).

Thus, the right-hand sides of the two inequalities (6) and (8)
read

σ̇

2πwosci
= βF

n sin 2πm
n

� βF

2πm
, (12)

σ̇

2πvosci
= βFn2 sin2 πm

n

π2 sin 2πm
n

� βFm

2π
. (13)

Comparing Eq. (11), we see that Eq. (6) achieves its equality
for any m, while Eq. (8) does only when m = 1 and it is a
loose bound by m2 for m � 2. This difference comes from the
looseness of the isoperimetric inequality when the winding
number of the polylateral around the center is not one.

Other possible applications. We here briefly draw other
possible applications. One important application is to two-
dimensional Langevin systems in a confined region with
rotational force. This is straightforward by following a stan-
dard method [11,16] that we first discretize the space and
then take the continuous limit. We note that the quantities
in Eq. (6), the fluctuation oscillation, autocorrelation, entropy
production rate, and the norm of a2 + b2, do not diverge in
this limit.

Another important application is to chemical reaction sys-
tems. Some chemical systems including the Brusselator model
show a nonequilibrium phase transition to a coherent oscil-
lation phase [29]. From a microscopic perspective, the state
of the system is a pair of particle numbers, and transition
rates between two states are given from a chemical reaction
network. If a chemical system has two species X and Y ,
for example, the microscopic state is given by (nX , nY ). An
example of the state space (a reversible Brusselator model)
is shown in Fig. 3. A proper macroscopic limit recovers its
deterministic time evolution. Setting a = nX and b = nY , we
can examine the magnitude of oscillation in the nX -nY plane
in terms of autocorrelation, entropy production rate, and the
maximum number of species, which is well defined under a
proper cutoff.

Proofs of Eqs. (6) and (8). We derive two inequalities by re-
placing the entropy production rate σ̇ with the pseudoentropy
production rate [11,22]


̇ :=
∑
(i, j)

(
Ri j pss

j − Rji pss
i

)2

Ri j pss
j + Rji pss

i

=
∑
(i, j)

J2
i j

Ai j
. (14)

Here, we defined the local activity, or traffic, in the stationary
state as Ai j = Ri j pss

j + Rji pss
i , which quantifies the frequency

of jumps between i and j. Noting 
̇ � σ̇ , we confirm that
proving inequalities with 
̇ suffices for our purpose.
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FIG. 3. An example of the state space of a chemical reaction
model, the reversible Brusselator model: A ↔ X , 2X + Y ↔ 3X ,
B + X ↔ Y + D, X ↔ E . A single state is represented by a single
vertex (nX , nY ), and a state can jump to another state connected by an
edge in a single transition. We can expect oscillation (rotational flow)
as the red arrow in some parameter regime, which can be captured
by our bound (6) with a proper cutoff.

We employ a geometric interpretation with the a-b plane
(see Fig. 1). We introduce two distances One is between two
states i and j and the other is from the origin, denoted by
�i j := √

(ai − a j )2 + (bi − b j )2 and ri :=
√

a2
i + b2

i , respec-
tively. The oriented area of the triangle with i, j and the origin,
with edges �i j , ri, and r j , is expressed as Si j := 1

2 (a jbi −
aib j ). Using these quantities, the averaged autocorrelation
(Da + Db)/2, which appears on the left-hand side of the main
results as its denominator, is written as

Da + Db

2
= 1

2

∑
(i, j)

Ai j�
2
i j . (15)

A key fact to derive Eq. (6) is that the oriented area of a
triangle is always less than half of the product of two edges,

Si j � 1
2�i j ri � 1

2�i j rmax, (16)

where rmax := maxi ri = ‖√a2
i +b2

i ‖ is the maximum distance
of point (ai, bi ) from the origin. Using this relation and the
Schwarz inequality, we have Eq. (6):

2
∣∣α2

ab

∣∣
Da + Db

= 2
(∑

(i, j) Ji jSi j
)2

∑
(i, j) Ai j�

2
i j

� r2
max

2

(∑
(i, j) Ji j�i j

)2

∑
(i, j) Ai j�

2
i j

� r2
max

2

∑
(i, j)

J2
i j

Ai j
= r2

max

2

̇ � r2

max

2
σ̇ . (17)

Here, we set the direction of edge i j such that Ji j is non-
negative.

We next derive Eq. (8), which requires a more complicated
evaluation. We consider a uniform cycle decomposition of
current J with cycle set C. With this decomposition, we can
set the direction of all cycles such that the current JC with any
cycle C is non-negative. We denote the nth state in cycle C
by iCn , and define the length of cycle C as �C := ∑NC

n=1 �iCn+1iCn
.

Here, NC is the number of states in cycle C and we identify
iCNC+1 = iC1 .

Now, we employ the discrete isoperimetric inequal-
ity [28,48]. The discrete isoperimetric inequality for NC lateral
in the a-b plane with the nth vertex (aiCn , biCn ) reads

(
4NC tan

π

NC

)∣∣∣∣∣
NC∑

n=1

SiCn+1iCn

∣∣∣∣∣ � �2
C . (18)

Employing this relation, the fluctuation oscillation is evalu-
ated as

αab =
∑

C

JC

NC∑
n=1

SiCn+1iCn
�

∑
C

JC

4NC tan π
NC

�2
C

� maxC �C

4π

∑
C

JC�C = maxC �C

4π

∑
(i, j)

Ji j�i j, (19)

where we used a tan π
a � π for 0 < a < 1

2 . Following a simi-
lar transformation to Eq. (17), we arrive at Eq. (8).

Discussion. We derived thermodynamic bounds on fluctu-
ation oscillation in a simple form, which is easy to address
experimentally. Our result has wide applicability, from parti-
cle systems in continuous space to chemical reaction systems,
which is another advantage of our bound.

One may expect to extend this result to underdamped sys-
tems (systems with inertia). However, unfortunately, a naive
extension faces a simple counterexample. A closed Hamilton
dynamics has finite fluctuation oscillation in general while it
accompanies no entropy production, which always violates
inequalities in the form of Eqs. (6) and (8). Thus, to extend the
obtained bound on fluctuation oscillation to diffusive systems,
we need some restriction on observables or addition of terms.

Another possible extension one may hope for is that the
operator norm ‖√a2 + b2‖ in Eq. (6) can be replaced by the
stationary average 〈√a2 + b2〉 or a similar quantity. However,
adopting an approach similar to ours, it appears not easy to
derive such a relation. On the left-hand side of Eq. (6), both
the numerator (αab) and the denominator (Da and Db) employ
the information of the stationary distribution pss. This is also
true for the right-hand side: Both the numerator (σ̇ ) and the
denominator (αab) employ the information of the stationary
distribution pss. Thus, there is no room for other quantities in-
cluding ‖a2 + b2‖ to employ the information of the stationary
distribution pss.
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