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Inverse transitions and disappearance of the λ-line in the asymmetric
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We report on reentrance in the random-field Ising and Blume-Capel models, induced by an asymmetric
bimodal random-field distribution. The conventional continuous line of transitions between the paramagnetic
and ferromagnetic phases, the λ-line, is wiped away by the asymmetry. The phase diagram, then, consists of
only first-order transition lines that always end at ordered critical points. We find that, while for symmetric
random-field distributions there is no reentrance, the asymmetry in the random-field results in a range of
temperatures for which magnetization shows reentrance. While this does not give rise to an inverse transition in
the Ising model, for the Blume-Capel model, however, there is a line of first-order inverse phase transitions that
ends at an inverse-ordered critical point. We show that the location of the inverse transitions can be inferred from
the ground-state phase diagram of the model.
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Introduction. Inverse transitions are an unusual class of
phase transitions where the ordered phase has more entropy
than the disordered phase and hence occurs at a higher tem-
perature [1]. This entropy-driven phase reentrance of the
ordered phase is widely observed [2]. Examples include fer-
roelectric thin films [3]; perpendicularly magnetized ultrathin
ferromagnetic flims [4–6]; anisotropic dipolar magnets [7];
polymer systems such as poly(4-methyl-1-pentene) [8,9]; the
solutions of cyclodextrin, water, and methlpyridine [10,11];
inverse melting between lattice and disordered vortex phase in
high-temperature superconductors [12]; and shear thickening
in glasses and granular systems [13].

Models with spin-1 variables like the Ghatak-Sherrington
model have been found to exhibit inverse transition (IT) in
some recent studies [13–26]. These studies have focused on
models with a glassy phase and random bond interactions,
where it is expected that frustration and disorder allow for
a possibility of inverse freezing (a glass to liquid transition
on cooling). Reentrance is also seen in dipolar long- and
short-range models with asymmetric random interaction and
Gaussian random fields [27]. However, in general, it is ex-
pected that random fields will suppress the IT [22].

In this work, we study the random-field Ising model
(RFIM) and the random-field Blume-Capel model (RFBCM)
with ferromagnetic interactions and an asymmetric bimodal
distribution (BD) for the random field. These models do not
have a glass phase. Also, the models with the symmetric
BD for the quenched random fields have no ITs [28,29].
Any asymmetry in the random-field distribution is expected
to make the system less random and, hence, no ITs are ex-
pected. In this paper, we undertake an expansive study of
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the infinite-range RFIM and RFBCM with asymmetric BDs
and report a number of interesting results. Infinite-range inter-
action models usually belong to the same universality class
as the mean-field models with fixed coordination numbers.
Generically, we find that even an infinitesimal asymmetry
changes the phase diagram nontrivially. Interestingly, there is
a line of inverse first-order transitions in the phase diagram
of the asymmetric RFBCM. While there have been some
studies of these models with symmetric distributions [28–31],
asymmetric distributions have hitherto been studied for the
RFIM [32–34]. Disorder distribution is typically asymmetric
in real experiments [32]. We find that an asymmetric RFBCM
shows first-order ITs similar to those seen in experiments that
display inverse melting [8–11].

For symmetric BD, the RFIM has a line of continuous
transitions (the λ-line) that meets a line of first-order tran-
sitions at a tricritical point (TCP) [35]. We find that even
a slight asymmetry wipes away the λ-line and the TCP in
the RFIM. We instead find a phase diagram consisting of a
line of first-order transitions that ends at a critical point. The
magnetization (m) is nonzero at this point and, hence, we call
this an ordered critical point (OCP) [36]. The location of the
OCP to a good approximation is determined by the location
of the first-order transition in the ground-state phase diagram
of the model. Hence, even at finite temperature (T ) the phase
diagram is dominated by the random-field disorder.

The fluid separation in porous media is considered a good
realization of the RFIM [37–39]. The results from experi-
ments on these models found the value of the order-parameter
exponent to be closer to the value for the pure Ising model
rather than to that for the RFIM with symmetric random-
field distribution [37]. It was suggested that these experiments
should be compared with the asymmetric RFIM [32]. In
more recent experiments it is shown that they exhibit out-
of-equilibrium disorder-driven behavior similar to that of the
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athermal nonequilibrium RFIM [39,40]. Consistent with the
experiments, we find that the value of the exponent near an
OCP is the same as the pure Ising critical point.

Another interesting observation is the nonmonotonic be-
havior of m as a function of T for both an asymmetric RFIM
and an asymmetric RFBCM. We find that for the values of the
parameters close to an OCP, m can become nonmonotonic.
Though in the absence of the crystal field (�), there is no IT
in these models. We show that, for the RFBCM for a range of
�, m jumps to a higher value on increasing T . The system
has a first-order IT which we show is entropy driven. The
magnitude of the jump decreases with increasing T and the
line of the first-order IT ends at an inverse OCP. We hence
report a mechanism for ITs which crucially depends on the
asymmetry of the disorder distribution. This is an inverse
melting transition since the system goes from a less-ordered
state to a more-ordered state on increasing T . We also find
that the RFBCM has two first-order transitions with increasing
T for a narrow range of parameters: first from a less-ordered
state to a more-ordered state and then again to a less-ordered
state, similar to the two first-order transitions observed in
recent experiments involving solutions of cyclodextrin, water,
and methylpyridine [11]. The RFBCM also shows a reen-
trance in the quadrupole moment (q) for some range of the
parameters. We show that the ground-state phase diagram
crucially determines the phase diagram at finite T .

Model. The Hamiltonian for the infinite-range RFIM and
RFBCM can be written as

H = − 1

2N

(
N∑

i=1

si

)2

+ �

N∑
i=1

s2
i −

N∑
i=1

hisi, (1)

where si = ±1 and si = 0,±1 for the RFIM and the RFBCM,
respectively. The crystal field is represented by �. It is 0 for
the RFIM. The RFBCM with si = 0 and ±1 and � = 0 has a
behavior which is similar to that of the RFIM with si = ±1.
We hence call it the RFIM with s = 1.

The magnetic field hi associated with each site is an in-
dependent and identically distributed random variable taken
from the BD of the form

Q(hi ) = rδ(hi − h0) + (1 − r)δ(hi + h0), (2)

with bias r and strength h0. The above distribution is asym-
metric when r �= 1/2. We take h0 > 0 and consider r ∈
[1/2, 1].

The probability of a spin configuration CN with the mag-
netization x1 = ∑

i si/N and the quadrupole moment x2 =∑
i s2

i /N satisfies the large deviation principle, i.e., P(CN :
x1, x2) ∼ e−NI (x1,x2 ). I is the rate function that can be calcu-
lated using large deviations. The free energy of the system is
then the infimum of I with respect to x1 and x2. It is, hence,
enough to consider only the fixed points of I to write the
generalized free energy functional of the model. We hence
obtain an expression for the free energy functional of the
model with quenched random fields (see Ref. [30] for details)
as

f̃ (x1) = 1
2βx2

1 − 〈log[c + 2e−β� cosh β(x1 + hi )]〉{hi}, (3)

where β = 1/T , c = 0 for the RFIM and c = 1 for the
RFBCM. The value of x1 that minimizes f̃ (x1) is the magneti-

(a) (b)

FIG. 1. Phase diagram in the (T -h0) plane for the RFIM (s =
±1) (blue) and its spin-1 variant (s = 0, ±1) (black) for (a) the
symmetric BD (r = 0.5) and (b) the asymmetric BD (r = 0.55).
Solid lines are the lines of continuous transitions and the dashed lines
are the lines of first-order transitions. A rhombus (purple) represents
the TCP and a circle (red) represents an OCP. The inset of panel
(b) plots the locus of the TCP (rhombus) and the OCP (circle) in the
(T -h0) plane for 1/2 � r � 1. With increasng r, the OCP occurs at a
lower value of T and higher value of h0.

zation m and the quadrupole moment q = 1
β
∂ f̃ (x1)/∂�|x1=m.

These are given by

m =
〈

2e−β� sinh β(m + hi )

c + 2e−β� cosh β(m + hi )

〉
{hi}

(4)

and the quadrupole moment

q =
〈

2e−β� cosh β(m + hi )

c + 2e−β� cosh β(m + hi )

〉
{hi}

. (5)

Here 〈〉{hi} represents the average over random-field
distribution.

RFIM for s = 1/2 and s = 1. The phase diagram of the
RFIM for the symmetric BD has long been known [35,41].
It has a line of continuous transitions between ordered and
disordered phases for the weak disorder strength (low h0) that
ends at a TCP. On further increasing h0, there is a line of
first-order transitions that ends at h0 = 1/2 and T = 0. The
qualitative phase behavior remains unchanged for the spin-1
system in the absence of � [see Fig. 1(a)].

Interestingly, we find that for an asymmetric BD [Eq. (2)],
asymmetry in the distribution wipes out the line of continuous
transitions along with the TCP. The phase diagram only has
a line of first-order transitions that starts at h0 = r and T = 0
and ends at an OCP. As r deviates from 1/2 and approaches
1, the OCP occurs at a lower value of T and approaches 0 as
r → 1 [see Fig. 1(b)]. Since m is finite at an OCP, to find the
coordinates of the OCP we equate the first three derivatives
of f̃ (x1) to 0. The meeting point of the solution of the three
equations, for a given r, �, and h0, gives the coordinates
of the OCP [42]. In Fig. 2 for s = 1/2 we have plotted the
magnetization and the susceptibility at three different points
in the phase diagram: at the OCP, at a point on the line of
first-order transitions between m ≈ 1 and m ≈ 2r − 1, and for
a point near the first-order line where there is no transition but
magnetization m is nonmonotonic. Similar behavior occurs
for s = 1 as well. We find that for both s = 1/2 and s = 1, m
shows a nonmonotonic dependence on T for any r > 1/2 and
h0 > r. The degree of nonmonotonicity is maximum when r
is close to 1/2 and h0 is just above r.
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(a) (b) (c)

(d) (e) (f)

FIG. 2. Magnetization (m) and magnetic susceptibility (χm) for the RFIM with s = 1/2 and r = 0.55 are plotted at the OCP [panels (a) and
(d)], at a point along the first transition line [panels (b) and (e)] and for h0 near the first-order transition line with reentrance in m [panels (c)
and (f)].

We find that the OCP lies in the critical Ising universality
class and m scales with the exponent β = 1/2 near an OCP
as T increases. On the other hand, β = 1/4 for a TCP. This is
verified in Fig. 3, where we contrast the scaling of magnetiza-
tion near a TCP and an OCP by taking the symmetric BD and
the asymmetric BD, respectively.

The RFBCM and the reentrance transition. For spin-1, on
the introduction of the �, i.e., for the RFBCM we find that
there is a first-order reentrance transition for the asymmetric
BD for a range of � values. The transition becomes a continu-
ous reentrance transition at (�c, Tc) that depends on the values
of r and h0 [see Fig. 4(a)]. We also find that depending on the
value of r, there is also a possibility of a second first-order
transition from a more-ordered to a less-ordered state in the
model [see Fig. 4(b)].

To understand the phase behavior at finite temperature,
we first study the ground state (T = 0). In the ground state,
the disorder averaged energy is given by minmφ(m), where
φ(m) = limβ→∞β−1 f̃ (m). We find that the ground-state
(T = 0) phase diagram of the RFBCM has four phases (three

(a) (b)

FIG. 3. Magnetization (m ∼ tβ ) versus the scaled temperature
t = Tc − T for the RFIM is plotted in the vicinity of the TCP and
the OCP in panels (a) and (b) for r = 0.5 and 0.9, respectively. The
points are the numerical value of the magnetization m and the red
dashed line is the scaling fit in both the cases.

ferromagnetic phases, F1, F2, and F3, and one nonmag-
netic phase, NM). These phases are separated by the lines
of first-order transitions (see Fig. 5). These transitions can be
understood by looking at the configurational entropy of these
states. For example, the phases F2 and F3 have the same
configurational entropy because in both phases spins take two
values: in F3, ±1, and in F2, 0 and 1. As � increases, 0
spins become more favorable energetically and first there is
a transition from F3 to F2 and finally to NM (phase with
all spins 0). As T increases, each point on these first-order
transition lines changes its position and ends at an OCP. The
phase diagram of the model in the (T -h0) plane, for different
ranges of � for r = 0.55, is shown in Fig. 6. We find that
the finite T phase diagrams only have lines of first-order
transitions and OCPs. This is very different from the phase di-
agrams for the RFBCM with symmetric bimodal and trimodal
distributions [28–30]. For symmetric distributions, the phase
diagrams consist of lines of first- and second-order transitions
and various multicritical points.

(a) (b)

FIG. 4. (a) m versus T for the RFBCM for r = 0.55 and h0 =
0.56 for different � values. The red dot is the OCP. In the inset,
the susceptibility for the critical � = 0.228 (OCP) is plotted. (b) m
versus T for the RFBCM for r = 0.51 with small ε and δ where
h0 = r + ε and � = h0 − (3r − 1)/2 − δ.
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(a) (b)

(c)

FIG. 5. (a) The T = 0 phase diagram in the (�-h0) plane for r =
0.55 with three ferromagnetic phases, F1, F2, and F3, and a non-
magnetic phase, NM. Black dashed lines are the lines of first-order
transitions between the two neighboring phases at T = 0 given by I:
� = 1/2 − (1 − 2r)h0, II: � = h0 + r/2, III: � = (1 + r)/2 − h0,
IV: � = h0 − (3r − 1)/2, and V: h0 = r. Solid red lines are the
projection of the OCPs in the (�-h0) plane. In panels (b) and (c) we
enlarge the vicinity of the two triple points. The shaded part shows
the range of parameters for which the IT in m occurs.

Depending on the strength of the crystal field, there are
six different finite-temperature phase diagrams for the asym-
metric BD. The phase diagram for the asymmetric BD for
r = 0.55 in the (T -h0) plane for � < �1(= 0.211) is simi-
lar to the � = 0 case: a single first-order line of transitions
separates m ≈ 1 from m ≈ 2r − 1 and ends at an OCP [see
Fig. 6(a)]. For � > �1, interestingly we find two lines of first-

(e)

(f)(c)

(d)

(b)

(a)

FIG. 6. Different phase diargams for the RFBCM for different
ranges of � in the (T -h0) plane for r = 0.55. (a) −∞ < � � 0.211,
(b) 0.211 < � � 0.225, (c) 0.225 < � � 0.296, (d) 0.296 < � �
0.524, (e) 0.524 < � < 0.545, and (f) � > 0.545. Black lines are
the lines of usual first-order transition, blue lines are the lines of
first-order IT in m, and green lines are the lines of first-order IT in q.
Red dots are the OCPs. The inset in panel (b) shows the phase dia-
gram for r = 0.51, where the first-order transition line (blue) bends
back, giving rise to two first-order transitions as a function of T for
fixed h0.

order transitions, both ending at OCPs. For �1 < � < �2(=
0.296), one of them corresponds to the usual first-order tran-
sition from a more-ordered to a less-ordered state (shown in
black) and the other is a line of first-order ITs (shown in blue)
between states with m ≈ 2r − 1 and m ≈ r [see Figs. 6(b) and
6(c)]. On further increasing �, the reentrance transition in m
changes to a reentrance transition in q as shown by the green
lines in Figs. 6(d), 6(e), and 6(f). For 0.525 < � < 0.545,
near the second triple point in the ground state [Fig. 5(b)],
the IT occurs for both m and q as shown in Fig. 6(e).

We projected the OCPs onto the ground-state phase dia-
gram of the model and identified the region in the (�-h0)
plane where the IT occurs. Corresponding to the first-order
line of transitions in the ground-state phase diagram, we find
a line of projection of OCPs in the (�-h0) plane [Fig. 5(a)].
When this line of projections of OCPs enters into either the
F3 or the NM phase, there is a region in the (�-h0) plane
where the reentrance transition takes place. For r = 1/2 this
region shrinks to zero and there is no reentrance. In Figs. 5(b)
and 5(c) the range of (�, h0) for which there is an IT in m
is shown shaded for r = 0.55. The reentrance region at first
increases with r and then shrinks as r → 1.

To find the region in the phase diagram where reentrance
occurs, we fixed h0 � r and gradually increased �. For exam-
ple, for r = 0.55 and h0 = 0.56, we find first-order reentrance
transition for 0.228 � � � 0.235 [Fig. 4(a)]. As � → 0.228
there is still a reentrance, but without a jump in m. We find
that this point is, in fact, an OCP. The inset of Fig. 4(a) shows
the divergence of the magnetic susceptibility at the OCP.

We also find that if we take � and h0 very close to the
triple point of the T = 0 phase diagram for r � 1/2, then
there are two first-order transitions with the increase of T
[see the inset of Fig. 6(b)]. For example, for r = 0.51, when
we set h0 = r + ε and � = h0 − (3r − 1)/2 − δ (where ε

and δ are small) in the vicinity of the triple point, we ob-
serve two first-order transitions. For r = 0.51 this is shown
in Fig. 4(b). This double first-order transition is similar to the
one seen in experiments with solutions of cyclodextrin, water,
and 4-methylpyridine which go from low-density liquid to
high-density liquid to low-density liquid on increasing T via
two first-order transitions [11].

If instead of fixing h0, we fix � � (1 + 2r)/4, then also
we find a region in the phase diagram where the reentrance
transition occurs. In fact, the phase diagrams in the (T -�)
plane are similar to the phase diagrams in the (T -h0) plane.

Concluding remarks. We showed that the asymmetry in
the random-field distribution results in a nonmonotonic be-
havior of the order parameter in the ferromagnetic models
with quenched random fields that becomes an IT upon the
introduction of �. To understand this let us look at the T = 0
phase diagram again. At T = 0, there is a residual m of order
2r − 1 at low � and high h0 for asymmetric BD (phase F3 in
Fig. 5). For symmetric BD the F3 becomes a paramagnetic
phase, and if � and h0 are chosen such that the system is
in this state at T = 0, then the system continues to stay in
that state with m = 0 on increasing T as m = 0 maximizes
entropy. On the other hand for r � 1/2 and for � and h0

very close to the triple point in Fig. 5(c), m increases as T
increases and then jumps to r at the IT transition point. The
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(a) (b)

(c)

FIG. 7. Plots of entropy s, m, and q as a function of T for OCPs
(solid green line), near the IT when there is only one first-order
transition (dashed blue line) and for the case where there are two
first-order transitions (dashed purple line).

entropy (s) also jumps at that point (Fig. 7). Since an infinites-
imal amount of asymmetry can give rise to IT, it is possible
that the topology of finitely connected graphs with hetero-
geneous degree distribution can induce that asymmetry and
give rise to the topology-induced IT as seen in some studies
[43,44].

The value of � and h0 at which the IT occurs is close
to the triple points in the ground-state phase diagram. The
infinite-range pure Blume-Capel model (h0 = 0) gives the true
behavior of the model in finite dimensions. Also, numerical
studies of the Ghatak-Sherrington model in three dimensions

have reported first-order inverse freezing transition [15,16].
We expect our result of the appearance of IT near the triple
point of the ground state will hold in finite dimensions for the
RFBCM as well.

The absence of IT for symmetric distribution has also been
reported for continuous-spin models with random fields like
the random-field XY model [45,46]. We expect that the asym-
metry in the distribution should induce reentrance in the case
of random-field models with continuous spin as well.

For the RFIM it was conjectured that if the phase diagram
has a TCP for the symmetric distribution, it will change to a
critical end point for any infinitesimal asymmetry [32,34]. The
presence of the critical end point implies that the λ-line is still
present in the phase diagram. In contrast, for the asymmetric
BD defined via Eq. (2), we find that the λ-line and the TCP
both disappear completely and there is an OCP instead of a
TCP in the phase diagrams.

We also studied the asymmetric Gaussian random-field
distribution. The f̃ of the asymmetric Gaussian RFIM is the
same as that of the symmetric Gaussian RFIM in an external
field of strength equal to the bias in the distribution. Since a
symmetric Gaussian RFIM in an external field has finite m
at all T that gradually goes to 0 without a phase transition,
an asymmetric Gaussian RFIM also has no phase transition.
Another interesting distribution is the double-peaked asym-
metric Gaussian distribution. This we expect will have phase
diagrams similar to those of the asymmetric BD as long as the
variance of the distribution is not large.
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