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Active buckling of pressurized spherical shells: Monte Carlo simulation
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We study the buckling of pressurized spherical shells by Monte Carlo simulations in which the detailed balance
is explicitly broken—thereby driving the shell to be active, out of thermal equilibrium. Such a shell typically has
either higher (active) or lower (sedate) fluctuations compared to one in thermal equilibrium depending on how
the detailed balance is broken. We show that, for the same set of elastic parameters, a shell that is not buckled
in thermal equilibrium can be buckled if turned active. Similarly a shell that is buckled in thermal equilibrium
can unbuckle if sedated. Based on this result, we suggest that it is possible to experimentally design microscopic
elastic shells whose buckling can be optically controlled.
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Thin spherical shells are commonly found in many natural
and engineering settings. Their sizes can vary over a very
large range—from hundred meters, e.g., the Avicii Arena,
Stockholm [1], down to about hundred nanometers, e.g., viral
capsules [2,3] and exosomes [4,5]. The elastic properties of
shells, including conditions under which buckling can occur,
have been extensively studied [6–11]. Interest in this tradi-
tional field of applied mathematics has been rekindled in the
past decades because of possible applications to biology and
nanoscience [2,3,12–20]. For example, the elastic shell is used
as a model for nuclear membrane [21]. Furthermore, the cell
membrane, although often modeled simply as a fluid mem-
brane, is dynamically tethered to the cytoskeleton—thereby
acquiring effective in-plane elastic properties. For example,
it has been shown [22] that to capture the stomatocyte-
discocyte-echinocyte sequence of the human red blood cell
within one unified model it is necessary to introduce nonlinear
in-plane shear elastic modulus of the membrane. Numerical
simulations of flowing red blood cells that faithfully repro-
duce experimental observations also must use nonlinear shear
elastic modulus [23–28]. Crucially, it has been shown that
for small enough shells the thermal fluctuations can bring
down the critical buckling pressure by a large amount [29,30].
This opens up the intriguing possibility of how the elastic
properties of shells, in particular buckling, will change if they
are turned active—driven out of thermal equilibrium.

The fundamental property of living matter is that they
are not in thermal equilibrium [31] even over timescales for
which they are statistically stationary. They are active—they
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consume energy and generate entropy [32]. The statistical and
mechanical properties of active matter is a current topic of
considerable interest [33,34]. The fluctuations of the mem-
branes of living cells have active components, in addition to
the thermal fluctuations, due to, e.g., driving by the active
cytoskeleton [35–39].

Thus, many cells can be considered active shells, although
not spherical. Active shells can also be synthetically designed,
e.g., by embedding certain proteins—proteins that acts as
active pumps when irradiated with light of a certain frequency
[40,41]. Shells made out of hard, magnetic elastomers can be
turned active by an external fluctuating magnetic field [42].
Such shells cannot be described by equilibrium statistical
mechanics.

In this Letter, we study the buckling of pressurized spher-
ical shells using the Monte Carlo (MC) simulations [43] in
which detailed balance is explicitly broken—thereby driving
the shell to be active, out of thermal equilibrium. Such a shell
typically has fluctuations that are either higher or lower those
in thermal equilibrium depending on how the detailed balance
is broken. We call such nonequilibrium stationary states active
and sedate, respectively. We show that, within the right range
of elastic parameters, a shell that is not buckled in thermal
equilibrium can be buckled if turned active. Similarly a shell
that is buckled in thermal equilibrium can unbuckle if turned
sedate (see Fig. 1). Based on our study, we suggest that it is
possible to experimentally design microscopic elastic shells
whose buckling can be optically controlled.

Let us briefly summarize, following Refs. [29,30], the
model and the key results of the theory of thin elastic shells in
thermal equilibrium. A pressurized elastic shell is described
by an effective Hamiltonian, Geff = G0 + G1, where

G0[ f ] = 1
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FIG. 1. Active buckling. Typical snapshots from our simulations
for activity A = −2, 0, and 2 (from left to right) and pressure P =
0.30 P0 (top row) and 0.36 P0 (bottom row), where P0 is the critical
buckling pressure obtained from the mechanical theory of elastic
shells, i.e., at zero temperature. We use N = 5120, FvK = 4616, and
ET = 8. The middle column, A = 0, corresponds to shells in thermal
equilibrium—an unbuckled shell buckles upon increasing P/P0 from
0.30 to 0.36. This is consistent with the results of Refs. [29,30]. Top
row: As activity is increased to 2 (right column), the shell buckles.
Bottom row: Whereas as activity is decreased to −2 (left column) the
shell, that was buckled in thermal equilibrium does not buckle at the
same pressure.

Here x = (x1, x2) is a two-dimensional Cartesian coordinate
system and Pi j ≡ δi j − ∂i∂ j/∇2 is the transverse projection
operator. The out-of-plane displacement is h(x) = f0(x) +
f (x), where f0(x) is the uniform contraction of the sphere in
response to the external pressure. The difference between the
external and the internal pressure is P. The part G0 is harmonic
and the part G1 is anharmonic. In this model, we assume
the shell to be amorphous and homogeneous with radius R,
bending modulus B and (two-dimensional) Young’s modulus
Y . Two non-dimensional numbers determine the elastic be-
havior of such shells, the Föppl–von Karman number and the
elastothermal number, defined respectively as

FvK ≡ Y R2

B
, ET ≡ kBT

B

√
FvK, (2)

where kB is the Boltzmann constant and T is the temperature.
At constant ET, the effects of anharmonicity increases with
FvK, whereas at constant elastic modulii the effects of ther-
mal fluctuations increase with ET. Ignoring the anharmonic
contribution, using standard tools of equilibrium statistical
mechanics it is straightforward [[29], Eq. 4] to calculate the
spectrum of fluctuations:

S(q) ≡ 〈 f̂ (q) f̂ (−q)〉 = kBT

a
(
Bq4 − PRq2

2 + Y
R2

) , (3)

where f̂ (q) is the Fourier transform of f (x) and a is the area of
integration in the (x1, x2) plane. In equilibrium, the symbol 〈·〉
denotes thermal averaging; whereas for active cases, it denotes

averaging over the nonequilibrium stationary states. Note that
S(q) blows up for

P = P0 ≡ 4B

R
q2

∗, (4a)

where
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= FvK1/4

R
, (4b)

where P0 is the buckling pressure, independent of tempera-
ture, obtained within the traditional theory [11] of buckling
of pressurized shells. For a large Föppl–von Karman number,
q∗ > 1/R is the buckling mode. Refs. [29,30] used renormal-
ization group (RG) techniques to show that the effects of the
anharnomic terms is to renormalize the parameters appearing
in the bare theory, i.e., P, B, and Y in (3) must be replaced by
their scale–dependent, renormalized versions, see Ref. [[30],
Eq. 18]. Consequently both the pressure and the critical buck-
ling pressure are renormalized and buckling is obtained if both
of these quantities are equal for a length scale which must
be smaller than the radius of the sphere [30]. The results of
this RG analysis were validated by Monte Carlo simulations
of spherical shell, randomly triangulated with N grid points,
with discretized bending and stretching energies that translate
directly into a macroscopic elastic modulii [29,44,45]. Our
Monte Carlo code, described in detail in Ref. [46], closely fol-
lows that of Ref. [29], and faithfully reproduces these results
(see Supplemental Material [47]). We incorporate activity into
this model in the following manner.

Over the years, many theoretical models [48–54] have been
suggested to incorporate the effects of active fluctuations into
models of membranes. We use a method that is well suited
to use the Monte Carlo setup and has been used before to
study Ising models out of equilibrium [43,55–57]—the idea
is to break detailed balance while preserving stationarity. In
equilibrium Monte Carlo simulations two common choices of
the transition rate from one state to another are the Metropolis
(WMet) and the Glauber (WGla), given respectively by

WMet = min

[
1, exp

(
− E

kBT

)]
(5a)

and

WGla = 1

2

[
1 − tanh

(
E

2kBT

)]
, (5b)

where kB is the Boltzmann constant, T is the temperature,
and E is the difference in energy between the two states. To
drive the membrane out of equilibrium, following Ref. [43],
we replace E by E + �E , where �E is a constant. This
guarantees that detailed balance is broken and the amount by
which it is broken is �E . If �E is positive (negative), the
probability of acceptance of large fluctuations is decreased
(increased). Thus, we define a dimensionless quantity A =
−�E/(kBT ) such that simulations with positive A, active
simulations, have fluctuations higher than those of equilib-
rium ones, whereas for negative A, sedate simulations, the
fluctuations are less than the equilibrium ones. For most of
the simulations reported here, we use the Metropolis algo-
rithm. In some representative cases, for both equilibrium and
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FIG. 2. Buckling under pressure. Normalized change in volume
as a function of external pressure for (blue) a shell in thermal
equilibrium, (green) active (A = 2), and (magenta) sedate (A = −2)
for simulations with ET = 8, FvK = 4616, and the number of grid
points N = 5120. Here 〈V 〉 is the ensemble average of volume, and
Vref is the average volume at the smallest pressure difference. The
error in 〈V 〉 are the shades around the solid lines—they are too small
to be visible. The signature of buckling is the sudden large change
in volume. The critical buckling pressure for the thermal case is
consistent with Refs [29,30].

nonequilibrium simulations, we have checked that both the
Glauber and Metropolis algorithms give the same result.

For lipid vesicles in thermal equilibrium, standard tech-
niques of equilibrium statistical mechanics [38] and mi-
cropipet aspiration experiments show �α ∝ (kBT/4πB) ln σ ,
where �α is the areal strain and σ is the surface tension.
For active membranes the same proportionality holds, but the
constant of proportionality is different [41]. This experimental
result was captured by the model in Ref. [58], which adds an
additional Ornstein-Uhlenbeck noise to the models of thermal
membranes. Our active Monte Carlo scheme, in planar mem-
branes [59], reproduces the results of Ref. [58] and also the
experimental result of Ref. [41].

In summary, we incorporate the technique of active Monte
Carlo [43] into the Monte Carlo algorithm for spherical shells
in thermal equilibrium [29,44,46] to simulate active shells.

In Fig. 2 we show a typical plot of how the volume V of the
spherical shell changes as the external pressure is increased
from a very small value. The simulations are done in a con-
stant pressure ensemble, and hence, volume is a fluctuating
quantity. Henceforth, by volume we mean the average volume
〈V 〉. The average volume at the smallest pressure difference
is the reference volume Vref . The error in 〈V 〉, shown by
the shaded regions in Fig. 2, are the variances—they are too
minute to be visible. First consider the shell under thermal
equilibrium. Buckling shows up as a sharp decrease in volume
accompanied by a typical buckled shape, as shown in Fig. 1.
The critical buckling pressure Pc that we obtain is consistent
with the results of Refs. [29,30]. We show the results of
the simulations for both the active, A = 2, and the sedate,
A = −2, cases. For the former the critical buckling pressure
decreases, while for the latter the critical buckling pressure
increases.

Next we decompose the fluctuating height field f (θ, φ) in
spherical harmonics Y
,m(θ, φ):

f (θ, φ) =
∑

,m

f̃
,mYm

 (θ, φ), (6a)

and we define

S(
) = 4π

(2
 + 1)| f̃00|2

∑

m=−


| f̃
,m|2. (6b)

In the Supplemental Material [47], we compare typical plots
of S(
) for buckled and unbuckled shells. Buckling is accom-
panied by the appearance of a peak in S(
) at a small 
 value.
For the equilibrium case, buckling as a function of external
pressure is an equilibrium phase transition with the amplitude
of the peak of S(
) at small 
 as the order parameter [29].
However, buckling at the fixed P and ET as a function of
activity is not an equilibrium phase transition, but can be con-
sidered as a dynamical one. Nevertheless, we can still charac-
terize buckling by the appearance of a peak in S(
) for small 
.

To obtain the phase diagram we use 13 values of the
elastothermal number, for each of which we use 7 values
of activity. For a fixed choice of elastothermal number and
activity, we start our simulations with an initial condition
where the shell is a perfect sphere. Then we choose a fixed
value of external pressure and run our simulations till we reach
a stationary state, which for zero activity is the equilibrium
state. Whether the shell is buckled or not is decided by three
checks: (a) significant decrease of volume, (b) a peak at small

 for S(
), and (c) visual inspection. If the shell is not buckled
we choose a higher external pressure and start our simulations
again from the same initial condition. The buckling
pressure Pc obtained for a set of parameters is given in the
Supplemental Material [47]. This way we mark out the
phase boundary in the pressure–elastothermal number plane
for different activities and in the pressure-activity plane for
different elastothermal numbers (see Fig. 3). In Fig. 3(a)
we also plot the phase boundary, obtained through a RG
calculation in Ref. [30], which agrees reasonably well with
our numerical results for zero activity. Note that for large
enough values of ET and A we reach a part of the phase
diagram where the shell is unstable at zero external pressure
and can be made stable only with positive internal pressure.
This part of the phase diagram is not shown in Fig. 3, although
the relevant data are included in the Supplemental Material
[47]. Note that at small ET for the sedate case it is possible
to have the shell remain unbuckled ever for pressures higher
than P0; i.e., the shell is stabilized.

Several comments are now in order. One, most of our
simulations use N = 5120. We have repeated some of our
simulations with N = 20 252 and obtained the same buckling
pressure. Two, to obtain the buckling pressure we always start
from the same initial condition and imposed a fixed exter-
nal pressure. Hence, the lines of phase separation we show
(Fig. 3) are not continuous and will be improved if the phase
diagram is sampled in a finer resolution. Three, experimen-
tally, it is unclear how to implement the sedate regime, nega-
tive A. Nevertheless, synthetic membranes that can be turned
active (A > 0) optically have been already realized by embed-
ding certain proteins in bi-lipid membranes—proteins that act
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FIG. 3. Phase diagram. The phase boundary (a) in the pressure-
elastothermal number plane for different activities and (b) in the
pressure-activity plane for different elastothermal numbers (gray
triangles for ET = 7.99, olive squares for ET = 2.12, and cyan cross
for ET = 0.03). In panel (a) the region where the buckled phase is
obtained in equilibrium is marked by blue lines. The region where
the buckled phase is obtained for A = 4 is shaded in light yellow. The
region where the buckled phase is obtained for A = −4 is marked by
violet lines. Cases marked with a cross use the Glauber algorithm.
In panel (a), the phase boundary obtained by RG calculation [30] is
marked by a black line and the simulation results from Ref. [29] are
represented by red triangles.

as active pumps when irradiated with light of a certain fre-
quency [40,41]. In such cases, only a fraction of points on the
shell are active. This can be incorporated in a straightforward
manner in our code and it would be interesting to see how the

critical buckling pressure changes as we change the fraction
of active points. Four, bilipid membranes are semipermeable
[60]. As the shell buckles the fraction of solute increases, in-
creasing the partial pressure inside the shell. Experimentally,
this can be avoided by using shells with holes in them. We
expect, in such cases, the buckling pressure may change by a
small amount. Five, as there are many different models of ac-
tive elastic material, it behooves us to study the universality of
our result by performing similar simulations in other models.
This is outside the scope of the present work. Six, note that the
parameter A signifies the breakdown of detailed balance. It is
not a quantity that can be directly measured experimentally.
However, breakdown of detailed balance implies that the sys-
tem is not in equilibrium. Hence, in a statistically stationary
state the system will show entropy production. The rate of
entropy generation, calculated from the fluctuations of the
shell, may act as an indirect measure of activity A.

Finally, our simulations point towards the intriguing possi-
bility that, within the right range of elastic parameters, a shell
that is not buckled in thermal equilibrium can be buckled if
turned optically active. Based on this, we suggest that it is
possible to experimentally design microscopic elastic shells
whose buckling can be optically controlled. In such devices
it may be possible to drive flows at microscopic scales by the
buckling and unbuckling of shells, optically.

The source code used for the simulations of the study is
freely available at Refs. [46,61]. The simulation setup and
the corresponding data are freely available on Zenodo [62].
PYTHON scripts are included with the data to generate all the
figures.
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