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Cells maintain a stable size as they grow and divide. Inspired by the available experimental data, most proposed
models for size homeostasis assume size-control mechanisms that act on a timescale of one generation. Such
mechanisms lead to short-lived autocorrelations in size fluctuations that decay within less than two generations.
However, recent evidence from comparing sister lineages suggests that correlations in size fluctuations can
persist for many generations. Here we develop a minimal model that explains these seemingly contradictory
results. Our model proposes that different environments result in different control parameters, leading to
distinct inheritance patterns. Multigenerational memory is revealed in constant environments but obscured when
averaging over many different environments. Inferring the parameters of our model from Escherichia coli size
data in microfluidic experiments, we recapitulate the observed statistics. Our paper elucidates the impact of the
environment on cell homeostasis and growth and division dynamics.
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Cell size is a dynamic property of cells important for
optimizing nutrient intake [1,2], accommodating intracellu-
lar content [2,3], and maintaining uniformity in tissues [4].
Cell size fluctuations are significant, yet constrained [5], sug-
gesting active mechanisms of size control that go beyond
initiating division a certain amount of time after birth [6–9].
Experiments and theory in recent years have revealed different
phenomenological classes of size control [6,10–13]; connec-
tions between control of size, growth, and DNA replication
[6,14–18]; and a surprising degree of heterogeneity in con-
trol mechanisms across, and even within, species [7,12,19].
Despite tremendous progress, basic questions remain open.
In particular, it is still unclear whether deviations from the
average size dissipate over one or many generations, and why
the measured control parameters appear to vary so widely,
even within lineages of the same population [12].

Most experiments suggest that deviations from the aver-
age cell size last for only a generation or so. Specifically,
microfluidic experiments with bacteria using devices such
as the “mother machine” [5] generally find an exponentially
decaying autocorrelation function (ACF) in cell birth size
An = e−n/nA with nA ≈ 1 generation [10,12,16,19]. Recently,
however, experiments that track two lineages born from the
same mother cell (a “sisters machine”) [20] have found
something different. Measuring the Pearson cross-correlation
function (PCF) between birth sizes in these experiments has
also revealed an exponential decay, Pn = e−n/nP , but with
nP ≈ 3.5 generations [Fig. 1(a), green]. Surprisingly, these
same experiments show nA ≈ 1 generation for the lineages’
ACF [Fig. 1(a), black], consistent with the mother machine
experiments (see Supplemental Material [21] for details of
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how correlation functions are calculated in theory and exper-
iments). This raises the question of whether size deviations
last for only a generation, as implied by nA, or for multiple
generations, as implied by nP. More generally, it raises the
question of how a signal is transiently more correlated with
another signal than with itself.

It is expected that size deviations dissipate within a gen-
eration in the context of adder size control [7,9,11,16,22,23].
Adder control means that a cell adds a constant amount to
its birth size before dividing. To see the connection between
adder control and how long size deviations last, consider a
cell born with size xn that grows exponentially for an elapsed
phase φn, the product of the growth rate and cell cycle time
[Fig. 1(b)]. After division, the daughter with fraction fn will
have birth size xn+1 = fnxneφn . Defining εn = ln(xn/x∗) as
the logarithmic deviation of the cell’s birth size from the
population-averaged birth size x∗, this expression becomes

εn+1 = εn + δn + ηn, (1)

where δn = φn − ln 2 and ηn = ln(2 fn) are deviations of the
phase and fraction from their expected values for size dou-
bling. Experiments in Escherichia coli have shown that ηn is
Gaussian and uncorrelated between generations [24]. In this
case, size control implies that the phase corrects for deviations
in the birth size [10,12,19,22,25],

δn = −βεn + ξn, (2)

where the homeostasis parameter β sets the strength of the
correction, and ξn is uncorrelated Gaussian noise in the correc-
tion process. The values β = 0, 1/2, and 1 correspond to the
timer, adder, and sizer rules, respectively [6,12]. Experiments
in bacteria generally observe a range of β values, centered
around 1/2 corresponding to the adder rule [7,12,19,26].

Combining Eqs. (1) and (2) gives a process εn+1 = (1 −
β )εn + ηn + ξn whose ACF An = (1 − β )n and PCF Pn =
(1 − β )2n are straightforward to calculate [21]. For β =
1/2, we thus have nA = −1/ ln(1 − β ) ≈ 1.4 generations and
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FIG. 1. (a) In the sisters machine (inset), a mother cell initiates
two sister lineages in a common V-shaped channel [20]. Experiments
[20] show that the autocorrelation function (ACF, black) for the cell
birth size decays more quickly than the Pearson cross-correlation
function between sister lineages (PCF, green). Here n = 0 is the
shared mother cell. (b) A cell grows exponentially from an ini-
tial birth size xn to a final division size xneφn , then divides by a
fraction fn.

nP = nA/2 ≈ 0.7 generations. While we see that nA is about
one generation for adder control, this framework cannot ex-
plain why nP is observed in experiments to be multiple
generations. Indeed, it is not clear from this framework how
nP could be larger than, not smaller than, nA. Instead, we see
that two noisy signals decorrelate twice as quickly from each
other as each does from itself.

Here we resolve this disagreement between theory and
experiment by going beyond the standard model of cell size
control in Eqs. (1) and (2). Our fundamental premise is that
the environment plays a defining role in setting the size control
parameters, and that different channels within a microfluidic
device are subject to different environments [27,28]. Because
obtaining correlation functions from data often requires av-
eraging over many channels to obtain sufficient statistics
[12,19,20], we hypothesize that the averaging process ob-
scures long timescales in some correlation functions (An) but
not others (Pn). Inferring the parameters of our model from
single-lineage autocorrelation data in E. coli, we find that this
is indeed the case, suggesting that size correlations are multi-
generational but dynamically diverse across environments.
Our results suggest that size autocorrelations are compatible
with an adder rule on average, but reveal the strong influence
of a heterogeneous environment on individual lineages.

Before describing our main model, we first rule out the pos-
sibility that short autocorrelations and long cross-correlations
between two lineages can be explained by the presence
of common environmental fluctuations [29]. In principle, a
signal with long intrinsic memory would exhibit short auto-
correlations if this memory were overpowered by short-lived
environmental noise. If this noise were common to both sig-
nals, the long memory would be expected to survive in the
signal difference and therefore in the cross-correlation func-
tion. To investigate this possibility, we replace the noise term
ξn in Eq. (2) with a long-lived, lineage-intrinsic component
y(i)

n and a short-lived, environmental component χn,

δ(i)
n = −βε (i)

n + y(i)
n + χn, (3)

FIG. 2. The presence of common environmental fluctuations
cannot explain the short-lived ACF and long-lived PCF observed in
experiments [Fig. 1(a)]. (a) A long-lived protein y regulates cell size
in two lineages subject to fast environmental noise χ (inset). The
PCF [Eq. (5)] decays more slowly than the ACF [Eq. (4)] but has a
large asymptote P∞. (b) No parameters can explain the experimental
timescale difference and zero asymptote. β = 0.6 and μ = 0.3 in (a);
σ 2

η = 0.0225, σ 2
ζ = 0.01 and σ 2

χ = 0.04 in (a) and (b).

where i = {1, 2} denotes each of the two sister lineages. Note
that the intrinsic component y(i)

n depends on the lineage i,
whereas the environmental component χn does not. By giv-
ing the intrinsic component, the dynamics y(i)

n+1 = μy(i)
n + ζ (i)

n

with uncorrelated Gaussian noise ζ (i)
n , we allow for long-

lived memory that approaches (1 − μ)−1 generations as μ

approaches one. A natural interpretation of y is the fluc-
tuations in cellular protein content that regulates a cell’s
growth and metabolism and is inherited from one generation
to the next. The environmental component χn is uncorrelated
Gaussian noise.

Eliminating δ(i)
n from Eqs. (1) and (3) gives ε

(i)
n+1 = (1 −

β )ε (i)
n + y(i)

n + η(i)
n + χn, a dynamics for size fluctuations ε

that depends on ε itself and on y, as depicted in the inset of
Fig. 2(a). We solve for the ACF and PCF of ε (i)

n by explicit
iteration [21]. Defining b = 1 − β, we obtain

An ∝ c1bn + c2μ
n, (4)

Pn ∝ c0 + c3b2n + c4μ
2n + c5bnμn, (5)

where c0 = σ 2
χ/ f , c1 = (σ 2

χ + σ 2
η )/ f − bσ 2

ζ / f gh, c2 = μσ 2
ζ

/ghk, c3 = σ 2
ζ / f g2 + σ 2

η / f , c4 = σ 2
ζ /g2k, c5 = −2σ 2

ζ /g2h,
f = 1 − b2, g = μ − b, h = 1 − μb, and k = 1 − μ2. Each
σ 2

i is the variance of the corresponding noise term, and the
proportionality constants in Eqs. (4) and (5) are set by the
normalization condition A0 = P0 = 1. Because Eqs. (4) and
(5) are not single exponential decays, we define a charac-
teristic timescale as [30] τC = ∑∞

n=0(Cn − C∞)/(C0 − C∞)
for C ∈ {A, P}. Neglecting the fraction noise σ 2

η (experiments
show that ση ≈ 10% [12]), this gives

P∞ = ρ

ρ + 
, (6)

τA = 1

β
+

(
1

1 − μ

)[
μ(1 + b)

1 + μb + ρ

]
, (7)

τP = 1

1 − b2
+ 1

1 − μ2
+ 2bμ

1 − b2μ2
, (8)
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(a) (b) (c)

FIG. 3. Different dynamics in different environments. (a) Experimental birth size ACFs from single lineages in different channels [20]
range from oscillatory to simple decay. (b) Our model includes size correction (β) and phase dependence (λ), with β and λ unique for each
channel. (c) The model exhibits three stable dynamic regimes for the ACF, depending on the values of the damping rate r = (1 + β − λ)/2
and the squared underdamped frequency ω2 = β − r2.

where ρ = σ 2
χ hk/σ 2

ζ and  = (hk + f h − 2 f k)/g2. We see
that as μ approaches one, the second term in Eq. (8) domi-
nates, and the PCF indeed becomes long-lived. However, for
the ACF to remain short-lived (τA ∼ 1/β), we see that the
second term in Eq. (7) must remain small, requiring ρ � 1.
This condition increases the long-time cross-correlation P∞,
as seen in Eq. (6).

The requirement ρ = σ 2
χ hk/σ 2

ζ � 1 makes sense because,
for short extrinsic noise to wash out long intrinsic memory,
the noise must be strong (σ 2

χ � σ 2
ζ ). The fact that this then

increases P∞ also makes sense because strong extrinsic noise
leaves two signals strongly correlated indefinitely. The net
result is that the PCF timescale cannot be longer than the
ACF timescale without a large PCF asymptote, as illustrated
in Fig. 2(a). In fact, numerically probing all values of μ and
β (with σ 2

η nonzero), we find no value of �τ = τP − τA and
P∞, consistent with the experimental observations of �τ > 0
and P∞ = 0 [Fig. 2(b)]. We conclude that the observations
in Fig. 1(a) cannot be explained by the presence of common
environmental fluctuations.

If the environment is not providing strong fluctuations,
is it playing an alternative role? To obtain insight into this
question, we recognize that ACFs from individual lineages in
different channels exhibit different dynamic behaviors, rang-
ing from simple decay to oscillations [Fig. 3(a)] [12,19,20].
Oscillations in single-lineage ACFs could reflect insufficient
data [16,19], although they persist even for lineages with
hundreds of generations [12], suggesting that they may reflect
genuine overcorrection in size control. We have checked using
simulations that genuine oscillations are detectable for N �
20 generations (Fig. S1 [21]), and therefore we only analyze
experimental lineages at least this long.

To explain the heterogeneity of dynamic behaviors, we
hypothesize that the size-control parameters are a function
of the environment, and that different channels have differ-
ent environments. Environmental heterogeneity could be due
to nutrient gradients on the length scale of the entire mi-
crofluidic device or mechanical differences among channels

(mechanical forces limit growth in narrow channels, and ac-
tual channel widths can be different from designed widths
[27]). Indeed, recent experimental analysis has shown that
cells in different channels fluctuate around different home-
ostatic set points [24,28], consistent with the hypothesis of
different environments.

To investigate this hypothesis, we modify Eq. (2) as

δ(i)
n = −βε (i)

n + λδ
(i)
n−1 + ξ (i)

n , (9)

where now ξ (i)
n is uncorrelated Gaussian noise. The new term

in Eq. (9), λδ
(i)
n−1, introduces a dependence of the phase on its

value in the previous generation. Physiologically, this depen-
dence could result from the inheritance of fluctuations in key
growth-control factors, such as ribosomes, RNA polymerases,
and other proteins, from one generation to the next [24].
The dependence could be positive or negative, depending on
whether the inherited factor primarily affects the growth rate
or the cell cycle time [31]. Indeed, a similar term emerges
naturally (along with β) from a systematic autoregression
analysis of single-cell growth data [24], providing experimen-
tal evidence for the dependence [32]. In principle, λ could be
perturbed by modulating the growth control factors, and β is
known to increase for slower-growing cells [16,33].

As illustrated in Fig. 3(b) (top), Eqs. (1) and (9) con-
tain feedback via (i) β, which compensates for a larger
birth size via a smaller phase, and (ii) λ, which accounts
for the generational dependence of the phase. Together,
these terms produce damped, oscillatory dynamics, which
can be seen by the following mapping: rearranging Eqs. (1)
and (9) as εn+1 − εn = δn + ηn and δn+1 − δn = −βεn + (λ −
β − 1)δn + (ξn+1 − βηn), we can approximate their left-hand
sides as time derivatives and combine them, yielding ε̈ +
2rε̇ + (r2 + ω2)ε = ψ , where r = (1 + β − λ)/2, ω2 = β −
r2, and ψn = ξn+1 + ηn+1 − ληn. These are the dynamics of
a simple harmonic oscillator with damping rate r and under-
damped frequency ω, driven by noise ψ .

Importantly, the parameters β and λ (and thus r and ω2)
are the same for each of the two lineages i in a channel
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but vary from channel to channel [Fig. 3(b), bottom]. The
question is whether different values of r and ω2 can capture
the dynamic heterogeneity observed in the experiments, and
whether averaging over these values results in the observed
auto- and cross-correlations.

To address this question, we solve for the ACF and PCF of
ε (i)

n in Eqs. (1) and (9) using the Z transform (the discrete-time
analog of the Laplace transform) [21]. We obtain

An ∝ q−an
− + q+an

+, (10)

Pn ∝ s−a2n
− + s+a2n

+ − 2san
−an

+, (11)

where a± = 1 − r ± √−ω2; the coefficients q±, s±, and s are
functions of a±; and the noise strengths σ 2

η and σ 2
ξ [21], and

again the proportionality constants, are set by A0 = P0 = 1.
Stability requires |a±| < 1, equivalent to the conditions ω2 >

−r2, ω2 > −(r − 2)2, and ω2 < −r(r − 2) [21] [bordering
parabolas in Fig. 3(c)]. Damped oscillations occur when ω2 >

0 [horizontal line in Fig. 3(c)]. Alternation, which is unique
to discrete systems when the ACF is dominated by a term
with a factor of (−1)n, occurs when r > 1 [21], [vertical line
in Fig. 3(c)]. Together, these conditions give three dynamic
regimes, illustrated in Fig. 3)c) [see Fig. S2(a) [21] for these
regimes in the space of β and λ]. In particular, we see that
simple decay (blue) and oscillations (red) are possible, as ob-
served in the data. Oscillations are not possible in the standard
model with λ = 0 [gray parabola in Fig. 3(c)].

Addressing whether our model explains the correlation
data requires determining in which dynamic regimes the ex-
periments lie. To this end, we estimate the parameters r and ω2

in two ways. First, we perform a least-squares fit of Eq. (9) to
each single-lineage dynamics, as a planar equation for δ(i)

n ver-
sus (ε (i)

n , δ
(i)
n−1); second, we fit Eq. (10) to each single-lineage

ACF (see Ref. [21] for details). Consistent with our hypothesis
[Fig. 3(b), bottom], in both cases we allow the r and ω2 values
to be different for different channels, but we require them to be
the same for sister lineages in the same channel by combining
the two sums of squares during fitting (relaxing this constraint
results in a similar distribution of fitted values, Fig. S2(b)
[21]). The resulting values of r and ω2 for the two methods are
shown in Fig. 4(a) (red and blue, respectively; see Fig. S2(a)
[21] for these data in the space of β and λ). Values from data
in a different growth condition also lie in the same parameter
region (Fig. S2(b) [21]).

We see in Fig. 4(a) that the parameters inferred using either
method generally lie in the decaying and oscillatory regimes
(pink) but not the alternating regime (white). The parameters
inferred from the ACF fits (blue) span a larger range than those
inferred from the dynamics (red), but each case populates
both regimes with various frequencies and damping strengths.
Neither is confined to the standard model (gray parabola). Fur-
thermore, the regime does not correlate with the length of the
lineage [size of circle; see Fig. S2(b) for clarity], suggesting
that observed dynamic features are not artifacts of insufficient
data.

We therefore ask whether averaging over the decaying and
oscillatory regimes [pink in Fig. 4(a)] is sufficient to explain
the correlations observed in experiments. Performing this av-
erage, we obtain the results in Fig. 4(b) (pink). We see that the

FIG. 4. Comparing theory and experiment. (a) r and ω2 fitted
from experimental single-lineage dynamics [red, Eq. (9)] or ACFs
[blue, Eq. (10)]. Circle size: Lineage length N [top legend; see
Fig. S2(b) for clarity]. (b) ACF [Eq. (10)] and PCF [Eq. (11)],
averaged over r and ω2 values from a (pink regions), compared with
experimental results. σ 2

η = 0.09 and σ 2
ξ = 0.04 in (a) and (b).

averaged ACF is a relatively smooth function that decays in
about a generation, consistent with the experimental averaged
ACF [Fig. 4(b), black]. Evidently, oscillations with different
frequencies are largely washed out in the averaging process
[12,19], producing an apparent fast decay. We also see that
the averaged PCF exhibits a longer timescale than the ACF,
consistent with the experimental data [Fig. 4(b), green]. The
reason is that an individual channel’s PCF does not oscillate,
even when the ACF does, because the PCF reports on the
difference between two oscillatory signals, not the signals
themselves. Consequently, the averaged PCF is sensitive to
its longer-lived samples, whereas the averaged ACF appears
short-lived due to the washout of many oscillation periods.

We have put forward a minimal model for cell size control
that resolves the empirical paradox of short-lived autocorre-
lations but long-lived cross-correlations in cell size. We have
found that cell-size memory is longer-lived than previously
appreciated but is obscured in autocorrelations due to de-
structive interference among many oscillation periods. The
results suggest that control parameters depend sensitively on
the environment and that the environment varies considerably
within a multichannel microfluidic device, as has been sug-
gested [27] and demonstrated [24,28] previously.

The dynamics in Eq. (9) go beyond the standard model of
cell size control (λ = 0) and have a structure motivated by re-
cent single-cell growth experiments [24]. Parameters inferred
from these dynamics [Fig. 4(a), red] occupy the same regimes
but nevertheless a narrower range than parameters inferred
from the ACFs [Fig. 4(a), blue], suggesting that the dynamics
may be incomplete. A more accurate dynamical model might
include nonlinear terms, relate more than two consecutive
generations, or involve time-dependent parameters (we have
checked in Fig. S3 [21] that temporal parameter fluctuations
have little effect on the correlation functions). Equations (1)
and (9) are not unique in generating Eqs. (10) and (11), and it
will be interesting to see whether the dynamic control mecha-
nism can be better pinpointed in future work.

Our central prediction that heterogeneous environments
obscure multigenerational timescales in the averaged ACF
could be tested by modulating the degree of heterogeneity in
the channel environments. To the extent that the heterogeneity
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is nutrient-limited, it could be modulated either by flowing
nutrients overtop the cell traps, which would reduce hetero-
geneity, or by inducing chemical gradients along the device,
which would increase heterogeneity. Both are feasible options
for future experiments.

We thank Michael Vennettilli for introducing us to the
Z transform. This work was supported by National Sci-
ence Foundation Grants No. DMS-2245816 to A.M. and
H.S., No. PHY-2118561 to A.M., and No. PHY-2014116
to H.S.
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