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The master stability function (MSF) yields the stability of the globally synchronized state of a network of
identical oscillators in terms of the eigenvalues of the adjacency matrix. In order to compute the MSF, one must
have an accurate model of an uncoupled oscillator, but often such a model does not exist. We present a reservoir
computing technique for estimating the MSF given only the time series of a single, uncoupled oscillator. We
demonstrate the generality of our technique by considering a variety of coupling configurations of networks
consisting of Lorenz oscillators or Hénon maps.

DOI: 10.1103/PhysRevE.108.L032201

Synchronization is an emergent behavior in which a num-
ber of interacting oscillators do the same thing at the same
time [1]. Synchronization is a crucial phenomenon in various
systems, such as power grids [2], neuronal networks [3], car-
diac tissue [4], and chemical [5], electronic [6], optoelectronic
[7,8], and laser [9] systems. When the oscillators are discrete
objects, the interactions can be described by a network, and
so the synchronization of oscillator networks has long been a
rich area of research [1,10,11].

The problem of global synchronization and its stability was
solved by the master stability function (MSF) approach [12].
Once determined, the MSF gives the stability of the globally
synchronized state of a network of identical oscillators for
any network topology from the eigenvalues of the network
Laplacian adjacency matrix.

In order to obtain the MSF, one must have either an ac-
curate model of an uncoupled oscillator and the coupling
function [12] or a set of three coupled oscillators with con-
trollable coupling strengths [13]. In many situations, one may
not have a model, and building such a tunable network may be
difficult, yet one may still desire to know the stability proper-
ties of network synchronization. In this Letter, we demonstrate
that reservoir computing can be used as a machine-learning
technique for estimating the MSF given only the time series
of a single, uncoupled oscillator. We also find that the trained
reservoir computer can provide an accurate estimate of the
MSF even when it is not successful at attractor reconstruction.

In our technique, we train a reservoir computer to repro-
duce the dynamics of a single oscillator for which we have the
time series; this task is often called “attractor reconstruction,”
and can be performed with a variety of machine-learning
modalities [14–18]. The trained reservoir computer now
serves as a model for the uncoupled oscillator. If one knows
the form of the coupling, one can compute the MSF of the
learned model and use this as an estimate of the MSF of the
true oscillator system. We find that the MSF of the reservoir
computer can provide an excellent estimate of the MSF of
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the true oscillator system, for both a continuous-time system
(the Lorenz system) and a discrete-time system (the Hénon
map—see Supplemental Material [19]).

The trained reservoir computer is a high-dimensional dy-
namical system that displays not only the trained dynamical
behaviors of the true oscillator, but also the untrained net-
worked dynamical behaviors of the true oscillator near the
synchronization manifold. While previous works have shown
that an accurate estimate of the Lyapunov spectrum of a
single oscillator can be obtained from a reservoir computer
that achieves attractor reconstruction [14], in this Letter
we demonstrate that a well-trained reservoir computer can
provide an accurate estimate of the MSF (i.e., the largest trans-
verse Lyapunov exponent of the master stability equation).
These are distinct tasks: In the Supplemental Material, we
show that successful attractor reconstruction is not necessary
for obtaining an accurate estimate of the MSF [19].

In order for the MSF estimation to be accurate, the largest
(of many) of the transverse Lyapunov exponents of the
reservoir computer master stability equation must be approx-
imately equal to the largest transverse Lyapunov exponent of
the true master stability equation. We find that this behavior is
more likely to occur when the spectral radius of the reservoir
adjacency matrix is significantly less than one, a parameter
regime in which reservoir computers are rarely operated, and
we provide a reason why a small spectral radius is preferable.

While the dynamics of coupled reservoir computers have
been considered previously [20,21], no correspondence has
been shown between the reservoir computer coupling strength
and the true oscillator coupling strength. In this Letter, we
present a coupling scheme in which the coupling strength is
proportional to the sampling time of the training data τ . We
demonstrate that this factor of τ is essential for obtaining the
correct MSF.

Networks of coupled oscillators. Consider a single oscilla-
tor with isolated (uncoupled) dynamics described by

ẋ(t ) = F(x(t )), (1)

where x ≡ [x(1), . . . , x(D)] is the state vector of a single node.
One can couple a network of such oscillators together as
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follows:

ẋi(t ) = F(xi(t )) − εLi jH(x j (t )), (2)

where H is a function that describes the coupling and the
sum over the subscript j is implied. In this Letter we
are concerned with the stability of the globally synchronized
state xi(t ) = x j (t ) for all pairs i and j as t → ∞. The exis-
tence of the synchronized state is guaranteed by the Laplacian
adjacency matrix L [12]. The stability of the synchronized
state is determined by the MSF [12].

Reservoir computing. In this Letter, we choose a reservoir
computer [22,23] (also called an echo state network [24]) as
our machine-learning modality. A reservoir computer is a type
of recurrent neural network that is designed to be particularly
easy to train and has been shown to be well suited to the per-
formance of a variety of time-series tasks, including attractor
reconstruction [14,16,25,26], Lyapunov exponent estimation
[14,16], causal inference [27,28], and nonlinear control [29].
A reservoir computer has also been shown to have the ability
to predict untrained bifurcations [25,26], to forecast network
dynamics [30], and to synchronize with either the true chaotic
system [31] or with identical copies of itself [20,21,32]. We
use a reservoir computer for these reasons, but we note that
MSF estimation and can be tried with other machine-learning
modalities such as long short-term memory (LSTM) [17],
nonlinear vector autoregression (NVAR) [18], and extreme
learning machines [33].

Following Ref. [14], the reservoir computers used here
consist of a randomly designed recurrent neural network of
N discrete-time nodes. Let r[n] be an N × 1 column vector
that describes the state of the reservoir at time n. The reservoir
computer is described in training mode by

r[n + 1] = tanh (Ar[n] + W inx[n] + b), (3)

where x[n] is an D × 1 column vector describing the input
signal to the reservoir, W in is an N × D matrix describing the
input layer, A is an N × N matrix describing the internodal
connections in the reservoir layer, and b is an N × 1 bias
vector, the purpose of which is to break the symmetry of
the hyperbolic tangent function. In this Letter, we consider
input signals that are created by sampling a continuous-time
dynamical system described by the state vector x(t ), such that
x[n] ≡ x(nτ ) where τ is the uniform sampling time.

In the training phase the reservoir is driven by the input
signal x[n] and is trained to predict that signal at the next time
step x[n + 1]; this prediction x̂ is obtained from the reservoir
by

x̂[n] = W outP(r[n]), (4)

where P is an Np-dimensional function of r, and W out is a
D × Np matrix obtained by ridge regression [34]. Often, the
choice P(x) = x is made.

Once the training is complete, one can turn the reservoir
into an autonomous dynamical system by feeding this predic-
tion back into the reservoir according to

r[n + 1] = tanh (Ar[n] + W inx̂[n] + b). (5)

It is known that, when the training succeeds, the au-
tonomous reservoir computer described by Eq. (5) can provide
a stable reconstruction of the attractor of a dynamical system

[14,16,25]. When the attractor is successfully reconstructed,
short-term predictions are of course limited to a few Lyapunov
times; however, the long-term climate of the true system is
reproduced by the autonomous reservoir, and the Lyapunov
exponents of Eq. (5) often agree with the Lyapunov exponents
of the true dynamical system.

Since an autonomous reservoir computer is just a dynami-
cal system, a set of identical autonomous reservoir computers
can be coupled together in a network. Let ri represent the
N × 1 state vector of the ith reservoir. We hypothesize that
it will be interesting and useful to couple together M au-
tonomous reservoir computers in the following way,

ri[n + 1] = tanh(Ari[n] + W in{x̂i[n] − ετLi jH(x̂ j[n])} + b),

(6)
where the sum over j is implied, L is the M × M Laplacian
coupling matrix, ε is an overall coupling strength, and H is
a coupling function that describes how and which elements
of the output of reservoir j couple into which input ele-
ments of reservoir i. We hypothesize that this is analogous
to Eq. (2). While coupled reservoir computers have been con-
sidered previously [20,21] using different coupling schemes,
in the coupling scheme used here the coupling strength is
proportional to the sampling time τ of the training data. Some
justification for this is presented in the Supplemental Material
[19]. As we show, this results in the equivalence of the cou-
pling strength ε in the ordinary differential equation (2) and
in the discrete-time reservoir equation (6) when τ � 1/ελk ,
where λk are the eigenvalues of L.

We assume that the form of the coupling H(x) is known. In
cases where it is not known, there are a variety of techniques
for estimating the coupling function [35].

Master stability function for coupled reservoir computers.
To compute the MSF, one needs both the dynamics of the
synchronized state [Eq. (1)] and the Jacobian of the variational
equation corresponding to Eq. (2) in the basis in which L
is diagonal. The former is provided by the trained reservoir
Eq. (5). Alternatively, it could be provided the measured dy-
namics of the nonlinear oscillator, as we demonstrate in the
Supplemental Material [19].

To estimate the latter we linearize Eq. (6) about the syn-
chronous flow given by Eq. (5), where we use a subscript s to
indicate the synchronized state:

δri[n + 1] = sech2(Ars[n] + W inx̂s[n] + b)

×{Aδri[n] + W inδx̂i[n]},
δx̂i[n] = W outdP(rs[n])δri

− ετLi jdH(x̂s[n])W outdP(rs[n])δr j[n]. (7)

We want to consider only variations that are transverse
to the synchronization manifold. The first term in the curly
brackets is block diagonal with M × M blocks. The second
term is treated by performing a linear transformation to a basis
in which L is diagonal. This transformation does not affect the
first term. This results in the master stability equation

δqk[n + 1] = sech2(Ars[n] + W inx̂s[n] + b)D,

D = {A + W inW outdP(rs[n])

− ετλkW
indH(x̂s[n])W outdP(rs[n])}δqk[n],

(8)
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where we define K ≡ ελ and λk are the M eigenvalues of L.
For K = ελk = 0, Eq. (8) is the variational equation for the
synchronization manifold. All other eigenvalues correspond to
transverse eigenvectors and therefore determine the stability
of the globally synchronized state.

The MSF is the largest Lyapunov exponent of Eq. (8) as a
function of the complex number K . Once computed, the sign
of the MSF gives the stability of global synchronization of
any reservoir computer network described by any Laplacian
coupling matrix L in terms of the eigenvalues of L.

Results. Is the stability of synchronization of a network
of coupled, trained reservoirs predictive of the stability of
synchronization of a network of the true oscillators? We in-
vestigate this question by training a reservoir computer on
the Lorenz system with linear, one-component coupling [36]
(e.g., for x → x coupling, [H(x)]i j = x for i = j = 1 and zero
otherwise), and comparing the MSF of the coupled reservoir
system with the MSF of the true Lorenz system. In the Supple-
mental Material [19], we also demonstrate that this technique
can be used to estimate the MSF of the Rössler oscillator and
the discrete-time Hénon map.

We use the same type of reservoir as in Ref. [14]. The
300-node reservoir was set up as follows. To form the ad-
jacency matrix, a sparse random Erdös-Rényi network with
average degree 6 was created, with each nonzero element of
A drawn independently and uniformly from the range [−1, 1].
All elements were then scaled such that the spectral radius
is ρ. The input matrix W in was size 300 × 3. The first 100
elements of the first column, the second 100 elements of
the second column, and the final 100 elements of the third
column were nonzero; the remaining elements were zero. The
nonzero elements of W in were randomly drawn independently
and uniformly from [−σ, σ ]. No bias was used (b = 0).

Following Ref. [14], the reservoir output x̂ = [x̂, ŷ, ẑ] is
given by

⎡
⎢⎣

x̂[n]
ŷ[n]
ẑ[n]

⎤
⎥⎦ = W out

⎡
⎢⎣

r[n]
r[n]
r̃[n]

⎤
⎥⎦, (9)

where r̃ is defined such that the first half of its elements are
the same as that of r, while r̃ = r2 for the remaining half
of the reservoir nodes. The W out matrix is trained by ridge
regression.

The input Lorenz signal used was obtained by integrating
the Lorenz equations [37] using a second-order Runge-Kutta
method with time step dt = 0.001, then downsampling the
signal to have a sampling time τ = 0.02. Dynamical noise
was by modeled by adding white Gaussian noise of standard
deviation 0.01

√
dt at each time step according to the method

described in Ref. [38]; the presence of dynamical noise seems
to be beneficial, consistent with previous work on network
reconstruction using reservoir computing [27,28]. We found
that a ridge parameter of 0 worked best, perhaps because
the noise was sufficient to prevent overfitting [39,40]. The
Lyapunov exponents of Eq. (8) were computed using the QR
method [41].

We trained 1000 different Erdös-Rényi reservoirs with
spectral radius ρ drawn from a uniform distribution with

limits [0,0.3] and σ from a uniform distribution with limits
[0,0.2] on the same Lorenz time series. We note that these
values of ρ are much smaller than that typically advised in the
literature; one reason for why small values of ρ may be better
in this case is provided in the Supplemental Material [19]. We
used 40 000 training time steps. We then computed the MSF
of the 100 reservoirs that gave the best prediction error over
seven Lyapunov times. Each MSF was computed over 50 000
time steps. MSFs that were extreme outliers relative to the
population were discarded; the rest were retained. In all cases,
more than 90 MSFs were retained. The results shown are the
mean MSF of the retained reservoirs, and the error bars are the
standard deviation. The exclusion of outlier MSFs had little
effect on the mean, but did reduce the standard deviation in
some cases.

We first tested whether our reservoirs could reproduce the
Lyapunov exponents of the true Lorenz system [that is, we
computed the Lyapunov exponents of Eq. (8) with K = 0].
An autonomous reservoir has many Lyapunov exponents: For
the three largest (averaged over all 100 retained reservoirs),
we obtained 0.906, 0.000, −14.40. The true Lorenz Lyapunov
exponents are 0.906, 0.000, −14.6. It is known that reservoir
computers often struggle to replicate the negative Lyapunov
exponent of the Lorenz system [14], though it is interesting
to note that our reservoir computer (with its small spectral
radius) comes closer than the large spectral radius reservoir
computer of Ref. [14].

We then computed the MSF for real K of the true Lorenz
system and of the coupled reservoir system Eq. (8) for all
possible single-variable linear coupling schemes. The results
are shown in Fig. 1. The true MSF appears to agree ex-
cellently with that computed in Ref. [36]. For the reservoir
computer MSF, the results (error bars) shown are the average
(standard deviation) over the retained reservoirs. The agree-
ment between the reservoir computer MSF and the true MSF
is excellent everywhere for cross-coupling (e.g., x → y and
y → x). For self-coupling (x → x, etc.) the agreement is good
though not perfect. It it not clear why the results are not
as good for the case of self-coupling. We also note that, in
general, the accuracy of the MSF estimation seems to be better
for smaller values of K . The reason is that our scheme for cou-
pling the reservoir computers is equivalent to the true coupling
scheme only when τ � 1/K ; this is explained further in the
Supplemental Material [19].

We have investigated the accuracy of the estimation of the
MSF by reservoir computing on networks of coupled Hénon
maps in the Supplemental Material [19]. We find good agree-
ment between the true and estimated MSFs when ρ is small,
and provide analysis that demonstrates that the disagreement
at very negative values of the MSF is due to the nonzero
spectral radius of the reservoir. We further demonstrate the
generality of our MSF estimation technique by using the
measured dynamics of the synchronized state xs instead of
x̂s in Eq. (8) on a reservoir computer trained on the Rössler
system (for which it has been found that obtaining a reliable
attractor reconstruction using reservoir computing is more
difficult than for the Lorenz system [42]) in the Supplemental
Material [19]. Driving the reservoir with xs is particularly
useful when attractor reconstruction fails but one still requires
an estimate of the MSF. These results confirm that successful
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FIG. 1. Master stability function of the true Lorenz system (black dashed line) and the trained reservoir computer (pink dots). A solid black
line is shown at 0 to indicate the stability boundary.

attractor reconstruction is not necessary for accurate MSF (or
Lyapunov exponent) estimation.

Conclusions. We showed that the master stability function
of a reservoir computer trained on a time series from a sin-
gle, uncoupled nonlinear oscillator can provide an accurate
estimate of the master stability function of the true oscillator.
Therefore, a reservoir computer trained on a time series from
a single nonlinear oscillator can be used to determine the
stability of any network of coupled oscillators of the same
type. We demonstrated this on a variety of coupling configu-
rations of the chaotic Lorenz oscillator and the chaotic Hénon
map (see Supplemental Material [19]), demonstrating that this
technique can work for both continuous- and discrete-time
oscillators.

The technique presented here offers the potential to
solve the problem of global network synchronization by
a simple measurement of an uncoupled oscillator. More
generally, this result demonstrates that machine-learned
systems, when coupled together, can quantitatively repli-
cate the dynamical behavior of a true oscillator network,
indicating a deep relationship between the trained reser-
voir computer and true oscillator system. The machine-

learned model is a high-dimensional dynamical system
that displays not only the trained dynamical behaviors of
the true oscillator (i.e., attractor reconstruction), but also
the untrained networked dynamical behaviors of the true
oscillator.

Future work includes extending the network stability es-
timation technique for synchronization on networks with
delays [3,43], nonlinear coupling (known or unknown) [35],
time-varying connections [44,45] and cluster synchronization
[46,47], and for stability metrics other than the largest Lya-
punov exponent [12,48]. The MSF formalism only tells about
local stability; it would also be interesting to test whether the
trained reservoir could be used to predict the basin stability
[49] as well. For cluster synchronization and basin stability,
the reservoir would need to be able to model dynamics away
from the attractor on which it was trained. Recent develop-
ments [25,26] may enable this.

J.D.H. acknowledges support from the Office of the
Secretary of Defense through the Applied Research for Ad-
vancement of S&T Priorities (ARAP) program under the
Neuropipe project.
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