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Darcy’s law of yield stress fluids on a treelike network

Vincenzo Maria Schimmenti ,1 Federico Lanza ,1,2 Alex Hansen ,2 Silvio Franz,1 Alberto Rosso,1

Laurent Talon,3 and Andrea De Luca4

1Université Paris-Saclay, CNRS, LPTMS, 91405 Orsay, France
2PoreLab, Department of Physics, Norwegian University of Science and Technology, N-7491 Trondheim, Norway

3Université Paris-Saclay, CNRS, FAST, 91405 Orsay, France
4Laboratoire de Physique Théorique et Modélisation, CY Cergy Paris Université, CNRS, F-95302 Cergy-Pontoise, France

(Received 17 September 2022; accepted 30 June 2023; published 9 August 2023)

Understanding the flow of yield stress fluids in porous media is a major challenge. In particular, experiments
and extensive numerical simulations report a nonlinear Darcy law as a function of the pressure gradient. In this
letter we consider a treelike porous structure for which the problem of the flow can be resolved exactly due to a
mapping with the directed polymer (DP) with disordered bond energies on the Cayley tree. Our results confirm
the nonlinear behavior of the flow and expresses its full pressure dependence via the density of low-energy
paths of DP restricted to vanishing overlap. These universal predictions are confirmed by extensive numerical
simulations.
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In a series of experiments during the nineteenth century,
Henry Darcy studied the flow of water in a cylinder filled with
sand [1] and established the empirical law for the flow rate
Q as a function of the pressure difference P between the two
ends of the cylinder

Q = κR2P/(ηL), (1)

where R and L are, respectively, the radius and the length of
the cylinder, and η is the viscosity of the fluid. The perme-
ability, κ , has the dimension of a surface and measures the
ability of a given porous medium [2–5] to transmit a fluid.
Darcy gave an interpretation of the permeability assuming
that, in a medium, the flow is possible only along nonin-
tersecting thin channels, each of radius Rc � R. The flow
along a single channel is given by Poiseuille’s law, which
holds for empty cylinders and the total flow can be written
as Q = πR2nchπR4

cP/(8ηL), with nch the number of channels
per unit surface. Hence, the permeability can be identified as
κ = πnchR4

c/8. The network of the channels of a real porous
medium is more complex: channels have heterogeneous shape
and can intersect. However, the Darcy law is valid as far as
the number of channels remains pressure-independent. This is
not the case for yield stress fluids, such as suspensions [6],
gels [7], heavy oil [8], slurries, or cement [9] for which a min-
imum yield stress, σY , is needed to flow [10]. Hence, at a low
pressure gradient, these yield stress fluids behave like a solid
and no flow is measured. However, increasing the pressure
gradient, they start flowing along more and more channels.
Experiments [11,12] and numerical simulations [13–15] in-
dicated that the Darcy law is modified: below a threshold
pressure P0 no flow occurs, while above it the flow grows non-
linearly with P. Three flowing regimes are observed [16,17]:
(1) initially the flow grows linearly in P − P0, but with an
effective permeability which is very small; (2) for larger pres-
sure the flow grows nonlinearly as (P − P0)β (with β ≈ 2)
[18,19]; and (3) only above a saturation pressure Psat � P0

does the flow recover the linear growth with the standard
permeability κ [20].

Despite these detailed observations, a theoretical expla-
nation for the nonlinearity is still lacking. In this letter we
propose an explanation and provide an explicit prediction
for the modified Darcy law. We consider a porous structure
with the geometry of a binary Cayley tree with t levels
(see Fig. 1). This geometry is the simplest with intersecting
channels and is realistic for several biological networks (e.g.,
the alveoli system in the lungs [21] or leaf veins). In this work
we establish a precise mapping between the Darcy problem
for yield stress fluids and the directed polymer on a Cayley
tree, a model displaying one-step replica symmetry break-
ing (1-RSB) [22,23]. Each individual channel in the porous
structure has a pressure threshold which we identify with the
energy of the directed polymer represented by that channel.
We show that the first channels where flow occurs correspond
to those low-energy directed polymers with small overlaps
(i.e., they share a short common path). Next we modified the
Kolmogorov-Petrovsky-Piskunov (KPP) approach proposed
in [24] to determine analytically their number, nch, as a
function of x = P − P0 [see Eq. (13)]. Finally, we determine
explicitly the low-pressure behavior, described by Eq. (14),
and the linear high-pressure regime of Eq. (15) as well as
the saturation pressure Psat [see Eq. (16)]. At this pressure
the fluid flows along ∼ t channels almost nonoverlapping. By
further increasing the pressure, new channels open without
significantly changing the permeability of the network. This
predictions are confirmed by direct numerical simulations.

Mapping to the directed polymer and large-t limit. Our
model is a Cayley tree pore network filled by a Bingham
fluid. A pressure P is applied on the root pore and a zero
pressure at the leaves. In this model large open pores with a
well-defined pressure are connected by tubes of random radius
and length. The modified Poiseuille law for a Bingham fluid
is an open problem, but in the limit P � τ takes a simple for
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QPois(P) = πR4

8ηL (P − τ )+ (see [15]). Here we denote (x)+ =
max(0, x) and τ = LσY /R and consider P > 0. We consider
the simplified case in which only the thresholds fluctuate
and the flow in a tube between the pore i, at the pressure Pi,
and the pore j, at pressure Pj < Pi, reads

Qi j = (Pi − Pj − τi j )+. (2)

The threshold τi j is a random variable, drawn from a distri-
bution p(τ ). Hence a tube is open if Pi − Pj > τi j . A pore
has one incoming tube and two outgoing tubes, and inside it
Kirchhoff’s law holds: the incoming flow must be equal to
the sum of the outgoing ones. It follows that, given an open
incoming tube, there must be at least one outgoing open tube.
Thus along a channel from the root to a leaf flow occurs if all
its t tubes are open.

As a consequence, the pressure P0 at which the first channel
opens is given by

P0 = min
α

∑
(i j)∈α

τi j, (3)

where α labels the 2t−1 directed path connecting the root to a
leaf. As observed in [19], the threshold pressure P0 identifies
with the ground-state energy of the associated directed poly-
mer (DP) model. We define εα the energy of a directed path α

as the sum of the thresholds along α:

εα =
∑

(i j)∈α

τi j . (4)

It follows that P0 = minα εα . The key point of this letter is that
also the pressures P1, P2, . . . at which a new channel opens
are related to the low-energy levels of the DP. It is useful to
label the directed paths α by ordering the energies as ε0 <

ε1 < ε2 < · · · .
Using Kirchhoff’s law (see Sec. A of [25]) we compute the

explicit expression for P1:

P1 = ε0 + min
α �=0

εα − ε0

1 − q̂0α/t
= ε0 + εα1 − ε0

1 − q̂0α1/t
, (5)

where q̂0α stands for the overlap between the α chan-
nel and the ground state, namely, the number of common
tubes between the two channels. The path α1 realizes the
minimum, and it is the channel that opens just above P1. It is
crucial to remark that the minimization involves two terms:
the term εα − ε0 favors low-energy paths, while the term
1/(1 − q̂0α/t ) selects the ones with a small overlap with the
ground state. The directed polymers on a Cayley tree display
one-step replica symmetry-breaking 1-RSB. This means that
in the limit t → ∞ the overlap among any two low-energy
directed paths is either O(1) or ∼t [22] (finite t corrections are
also known [26,27]). Hence, in this large-t limit, the channel
α1 corresponds to a path with low energy and low overlap
[q̂0α1 = O(1)], so that limt→∞ 1/(1 − q̂0α1/t ) = 1 and P1 =
εα1 . Moreover, the total flow reduces to the sum of the con-
tribution from each channel, namely, Qt (P) = (P − P0)/t +
(P − P1)/t for P ∈ [P1, P2] (see Sec. A of [25]).

The same property holds for higher pressures (see Sec. B
of [25]): the channels α2, α3, . . . correspond to paths with the
low energy and low overlap, and P2, P3, . . . coincide with the
energies εα2 , εα3 , . . . (see sorted energies of Fig. 1 bottom).

FIG. 1. Top: Binary Cayley tree with t = 8 levels. The first chan-
nels where flow occur are the leftmost path in blue, at the pressure
P0, the middle path in orange α1, at pressure P1 > P0, and the right-
most path in green α2, at pressure P2 > P1. We denote with q̂α1α2

the overlap between α1 and α2, namely, the length of the common
path between them (here q̂α1α2 = 3). Similarly q̂0,α1 and q̂0,α2 are the
overlaps of α1 and α2 with the blue path (here q̂0,α1 = q̂0,α2 = 1), and
q̂ is the maximal overlap between all of them (here q̂ = 3). Bottom:
sorted energies of the associated directed polymer ε0 < ε1 < ε2, . . ..
The energies corresponding to small overlap paths are in red. In the
large-t limit we show that q̂ � t and P1 = εα1 , P2 = εα2 , . . ..

Similarly the total flow reduces to the sum of the contribution
from each channel.

As a consequence the computation of the flow problem re-
duces to determine the growth of the number of open channels
nch

t (x) as a function of x = P − P0. This number identifies
with the number of low-energy levels of the directed polymer,
provided they have low overlap among them. We compute this
number adapting the tools introduced in [24] and based on the
mapping to the discrete KPP equation [23,28–32].

KPP approach. To begin, we introduce the number of
energy levels with energy smaller than ε0 + x, namely,
m(full)

t (x) = ∑
α ϑ[x − (εα − ε0)] [ϑ (x) is the Heaviside theta

function]. In [24] (for a self-contained derivation see Sec. B

of [25]) m(full)
t (x) (the overbar stands for the average over the

random thresholds) is expressed as m(full)
t (x) = ∫

dx′ rt (x′; x).
The function rt (x′; x) satisfies the following recursive
equation:

rt+1(x′; x) = 2
∫

dτ p(τ )�t (x
′ − τ )rt (x

′ − τ ; x), (6)

�t+1(x) =
∫

dτ p(τ )�t (x − τ )2. (7)

Here p(τ ) the thresholds distribution and the initial con-
ditions read r1(x′; x) = p(x + x′) and �1(x) = ∫ ∞

x dτ p(τ ).
Equation (7) is the discrete KPP equation, and the function
�t (x) is the probability that the ground-state energy of the DP
on a Cayley tree of t levels is larger than x. Hence Eq. (7)
corresponds to growing a t + 1-level tree starting from two
t-level trees [23].

To determine the Darcy flow we are interested in a sub-
set of low-energy paths, namely, the ones that contribute
to nch

t (x) = ∑
i ϑ[x − (Pi − P0)] with i = 1 · · · 2t−1 − 1. As

discussed above, in the limit t → ∞, the open channels co-
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FIG. 2. Left: Example of a Cayley tree. The minimal path of
the topmost subbranch after q̂ = 2 generations is shown highlighted
in blue. Right: Pruning of the full Cayley tree, where within each
subtree starting from the q̂ = 2 generation, only the minimal path is
retained.

incide with the low-energy paths with vanishing overlap and
the pressures P1, P2, . . . with the corresponding path ener-
gies εα1 , εα2 , . . . . To make progress we introduce the quantity
mq̂(x) which counts, in an infinite tree, the number of paths
with energy εα � P0 + x and the maximum overlap between
them q̂. With this prescription, we immediately take limit
t → ∞ and consider only low-energy paths with vanishing
overlap, q̂ � t . This remains valid even in the limit q̂ → ∞,
so that

nch
∞(x) = lim

q̂→∞
mq̂(x). (8)

To compute mq̂(x), we modify the KPP approach introduced

for m(full)
t (x). For this, we introduce a pruning procedure (see

Fig. 2): at the level q̂ of the full Cayley tree, there are 2q̂

subtrees labeled by a = 1, . . . , 2q̂. We replace each of these
subtrees with a single tube with a minimum energy ε

(a)
0 . In this

way we obtain a tree of q̂ levels containing the 2q̂ low-energy
paths with maximal overlap q̂. This procedure is equivalent
to growing a tree with q̂ levels where the leaves thresholds are
drawn from the distribution of the minimum of an infinite tree.
The probability wmin(x) that the minimal energy of an infinite
tree is larger than x is obtained from the fixed-point traveling
wave solution of Eq. (7):

wmin[x + c(βc)] =
∫

dτ p(τ )w2
min(x − τ ), (9)

where c(βc) is the minimal value for which (9) has a solution
and its value can be obtained as

βc = arg min
β

c(β ), (10a)

c(β ) = 1

β
log

(
2

∫
dτ p(τ )e−βτ

)
. (10b)

The function wmin(x) is a sigmoid with wmin(x) � 1 −
x exp (βcx) for x → −∞ and wmin(x) � 0 for x → ∞. The

solution of Eq. (9) is defined up to an arbitrary shift that we
set to zero for simplicity. For large but finite t , it has been
proven [33] that

P0 = ε0 = −c(βc)t + 3

2βc
log t + χ0, (11)

where the first two terms are deterministic while χ0 is a ran-
dom variable of order 1 distributed according to −w′

min(χ0).
In our problem, the limit t → ∞ can be safely taken as the di-
vergent deterministic part being unimportant, being the same
for all leaves.

Thus, to compute mq̂(x), one has to implement the re-
currence in q̂ instead of t , replacing rt (x′; x) with rq̂(x′; x).
Moreover, in Eq. (6), �t (x) is replaced with wmin[x + c(βc)q̂]
and the initial condition is rq̂=1(x′; x) = −w′

min(x + x′). Fi-
nally, as before, mq̂(x) = ∫

dx′ rq̂(x′; x).

In the limit t → ∞ a closed-form expression for m(full)
∞ (x)

is not known [34]; however, in [24] it was shown numerically
that the following asymptotic holds:

m(full)
∞ (x)

x�1= Axeβcx (12)

with A a nonuniversal O(1) constant. On the contrary, direct
numerical integration of rq̂(x′; x) [Fig. 3 (right)] show that,
when q̂ → ∞, the expression of nch

∞(x) is

nch
∞(x) = lim

q̂→∞
mq̂(x) = eβcx. (13)

In [25], we also provide an analytical argument to support this
result.

Determination of the flow. At low pressure, for a fixed
x = P − P0, there is are finite number of channels, sharing
low overlap and each supporting a flow (x − x′)/t , P0 + x′
being its opening pressure. In this regime the total flow re-
duces the sum of independent contributions Qt (P0 + x) =∫ x

0 dx′ nch
t (x − x′)/t . For large t this leads to

Qt (P0 + x) = eβcx − 1

βct
with P � P0. (14)

This expression captures the first two regimes of the flow:
when P → P0 the flow is linear Q(P) = (P − P0)/t , for larger
pressure a nonlinear regime takes over. At very high pressure
instead all channels are open, and we recover the second linear
behavior with

Qt (P) = κ (P − P∗) with P → ∞. (15)

For large t , κ = 1/2 and P∗ = τ t [with τ = ∫
τ p(τ )dτ ; see

Sec. C of [25]].
The crossover between the nonlinear regime of Eq. (14)

and the linear regime of equation (15) occurs at the pressure
Psat. An estimation of Psat is obtained by matching the effective
permeability at low pressure, κeff = dQt/dP ∼ eβc (P−P0 )/t ,
with the value κ = 1/2 at high pressure:

Psat = P0 + (1/βc) ln t . (16)

As a consequence, at the saturation pressure, the number of
channels obtained by Eq. (13) is ∼ t . Let us comment on this
result. When the pressure is slightly above the minimal value
P0, only a single channel is open and κeff is ∼1/t . Increasing

L023102-3



VINCENZO MARIA SCHIMMENTI et al. PHYSICAL REVIEW E 108, L023102 (2023)

FIG. 3. Left: mq̂(x) and m(full)
∞ (x) (dashed black line) obtained by numerical integration of Eq. (6) and Eq. (7) with different initial

conditions. Middle and right: exact numerical simulations on a finite Cayley tree of moderate moderate sizes t = 12, 15, 17, 19, 21. The
opening of the first ∼t channels is sufficient to saturate the effective permeability, κeff (nch

SAT) = 0.4 = 0.8κ (inset). However, P∗
eff displays a

much slower evolution, and it is still far from saturation when nch ∼ 1000 � t . The simulations were carried out using a Gaussian distribution
p(τ ) with zero mean and variance σ 2 = 1/12. The corresponding value for βc from (10) is βc = √

2 ln 2/σ .

the pressure slightly more (∼ ln t), it is enough to have ∼ t
channels with very small overlap between them and to reach
the total permeability κ . Note that this number is very small
compared to 2t−1, the total number of directed paths. At even
larger pressure, the fluid flows in more and more channels, but
this does not affect much the permeability of the network. To
check these results we carried out exact numerical simulations
on the Cayley tree with moderate t . For a given finite tree the
flow curve as function of the pressure is a piecewise linear
function, with breakpoints at P0, P1, . . . , Pnch , the pressures
at which a new channel opens. For each segment the flow
reads Q(P) = κeff (P − P∗

eff ). The first parameter, κeff , is the
permeability of the set of open channels, while P∗

eff depends
on the threshold along them. In Fig. 3 we study their behavior
as a function of nch. In Fig. 3 (middle), we observe that
the permeability grows quickly with nch and after nch

SAT ∼ t
reaches the value κ = 1/2 [see the inset of Fig. 3 (middle)].
The converse is not true for P∗

eff , which grows slowly as shown
in Fig. 3 (right).

Conclusions. In this work we show that the Darcy problem
with a yield stress fluid is closely related to the associated
directed polymer. In particular, in the limit of large trees, a
direct mapping emerges between nch and low-energy directed
paths with zero overlap. Due to this identification, we derive
a simple universal expression for the flow as a function of
the applied pressure. Equation (14) is independent of most
microscopic details. However, the threshold distribution and
the tree branching ratio set the parameter βc.

The next big challenge would be to solve the problem
of the flow in a finite dimension. In particular, it would
be interesting to understand the role of the low-energy and

low-overlap energy levels. Those low-overlap excitations are
abundant in mean-field glassy disordered systems, but their
number is suppressed in a finite dimension. For this reason,
their role in realistic setups has always been controver-
sial. However, in the Darcy problem, excitations with high
overlap are strongly penalized, and they are inessential in
increasing the flow, independently of the spatial dimension.
For this reason, the Cayley tree solution of the flow can
give important insights on finite dimensional porous media.
In particular the high-pressure behavior of Eq. (15) holds
in all dimensions, and we expect that the scenario depicted
in Fig. 3 (middle and right) holds as well. In a real porous
medium, we predict that the effective permeability grows
initially fast and saturates to κ , while P∗

eff evolves slowly to
P∗ = t τ̄ . Moreover, from the Cayley tree solution, we know
that the permeability of the network of flowing channels
is governed by a small number of independent channels. It
would be interesting to understand if this remains true in finite
dimensions.
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