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When a body moves through a fluid, it can experience a force orthogonal to its movement called lift force.
Odd viscous fluids break parity and time-reversal symmetry, suggesting the existence of an odd lift force on
tracer particles, even at vanishing Reynolds numbers and for symmetric geometries. It was previously found
that an incompressible odd fluid cannot induce lift force on a tracer particle with no-slip boundary conditions,
making signatures of odd viscosity in the two-dimensional bulk elusive. By computing the response matrix for a
tracer particle, we show that an odd compressible fluid can produce an odd lift force. Using shell localization, we
provide analytic expressions for the drag and odd lift forces acting on the tracer particle in a steady state and also
at finite frequency. Importantly, we find that the existence of an odd lift force in a steady state requires taking into
account the nonconservation of the fluid mass density due to the coupling between the two-dimensional surface
and the three-dimensional bulk fluid.

DOI: 10.1103/PhysRevE.108.L023101

Introduction. Odd materials are characterized by the break-
ing of parity symmetry, which manifests itself in viscous and
elastic tensor contributions that are odd under index exchange.
Breaking this symmetry results in the emergence of novel phe-
nomena, endowing odd materials with fascinating properties
that are interesting for various fields of physics, including
electron fluids [1–3], topological waves [4–7], fluid dynam-
ics [8–11], complex materials [12–16], soft active matter,
statistical physics, and biological physics [17–28]. Notably,
these materials are now within experimental reach and their
properties can be measured, validated, and further explored
[3,22,27].
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The simplest examples of odd materials are odd fluids,
which are characterized by odd viscosity. Odd viscosity is a
transport coefficient in two dimensions breaking parity and
time-reversal symmetry, which can occur in passive fluids
subject to a background magnetic field [29,30], as well as in
active chiral systems [8,26].

The signatures of odd viscosity in fluids have been ex-
plored in various contexts (see, e.g., [8–11,20–22,24,31–
41]). The experimental realization of an active odd fluid in
Ref. [22] showed that the strongest signatures of odd behavior,
such as edge flow or the rotation of asymmetric droplets,
are found at interfaces. Inserting a tracer or probe particle
in an odd fluid naturally introduces a boundary, making it
an ideal candidate to probe the odd properties of a fluid,
and has been the subject of several numerical and theo-
retical studies [10,23,25,33,38,39]. In particular, due to the
parity-breaking nature of odd viscosity, symmetry allows a
fluid with a constant velocity at infinity not only to induce
a drag force on a tracer particle, but also a lift force, or-
thogonal to the movement of the tracer. This odd lift force
is allowed at vanishing Reynolds number and in a sym-
metric geometry. This illustrates its different physical origin
compared to the lift force observed, for instance, in aero-
nautics that requires a nonvanishing Reynolds number or
a symmetry-breaking mechanism such as the shape of the
wing [42].
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Surprisingly, such a lift force is absent1 in incompressible
odd fluids [10], and the motion of a tracer particle cannot be
used to detect signatures of odd properties in these systems.

This brings us to a variant of the more-than-a-century-old
question: how much force does a tracer particle in a fluid ex-
perience? Answering this question typically requires finding
a smooth and regular solution for the velocity profile of the
fluid flows satisfying appropriate boundary conditions near
the tracer particle and far away from it. However, when one
tries this for two-dimensional fluids, one encounters a prob-
lem, commonly known as the Stokes paradox, which prevents
a solution to the Stokes equation for a disk moving through
a two-dimensional fluid with infinitely large system size [43].
The Stokes paradox can be circumvented by adding a scale
to the problem which “regularizes” the paradox. One way
to do this is a through the Oseen approximation [44], which
introduces the far field velocity through an inertia term. The
Oseen approximation can be improved in an iterative way,
which is called asymptotic expansion [45–50]. Another way
that the Stokes paradox is evaded is by assuming that the
two-dimensional fluid is in contact with a three-dimensional
bulk, to which momentum is relaxed [51–53]. This is what
will be considered in this work.

In this Letter, we show that a tracer particle in an odd
compressible fluid experiences a lift force proportional to
the odd viscosity coefficient, and that compressibility is a
necessary condition for the existence of an odd lift force
in two dimensions. As commonly done when studying the
motion of tracers in fluids and to make direct contact with
the incompressible case studied in Ref. [10], we consider no-
slip boundary conditions on the surface of the tracer. Lifting
the incompressibility constraint dramatically complicates the
two-dimensional fluid equations; the description of the fluid
velocity requires, in addition to the stream function, a second
scalar field. The differential equations of these two scalar
fields are coupled due through odd viscosity. In addition, one
also needs to account for the nontrivial role of density. To
tackle these difficulties, we avoid computing the fluid pro-
file and instead use the “shell localization” approach [54–56]
to analytically compute the drag and lift forces on a tracer
particle in two different situations: a fluid in a steady-state
configuration, and a fluid excited by an external force with
finite driving frequency.

Crucially—and this point was overlooked in previous stud-
ies on this subject in which an instantaneous density relaxation
was considered [38]—we show that lift force only persists
in a steady state in systems for which the density is not
conserved. Nonconservation of density is generic in active
systems as a consequence of birth and death processes, for
instance in “Malthusian flocks” [57,58], cellular tissues [59],
and in chemotactic systems [60]. Furthermore, absence of
mass density conservation in two dimensions can arise from
exchanges with a three-dimensional fluid bulk [61,62]. This

1A nonvanishing odd lift force, on a tracer in an incompress-
ible fluid, assuming no-slip boundary conditions, was obtained in
Ref. [33], but was contradicted in Ref. [10]. The discrepancy can
be traced to the computation of the force on the probe, which in
Ref. [33] used an incorrect pressure field.

is, for instance, the case if the odd properties of the fluid stem
from the activity of chiral particles, such as bacteria [63] or
spermatozoa [64] that swim in a three-dimensional fluid and
can accumulate at a surface.

As a further step, we also investigate the response of a
probe excited periodically. At finite frequency, we show that
an odd lift force can be measured in compressible fluids even
if the mass density is conserved. This paves the way toward
measurements of odd transport coefficients using frequency
dependent microrheology.

Compressible odd fluid. We consider a thin layer of an odd
compressible viscous fluid at the interface between two bulk
(even) fluids, for instance water and air. For simplicity, we
consider this layer to be flat and infinitely thin, such that the
odd fluid can be described effectively as two dimensional. The
stress tensor associated with the mechanical properties of the
odd fluid with velocity field vi reads

σi j = 2ηs∂〈iv j〉 + 2ηo∂{iv j} + (ηb∂kvk − P)δi j, (1)

where i, j denote two-dimensional Cartesian coordinates and
where summation over repeated indices is implied. For an
arbitrary tensor Ai j , we have introduced the notation A〈i j〉 =
(Ai j + Aji )/2 − Akkδi j/2 for its traceless symmetric part, such
that ∂〈iv j〉 is the fluid shear rate. We have also introduced
the odd tensor contraction A{i j} = (εikAk j + εikA jk + ε jkAki +
ε jkAik )/4, where εi j denotes the fully antisymmetric tensor in
two dimensions with ε12 = −ε21 = 1. Finally, we denote by
ηs,b,o the shear, bulk, and odd viscosities of the fluid, and by
P its pressure field.

The divergence of the stress tensor (1) then allows us to
write the momentum balance equation, which corresponds to
the odd version of the Navier-Stokes equation. It reads

∂tπi + vk∂kπi = ηs∂k∂kvi + ηb∂i∂kvk − ∂iP

+ ηoεi j∂k∂kv j − 1

τ
πi + fi, (2)

where πi = ρvi is the fluid momentum density with ρ the local
mass density. The first line of Eq. (2) is the usual isotropic
Navier-Stokes equation, while the first term in the second line
is the signature of odd two-dimensional fluids. In addition,
we have included in Eq. (2) a momentum relaxation process
with timescale τ . This process accounts for linear friction
between the two-dimensional fluid and the three-dimensional
bulk which can generically exist in our geometry. The last
term fi in Eq. (2) is an external force density acting on the
fluid, which will prove convenient to compute the drag and
lift coefficients of a probe immersed in the fluid.

As will become clear below, the compressibility of the odd
fluid layer is a necessary condition to observe a nonvanishing
lift force. A compressible fluid can be described by providing
an equation of state for the pressure field P written as a series
expansion in powers of the fluid density ρ. For a weakly
compressible fluid that we consider here, we keep only the
first nontrivial order and write

P(ρ) = P0 + χ
(ρ − ρ0)

ρ0
, (3)

where χ−1 is the compressibility, and P0 and ρ0 are the ref-
erence pressure and density, respectively. Finally, the mass
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density obeys the balance equation:

∂tρ + ∂k (ρvk ) = − 1

κ
(ρ − ρ0), (4)

where we have included a mass exchange process with
timescale κ to account for particle exchange with the bulk
of the fluid [62]. Note that linear terms proportional to the
density in Eq. (3) and in Eq. (4) would also be allowed in
an active fluid layer [65], such as a cell epithelium. In this
specific case, χ (ρ − ρ0)/ρ would correspond to an active
isotropic stress and (ρ − ρ0)/κ would account for cell divi-
sions and extrusions. Finally, we emphasize that the case of
a momentumconserving, massconserving, or incompressible
fluid can be easily recovered by taking, respectively, the limit
τ → ∞, κ → ∞, or χ → ∞ in Eqs. (2)–(4). These coupled
equations thus provide the ideal starting point for studying odd
effects in two-dimensional fluid layers.

To simplify the system of coupled nonlinear differential
equations, (2)–(4), we linearize it to first order in vi and δρ =
ρ − ρ0 near a vanishing velocity and homogeneous reference
state. The balance equations then take the form

ρ0∂tvi = ηs∂k∂kvi + ηb∂i∂kvk + ηoεi j∂k∂kv j

− ∂iP − ρ0

τ
vi + fi, (5a)

∂tδρ + ρ0∂kvk = − 1

κ
δρ. (5b)

We will use these equations to compute the response of a
probe to an external force in an odd fluid.

Shell localization. Having defined the equations of motion,
we move to Fourier space with the convention

g(t, xi ) = 1

(2π )3

∫
dωd2k g(ω, ki )e

−iωt+ik j x j (6)

for some function g(t, xi ) so that Eq. (5) can be written in
matrix form Gi jv j = fi with Gi j given by

Gi j = k̂ik̂ j

[
ρ0

τ
− iωρ0 +

(
ηs + ηb + χκ

1 − iωκ

)
k2

]

+ (δi j − k̂ik̂ j )
[ρ0

τ
− iωρ0 + ηsk

2
]

+ εi jηok2, (7)

where k = √
kiki and k̂i = ki/k. This relation can be inverted

as

vi(ki, ω) = Mi j (ki, ω) f j (ki, ω), (8)

where we have defined Mi j = G−1
i j . Equation (8) yields the

velocity induced by a force distribution. Specifically, we con-
sider the force applied on a tracer particle, which is a rigid
disk of radius a located at the origin. Due to the rotational
symmetry of the disk, we can decompose the force density
as f j (ki, ω) = L(k)F j (ω). The shell localization method con-
sists of considering that the force density is located in real
space according to [54,55,66]

L(x) = 1

2πa
δ(|x| − a). (9)

Equation (9) enforces the force density exerted by the disk
on the fluid to be uniformly distributed along the entire edge
of the disk. The disk is coupled to the fluid through a no-slip

boundary condition, which equates the velocity of the tracer
particle to the fluid velocity at the edge of the tracer particle.
Fourier transforming Eq. (9) yields L(k) = J0(ak) with Jn(z),
the nth Bessel function of the first kind. The velocity of the
disk located at |x| = 0 is then directly given by the inverse
Fourier transform at the origin:

vi(|x| = 0, ω) = Mi j (ω)F j (ω), (10)

where the “response matrix” is

Mi j (ω) = 1

(2π )2

∫ 2π

0
dθ

∫ ∞

0
dk kL(k)Mi j (ki, ω). (11)

The response matrix Mi j (ω) encodes the velocity of a rigid
probe immersed in an odd fluid as a function of the applied
(frequency-dependent) force F j (ω). Using the disk radius a
we can introduce the dimensionless coefficients

zi = aki, ω̃ = ωa2ρ0/ηs, η̃o = ηo/ηs, η̃b = ηb/ηs

τ̃ = τηs/(ρ0a2), χ̃ = χρ0a2/η2
s , κ̃ = κηs/(ρ0a2) (12)

so that Eq. (7) turns into

Gi j = ηs

a2

{
ẑi ẑ j

[
1

τ̃
− iω̃ +

(
1 + η̃b + χ̃ κ̃

1 − iω̃κ̃

)
z2

]

+ (δi j − ẑi ẑ j )

[
1

τ̃
− iω̃ + z2

]
+ εi j η̃oz2

}
, (13)

where z = √
zizi and ẑi = zi/z. Before considering the most

general case of a compressible fluid, where a lift force can
arise, we first discuss the limiting case of an incompressible
odd fluid. This corresponds to the limit χ̃ → ∞, for which the
matrix M reads

lim
χ→∞Mi j (zk, ω̃) = a2

ηs

δi j − ẑi ẑ j

z2 + τ̃−1 − iω̃
. (14)

It may be observed that this matrix is transverse to the wave
vector, indicating the absence of an odd lift force as expected
for an incompressible odd fluid [10]. In addition, the odd
viscosity transport coefficient is absent, indicating that the
response of the tracer particle in the case of an odd incom-
pressible fluid is identical to the response in the case of an
even incompressible fluid. In the Supplemental Material [67],
which includes Refs. [47,51–53,68–72], we verify that in the
incompressible case the shell localization gives a drag force
that is consistent with results found by explicitly solving the
boundary value problem in two instances. Specifically, we
recover the result for two-dimensional oscillatory drag [68,69]
as well as the result for the drag force found in the Saffman-
Delbrück model [51,52], provided we appropriately match the
relaxation time to the coefficients of this model [53].

Odd lift force. We now address the general case of a com-
pressible fluid. In this setting, the response matrix can be
written as

Mi j (ω) = 1

ηs
(Mdδi j − Mlεi j ), (15)

where Md and Ml are respectively the dimensionless response
functions for drag force and for lift force, specific to com-
pressible odd fluids.

Steady-state odd lift force. We first consider the steady-state
case ω̃ → 0 with a nonvanishing relaxation rate τ̃−1 �= 0.
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The drag and lift are obtained by computing the momentum
integrals:

Md = 1

4π

∫
dz J0(z)

D(z)

Q(z)
, (16a)

Ml = 1

2π

∫
dz J0(z)

L(z)

Q(z)
, (16b)

where we have defined

Q(z) = τ̃ 2z4(η̃b + η̃2
o + �−1 + 1)

+ τ̃ z2(η̃b + �−1 + 2) + 1, (17a)

D(z) = τ̃ z(τ̃ z2(η̃b + �−1 + 2) + 2),

L(z) = η̃oτ̃
2z3, (17b)

and where �−1 = κ̃χ̃ . As advertised in the introduction, we
note that the odd lift force vanishes for η̃o → 0, which is
expected as it can only be induced by a parity-odd coef-
ficient. Furthermore, Ml is only nonvanishing when κ̃−1 is
nonvanishing, since in the steady case the limit κ̃ → ∞ is
equivalent to the incompressible limit, for which was shown
in Eq. (14) that the lift force vanishes. This means that in a
steady state there can only be lift forces when density is not
conserved, for instance, if exchanges between the surface and
three-dimensional fluid, parametrized by the relaxation time
κ , take place.

As we detail in the Supplemental Material [67], where
we use Ref. [73], the momentum integrals can be computed
analytically using residues but their expression can become
lengthy. For the purpose of clarity, we consider a series ex-
pansion in powers of the odd viscosity η̃o and keep the first
nonvanishing contribution. Specifically, we find

Md = K0(τ̃−1/2) + K0[(�τ̃ )−1/2]/�

4π
+ O

(
η̃2

o

)
, (18a)

Ml = η̃o[K0(τ̃−1/2) − K0[(�τ̃ )−1/2]/�]

2π (� − 1)
+ O

(
η̃2

o

)
, (18b)

with � = 1 + η̃b + �−1 and where Kn(x) is the nth modified
Bessel function of the second kind. In the incompressible fluid
limit or for a compressible fluid without mass density relax-
ation (� → 0), we find Ml = 0 and Md = K0(τ̃−1/2)/(4π ).

We now evaluate Md and Ml from Eq. (16) as a function of
� and provide the result in Fig. 1. We take η̃b = η̃o = 1 for
the dimensionless viscosities. We observe in Fig. 1(a) that the
drag force is significantly affected by the momentum relax-
ation time τ̃ but only weakly depends on the compressibility
parameter �. On the other hand, Fig. 1(b) shows the crucial
role of the compressibility in the magnitude of the lift force,
which vanishes in the incompressible limit � → 0.

We also consider the limit � → ∞ which corresponds to
an infinitely compressible fluid (χ̃ = 0), or to a fluid with
an instantaneous density relaxation κ = 0. In this limit, any
deviation from the reference density ρ0 is instantly relaxed to
the bulk, such that pressure is constant and plays no role in the
response matrix. In this case, our equations reduce to the ones
considered in Ref. [38] where numerical expressions for the
response function are computed.

Lastly, we note that the odd lift coefficient M1 can become
negative for small values of τ̃ and large values of �. However,
this regime in parameter space for which τ 	 1 is precisely

(a)

(b)

FIG. 1. Steady-state drag coefficient Md (a) and lift coefficient
Ml (b) as a function of the dimensionless inverse compressibility
� = (χ̃ κ̃ )−1 for different values of the relaxation time τ̃ and for
η̃b = η̃o = 1.

the regime in which momentum relaxation dominates and
the system given by Eq. (5) no longer provides an accurate
description of two-dimensional fluid flows.

Frequency-dependent lift force. We now consider the sys-
tem in the absence of relaxation processes (τ̃−1 → 0 and

(a) (b)

(c) (d)

FIG. 2. Real (a), (c) and imaginary parts (b), (d) of the complex
drag and lift coefficients Md,l as a function of the dimensionless
frequency ω̃ for different values of the inverse compressibility χ̃ and
for η̃b = η̃o = 1.
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κ̃−1 → 0) to focus on the frequency-dependent response of
the tracer. In Fig. 2, we display the real and imaginary parts
of the drag coefficient Md(ω̃) and odd lift coefficient Ml (ω̃) as
a function of the dimensionless frequency ω̃ and for different
values of the inverse compressibility χ̃−1. The drag coefficient
Md(ω̃) diverges as ω̃ → 0, which is a signature of the Stokes
paradox, see Figs. 2(a) and 2(b).

On the other hand, the lift coefficient Ml (ω̃) vanishes at
steady state, see Figs. 2(c) and 2(d). At finite excitation fre-
quency and compressibility, a nonvanishing odd response can
be measured. Note that both the drag and lift responses vanish
at large frequencies, as expected for a fluid.

Additionally, a simple analytic expression for the drag and
odd lift coefficient Md,l can be obtained by expanding Eq. (11)
in the absence of relaxation processes (τ̃−1 → 0 and κ̃−1 →
0) and at leading order in the inverse compressibility χ̃−1. One
obtains

Md = 1

4π
K0(

√
ω̃/i) + O(χ̃−1), (19a)

Ml = −iω̃η̃o

2πχ̃
K0(

√
ω̃/i) + O(χ̃−2). (19b)

The drag and lift coefficients have a completely different
behavior in the limit of small frequencies. Indeed, we have
the expansion2

Md = − 1

8π

(
log

ω̃

4
+ 2γEM − iπ

2

)
+ O(χ̃−1, ω̃), (20a)

Ml = iω̃η̃o

4πχ̃

(
log

ω̃

4
+ 2γEM − iπ

2

)
+ O(χ̃−2, ω̃2), (20b)

which shows a log ω̃ divergence of the drag, as expected from
the Stokes paradox, while the odd lift coefficient vanishes as
ω̃ log ω̃. This difference in the small ω̃ behavior is clearly
visible in Fig. 2.

Discussion. In this Letter we obtained analytical ex-
pressions for the drag and lift coefficients of a disk in a
two-dimensional odd compressible fluid. We used a shell lo-
calization approach [54,55] to study the probe response both

2Note that because the drag coefficient diverges in the limit ω̃ → 0,
the expansion in a series of ω̃ must be performed after computing the
momentum integral over z.

at steady-state and at finite frequency. In the incompress-
ible limit, we confirmed the absence of odd effects on the
tracer with no-slip boundary conditions [10]. Having in mind
a two-dimensional system embedded in a three-dimensional
bulk, we have considered a finite momentum relaxation due
to friction, which remedies the Stokes paradox. We found that
in order for lift force to be nonvanishing in the steady case, an
additional density relaxation due to exchanges with the bulk
is required.3

The shell localization approach has also been used to com-
pute drag force for the incompressible Oseen equation [76].
An interesting question is whether it is possible to also apply
this computation for the case where the Oseen approximation
is applied to odd compressible fluids. Furthermore, it would
be interesting to see whether “effective boundary conditions”
[77] accounting for a small finite compressibility can be used
to capture the odd lift force on the probe while using an
incompressible model in the bulk. Finally, when the tracer
is excited at finite frequency ω, we found that an odd lift
response exists at finite frequency, and vanishes as ω log(ω)
in the limit of small frequency. For comparison, the drag
response diverges in the same limit as log(ω), a signature
of Stokes paradox [68,69]. These results suggest that active
microrheology could be used to measure the properties of odd
viscoelastic materials.
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3Note that in Ref. [38], the odd lift force was computed in the limit
of a vanishing density relaxation time (κ → 0) using the Lorentz
reciprocal theorem [74]. However, this theorem relies on the index
exchange symmetry ηi jkl = ηkli j of the viscosity tensor, which does
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