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Surface tension of bulky colloids, capillarity under gravity, and the microscopic
origin of the Kardar-Parisi-Zhang equation
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Experimental measurements of the surface tension of colloidal interfaces have long been in conflict with
computer simulations. In this Letter we show that the surface tension of colloids as measured by surface
fluctuations picks up a gravity-dependent contribution which removes the discrepancy. The presence of this
term puts a strong constraint on the structure of the interface which allows one to identify corrections to the
fundamental equation of equilibrium capillarity and deduce bottom up the microscopic origin of a growth model
with close relation to the Kardar-Parisi-Zhang equation.
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A student can easily measure the surface tension of wa-
ter using modest equipment such as a Nouy ring available
in undergraduate laboratories. As the Nouy ring is lifted
gently with a spring against surface tension and gravity,
an equilibrium is established which reproducibly yields γ =
72 mN m−1 at room temperature. But is this result affected by
the Earth’s gravity?

Admittedly, this question looks odd at first thought. But
an important consequence of renormalization theory is that
interfaces must exhibit small perpendicular fluctuations of the
local interfacial position which are damped by gravity [1–3].
Whereas small in amplitude, the interfacial fluctuations re-
main correlated over extremely large distances, corresponding
to the parallel correlation length or capillary distance ξ 2

‖ =
γ /�ρ G as set by the gravitational acceleration G (with �ρ

the density difference between the bulk phases). However, this
widely accepted result poses a serious problem in the limit
of strong fields. Indeed, as G becomes large, it predicts a
vanishing parallel correlation length, while one expects that ξ‖
should have a lower bound that is dictated by the bulk molecu-
lar correlation length of the fluid [4]. Interestingly, the correct
large and small limits of ξ‖ may be enforced heuristically by
assuming a gravity-dependent surface tension,

γ (G) = γ0 + ξ 2�ρ G, (1)

with γ0 the surface tension in the absence of an external field,
and ξ a measure of the bulk correlation length [5].

Unexpected as this may be, the result of Eq. (1) is dif-
ficult to rule out for a molecular fluid well away from the
critical point. In view of the smallness of the bulk correlation
length, which rarely is larger than a few molecular diameters,
the gravity-dependent term may be estimated on the order
10−11 mN m−1 for water at room temperature, an unmeasur-
able correction that is a trillion times smaller than water’s
actual surface tension.

*lgmac@quim.ucm.es

However, statistical mechanics has been borrowing ex-
perimental results from colloidal science for more than 30
years [6–8]. Indeed, bulky colloids of micrometer size are
regularly exploited to test predictions for simple models
of atomic interactions, as their size allows direct optical
observation.

A paradigmatic example is the “hard-sphere” colloid,
which exhibits a freezing transition and packing correlations
that are in quantitative agreement with hard-sphere results
obtained from computer simulations [6,7]. By use of confocal
microscopy, the interface that is formed can be observed and
analyzed [8–12]. Intriguingly, experimental measurements of
the stiffness coefficient of those same colloidal suspensions
yield widely different results in different laboratories. Some
authors find results in agreement with the stiffness coefficient
of the solid/liquid interface calculated in computer simula-
tions [11,12], while others find results that differ by as much
as a factor of two [9,10].

Here, we show that the surface tensions of “hard” colloid
interfaces obtained in experiments show a distinct gravi-
tational dependence (Fig. 1) that is fully consistent with
Eq. (1) and allows to reconcile experimental and theoretical
results. The external field dependence of the surface tension
is explained bottom up in terms of an improved interface
Hamiltonian which provides corrections to the fundamental
equation of capillarity theory and whose growth dynamics is
closely related to the Kardar-Parisi-Zhang (KPZ) model of
deposition growth.

In order to illustrate the significance of Eq. (1), we first
consider experimental results by Thorneywork et al. for
two-dimensional colloidal hard spheres [13]. These authors
studied the behavior of a tilted monolayer of colloids de-
posited on a glass surface. By selecting the appropriate surface
fraction of colloids in the system, the monolayer phase sepa-
rates into a liquid and a hexatic phase, with a well-defined
interface. The authors studied the interfacial fluctuations by
optical means, and inferred directly the stiffness coefficient
from the ratio of parallel to perpendicular fluctuations as pre-
dicted by capillary wave theory in two dimensions.

2470-0045/2023/108(2)/L022801(5) L022801-1 ©2023 American Physical Society

https://orcid.org/0000-0003-1900-1241
http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevE.108.L022801&domain=pdf&date_stamp=2023-08-22
https://doi.org/10.1103/PhysRevE.108.L022801


LUIS G. MACDOWELL PHYSICAL REVIEW E 108, L022801 (2023)

FIG. 1. Stiffness coefficients of colloidal monolayers as a func-
tion of gravity. The symbols are experimental stiffness coefficients
(in 10−16 J/m) from Ref. [13] plotted as a function of sin(α), where
α is the tilt angle of the inclined monolayer. The straight line is a
least-squares fit under the assumption that the stiffness is a linear
function of the gravity component along the inclined plane, G sin(α),
as dictated in Eq. (1).

Surprisingly, independent realizations of the assembled
monolayers yielded significantly different stiffness coeffi-
cients. The authors attributed this to different orientations of
the solid hexatic phase with respect to the interface position,
and fitted their results to a model of surface anisotropy with
hexagonal symmetry.

Consider instead that the colloidal hard spheres are suffi-
ciently massive that the surface tension is affected by gravity.
The tilt angle α then serves to tune the force of gravity along
the inclined plane, and the component of the field in the paral-
lel direction to the monolayer plane is given by �ρ G sin(α).
Plotting the surface stiffnesses reported in Ref. [13] as a
function of sin(α) clearly shows an increasing trend with tilt
angle, as predicted by Eq. (1) (Fig. 1). Performing a linear
regression, using G = 9.8 ms−2 and a surface density differ-
ence as reported in Ref. [13], provides a good fit, with a
bulk correlation length of ξ = 10 µm, which is a reasonable
value in view of the colloid’s diameter, σ = 2.79 µm. Further-
more, the zero-field stiffness, as obtained from the linear fit
to Eq. (1), yields γ̃ d/kBT = 0.031, which is about one order
of magnitude smaller than the related liquid/solid stiffness
coefficient in three dimensions (3D), in line with expectations.

A systematic study of surface properties with gravity is not
available for 3D hard-sphere colloids. However, stiffness co-
efficients have been measured for 3D hard-sphere colloids by
Ramsteiner et al. [10] and van Loenen et al. [12]. Interestingly,
Ramsteiner et al. performed experiments with a significant
gravity effect due to a mismatch of colloid and solvent density,
and found stiffness coefficients which are about twice as large
as those expected in computer simulations. On the contrary,
van Loenen et al. chose a colloidal suspension with a much
closer colloid-solvent density match, and found results that are
similar, albeit somewhat smaller than theoretical expectations.
Indeed, the capillary wave analysis of Refs. [10,12] allows
to measure the effective gravitational damping, g′′ = �ρ G,

TABLE I. Stiffness coefficients of hard-sphere colloids with or
without a gravitational field. The second and third columns provide
results for hard-sphere colloids under gravity from Ref. [10]. The
fourth column displays the gravity-corrected result as described in
Eq. (1). The fifth and sixth column present computer simulation
results for the stiffness coefficient γ̃ and the related surface tension
γ under zero gravity from Ref. [14], except for the (111) plane, from
Ref. [15]. Data for the (111) plane correspond to a random stacking
closed packed crystal both in experiments and simulations.

Orientation βγ̃ σ 2 βg′′σ 4 β(γ̃ − σ 2�ρG)σ 2 βγ̃ σ 2 βγσ 2

(100) 1.3 0.57 0.73 0.419 0.639
(100) 1.1 0.49 0.61 0.419 0.639
(110) [1̄10] 1.0 0.37 0.63 0.769 0.616
(110) [001] 1.0 0.37 0.63 0.401 0.616
(111) 0.66 0.08 0.58 0.67

directly from the spectrum of surface fluctuations. The results
show that �ρG is of the same order of magnitude as γ̃ in the
experiments by Ramsteiner et al., but is vanishingly small in
those by van Loenen et al.

According to Eq. (1), the stiffness coefficients measured by
Ramsteiner et al. should therefore be significantly affected by
gravity. We can estimate the zero-field stiffness coefficients
of Ref. [10], as γ̃0 = γ̃ (G) − ξ 2�ρ G, using γ̃ (G) and �ρ G
obtained independently from their experiments, together with
ξ = σ as an order of magnitude estimate for the interfacial
width. The results are displayed in Table I, and compared with
zero gravity results obtained from computer simulations [14].
Despite some discrepancies, the table clearly shows that the
gravity correction brings the experimental results in much
better agreement with computer simulations. Most strikingly,
the stiffness coefficient for the (100) plane, which has a large
value of g′′, differs by more that 260% with zero gravity
results, and is brought to a 50% discrepancy upon correction
from Eq. (1). On the contrary, for the randomly stacked (111)
plane, which has a small value of g′′, the experiments report
stiffness coefficients that agree within 15 % with the zero
gravity results.

The results shown here for the effect of gravity on inter-
facial properties are in fact a special case of a more general
result regarding the dependence of stiffness coefficients on
external fields, which reads [5,16,17]

γ = γ0 + ξ 2g′′, (2)

where g′′ is the second derivative of the interface potential
with respect to the interface position, while ξ is an empiri-
cal measure of the interfacial width, with a similar order of
magnitude as the bulk correlation length. The accuracy of this
result has been tested in computer simulation studies for the
special case of liquid films pinned on an inert substrate by van
der Waals forces, where g′′ decays as an inverse power law of
the film width [5,16,18,19]. For an interface pinned by gravity,
on the contrary, the interface potential is just equal to the
gravitational potential energy, g = 1

2�ρ Gh2, then g′′ = �ρ G
is a constant and Eq. (2) becomes equal to Eq. (1).

The result of Eq. (2) can be derived from an interface
displacement model, assuming that the density of a corrugated
interface ρ(r) is a function of the perpendicular distance away
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from the interface location [17]

ρ(r) = ρπ

(
z − h(x)√
1 + (∇h)2

)
, (3)

where ρ(r) is the fluid’s density for a given realization of the
fluctuations, ρπ (z) is the mean-field density of a flat interface,
h(x) is the interface position in the Monge representation, x
is a point on a reference plane oriented parallel to the average
interface position, and z is the perpendicular distance to that
plane. This expression shows that the density profile of a
corrugated interface depends not only on h(x), but also on
∇h(x), which is a simple way to convey the nonlocality of
corrugated interfaces on the interface position h(x) [20].

This assumption, which has been explored in a number
of studies [21,22], has been shown to be far more accu-
rate than the standard interface displacement model ρ(r) =
ρπ [z − h(x)] for the description of sessile droplets barely a
few molecular diameters away from the substrate [23]. In fact,
using the familiar microscopic van der Waals theory of inter-
faces [4], Eq. (3) yields exactly the coarse-grained interface
Hamiltonian model [17,21],

H[h] = γ0

∫ √
1 + (∇h)2dx. (4)

In the presence of an external field, the free-energy func-
tional can become far more complex, as the intrinsic density
profile ρπ (z) in Eq. (3) is modified by the field [24]. However,
already to zero order in the density profile, there appear in-
teresting corrections, whose significance has not been widely
recognized. Indeed, assuming a local potential V (z) acts on
the system, one finds [18]

H[h] =
∫

dx

[∫
dz V (z)ρπ

(
z − h(x)√
1 + (∇h)2

)

+γ0

√
1 + (∇h)2 − �p h(x)

]
, (5)

where �p stands for the Laplace pressure difference across
the interface and we have purposely avoided explicit integra-
tion of the external field over the volume, which cannot be
readily performed without additional approximations [18,25].
In the classical theory, this integral is equated to the interface
potential of a flat interface evaluated at the local interface
position g(h). Instead, by seeking for the extremal of the free
energy prior to integration of V (z) over volume, we find an
equilibrium condition for liquid films which goes beyond the
traditional capillary approximation,


̃(h, hx )√
1 + h2

x

+ �p = − d

dx

(
γ0hx√
1 + h2

x

+ �γ̃ (h, hx )hx(
1 + h2

x

)3/2

)
, (6)

where 
̃(h, hx ) is the disjoining pressure, �̃γ (h, hx ) is the
extrinsic surface tension due to the external field and hx is used
here as shorthand for ∇h. The tilde on 
 and �γ denotes that
these objects are actually complicated nonlocal functionals of
the film profile, as conveyed by their explicit dependence on
the film gradient.

In practice, for the usual case where the external field
V (z) varies smoothly on the scale of the interfacial width,

the h and hx dependencies in 
̃ conveniently factor out as

̃(h, hx ) ≈ √

1 + h2
x 
(h) with 
(h) the disjoining pressure

of a planar interface (this simplification was overlooked in
Ref. [18], and lead to a linearized extremal condition that is
in error). Using this result and assuming the limit of small
gradients, such that �γ̃ → �γ (h), with �γ (h) = ξ 2g′′(h),
Eq. (6) now becomes a nonlinear differential equation (see
Supplemental Material [26]):


(h) + �p = − d

dx
[γ (h)hx]. (7)

Neglecting the h dependence of γ (h), Eq. (7) recovers
the traditional Derjaguin or augmented Young-Laplace equa-
tion, which is widely used to predict the equilibrium shape
and spreading dynamics of sessile droplets and capillary
bridges [25,27–35]. However, Eq. (2) shows that corrections
to the surface tension may become important in the neighbor-
hood of the three-phase contact region, where g′′(h) becomes
large.

To see this, consider the first integral of Eq. (7), which,
to leading order in g(h)/γ0, is given as (Supplemental Mate-
rial [26])

h2
x =

2[g(h) − g(he)] + 1
2

ξ 2

γ0

2(h)

γ0 + ξ 2g′′(h)
, (8)

where he is the equilibrium film thickness of a flat film.
Away from the three-phase contact line, 
2(h) and g′′(h)

decay to zero faster than does g(h), and the above result recov-
ers exactly the first integral of the Derjaguin equation [29–31].
In the neighborhood of the substrate, however, Eq. (8) pro-
vides significant corrections and dictates deviations of the
film profile hx ≈ θ from the macroscopic contact angle, θ ≈√−2g(he)/γ0. In practice, since 
2(h) usually decays faster
than g′′(h), the qualitative change may be assessed by ignoring

2(h) altogether.

As an explicit example, consider a model interface po-
tential exhibiting incomplete wetting, with an equilibrium
film thickness of about two correlation lengths, and a contact
angle of about θ = 40◦ (Supplemental Material [26]). Solv-
ing Eq. (8) for this model under the appropriate boundary
conditions provides the film profile of a cylindrical liquid
droplet (Fig. 2). Away from the substrate, g(h) is dominated
by the long-range dispersion tail, and �γ provides a small
positive correction to γ0 which has a negligible effect in the
film profile. However, as the profile approaches the substrate,
�γ becomes large and negative (Fig. 3 inset). As a result,
the slope of h(x) becomes larger than predicted by the Der-
jaguin equation, and the film profile falls sharply towards the
substrate. Eventually, as h approaches the equilibrium film
thickness, �γ becomes positive again and the asymptotic
approach towards he becomes smoother than that predicted
by the Derjaguin equation (Fig. 2). Therefore, the corrections
due to the h dependence of the surface tension can become
noticeable within a range of a few correlation lengths.

The improved functional, Eq. (5), also has interesting
implications for the dynamics of interfaces. Indeed, we no-
tice that in the small slope approximation, the nonconserved
gradient-driven dynamics of the functional in Eq. (5) yields
readily a deterministic nonlinear differential equation for the
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FIG. 2. Shape of liquid droplet approaching the three-phase con-
tact line. The green (solid) line is the predicted drop profile according
to the Derjaguin equation, while the blue (dashed) line corresponds
to predictions from Eq. (8). The inset shows the model interface po-
tential employed (red solid line, left axis) and �γ (h) (violet dashed
line, right axis). The length scale of both figures is given in units of
the correlation length, and the surface energy scale in units of γ0.

deposition dynamics of a gas at coexistence (�p = 0):

∂h

∂t
= 
(h) + γ (h)

d2h

dx2
+ γ ′(h)

(
dh

dx

)2

. (9)

Adding a random white-noise term, this result becomes a
nonlinear stochastic growth model which may be viewed as
a generalization of the celebrated Kardar-Parisi-Zhang equa-
tion (KPZ) of deposition growth [36]. Here, it is shown
transparently that the nonlinear term may be obtained from
an equilibrium free-energy functional, an issue that has been
a matter of some debate (cf. Refs. [37,38] for a review).
The bottom-up derivation makes explicit the origin of the

phenomenological coefficients, and shows that they are not
fully independent.

For a thin adsorbed film above the roughening transition,
the interface potential decreases with distance, and Eq. (9)
yields a KPZ equation with a monotonously decaying driving
and variable coefficients of the linear and quadratic terms.
When the adsorbed film becomes thick enough (i.e., such as
in an ordinary fluid interface), the effect of the adsorbent’s
external field is negligible, g(h) → 0, and both the driving
term and the quadratic coefficient vanish altogether, leading to
a standard result of deposition growth on a fluid interface [39].
Therefore, Eq. (9) predicts for the growth of rough films a
smooth crossover from a solidlike to a liquidlike deposition
mechanism as the film grows. On the contrary, for a film
growing below its roughening transition (as is the case of
epitaxial growth), g(h) is oscillatory [40]. In this case, Eq. (9)
recovers the sine Gordon model of crystal growth [41,42],
albeit with a quadratic correction which resembles the KPZ
equation. Most interestingly, the coefficients are oscillatory,
and the quadratic coefficient periodically changes sign. These
features anticipate a rich behavior not predicted by the strict
KPZ equation alone, and challenges the view that the constant
coefficient model universally describes the long-scale behav-
ior of growing interfaces.

In summary, we provide compelling evidence of the influ-
ence of gravity on measured surface tensions. The interfacial
Hamiltonian required to explain this behavior provides cor-
rections to the fundamental laws of capillarity theory and
thin-film deposition under external fields, with potential im-
plications in a wide range of applications.
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