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Nonequilibrium steady state of trapped active particles
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We consider an overdamped particle with a general physical mechanism that creates noisy active movement
(e.g., a run-and-tumble particle or active Brownian particle, etc.), that is confined by an external potential.
Focusing on the limit in which the correlation time t of the active noise is small, we find the nonequilibrium
steady-state distribution Py (X ) of the particle’s position X. While typical fluctuations of X follow a Boltzmann
distribution with an effective temperature that is not difficult to find, the tails of P (X ) deviate from a Boltzmann

behavior: In the limit T — 0, they scale as Py(X) ~ e

—s(X)/t

. We calculate the large-deviation function s(X)

exactly for arbitrary trapping potential and active noise in dimension d = 1, by relating it to the rate function
that describes large deviations of the position of the same active particle in absence of an external potential at
long times. We then extend our results to d > 1 assuming rotational symmetry.
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Background. Active particles propel themselves by pump-
ing energy from their environment [1-10]. Active motion is
not symmetric under time reversal, thus providing examples
of systems that are out of thermal equilibrium even at the
single-particle level. Natural examples of active systems are
found on a wide variety of scales, including molecular motors
[11-14], living cells and/or bacteria [15-21], birds [22,23],
and fish [24,25]. Inspired by these natural examples, many
artificial active systems, consisting of colloids, Janus particles
(objects composed of two or more parts that differ in their
physical and/or chemical properties [26]), or self-propelled
robots have been fabricated and studied experimentally
[6,21,27-35].

Active systems can display remarkable, nonequilibrium
collective behaviors such as motility-induced phase separation
[36-38], clustering and/or flocking [39—41] and surprising
boundary-related effects [42]. However, even a single active
particle can display behaviors that are qualitatively differ-
ent to its passive (Brownian) counterpart. For instance, an
active particle tends to aggregate near the boundaries of a
confining region, unlike a Brownian particle which occupies
the confining region homogeneously [28,31,43-53]. More
generally, an active particle trapped by an external poten-
tial reaches a non-Boltzmann, nonequilibrium steady state
[27,28,30,31,44,48,51,54-61], and its first-passage properties
in general deviate from the Arrhenius law [62-64].

Calculating the statistical properties of this nonequilibrium
steady state is in general a difficult task, which has been
achieved only in special individual cases, while a general
paradigm is lacking. In particular, while typical fluctuations
are sometimes easier to understand as they behave similarly to
thermal (passive) systems, the large-deviations regime, which
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often includes additional signatures of activity, is far less
understood.

Model and summary of main results. Several theoretical
models have been proposed that mimic natural or artificial
active systems. A generic theoretical model for overdamped
active particles can be written in the form of the stochastic
differential equation

x=o0(), (D

where a(¢) represents some (random) noise term that orig-
inates in the self-propulsion of the particle and/or its
interaction with its environment. We denote the correlation
time of the noise by t. The broad class of models that can be
written in the form (1) includes (see precise definitions below)
the active Ornstein-Uhlenbeck particle (AOUP) [4], the run-
and-tumble particle (RTP) [44], the active Brownian particle
(ABP) [6], and passive Brownian motion as particular cases. A
natural way to quantify fluctuations in such models is through
the distribution of the position x = x(¢) of the particle at time
t, given that it begins at the originx(r = 0) = 0. At long times,
many models (including all of the examples mentioned above)
show a universal diffusive behavior: Typical fluctuations of
x are described by a Gaussian distribution whose variance
grows linearly in time,

1 ¢ /4Dert )
N AT Degt
with some effective diffusion coefficient D.g. Nevertheless,
signatures of activity of the process o remain at arbitrarily
long times in the tails of Pgee (X, 7). For many models (includ-
ing, again, all the examples given above), these tails follow a
large-deviations principle (LDP) [58,65-67]

Piree(x, 1) ~ ¢~ 1/DP/D 3)

Pfree(xv t) =

with a process dependent convex ‘“rate function” ®(z) > 0
that has a unique minimum z = z* at which ®(z*) = 0. For
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TABLE I. Rate functions ®(z) and their corresponding SCGFs
A(k) that describe fluctuations of a free active particle for several
different active noises, together with the associated functions t(u)
that yield the SSD and MFPT for a trapped active particle in the limit
of short correlation time of the active noise, see Eq. (9). The result for
the symmetric RTP is valid in d = 1 and d = 2. Results for the ABP
are given in terms of the smallest eigenvalue ay(g) of the Mathieu
equation (13). Wherever ® or u are marked by a —, we obtain them
from A(k) numerically.

Process D(z) A(k) w(u)
AOUP 22/2 k%/2 —2u
Symmetric RTP 1—-V1-22 JVEE+1-1  2u/@®-1)
Asymmetric RTP — Eq. (10) ==
PRW see [78] In(cosh k) —
ABP — —ao(—2k)/4 —

simplicity, we assume z* = 0 [68]. This LDP (3) is valid in the
limit ¢+ — oo with x/¢ and 7 fixed or equivalently, in the limit
T — 0 with x and 7 fixed. For the examples mentioned above,
®(z) is known, see Table 1. ®(z) is generically quadratic
around its minimum, thus providing a smooth matching with
the Gaussian, typical-fluctuations regime (2).

Another natural physical setting, often encountered in ex-
periments [27,28,30,31], is that of an active particle trapped
by an external potential. Then the equation of motion becomes

x=Fx)+o(t), (@)

where F(x) = —VU(x) is the force exerted by the ex-
ternal trapping potential U which is assumed to have a
unique global minimum at x = 0. The trapping potential al-
ters the behavior considerably, compared to a free particle:
At long times, the particle’s position is expected to con-
verge to a nonequilibrium steady state distribution (SSD)
Py (X) [27,28,30,31,44,48,51,54-61]. If ¢ is a passive noise,
then it can be described by a white, Gaussian noise with
(a(t)) = 0 and (0;(t)0;(t")) = ~/2D §;;8(t — '), where D is
the diffusion coefficient and angular brackets denote en-
semble averaging. In this case, the process is in thermal
equilibrium, and Py (X ) o e~V @)D is given by the Boltzmann
distribution. Here D = kgT, where kg and T are Boltz-
mann’s constant and the temperature, respectively. However,
if o is an active noise, calculating Py(X) becomes a major
challenge.

A related question is at what time 7y will a particle, starting
from x = 0, first reach position X ? For passive (Brownian)
particles, the answer to this question is known at U (X) > D:
The first passage time tyx follows an exponential distribution
whose mean is given, in the leading order, by the Arrhenius
law (Kramers’ formula) [69-71] (tx) ~ 1/Py(X) ~ V@D,

One active system in which the SSD is known exactly is
the RTP in dimension d = 1, in an arbitrary potential U (x)
[42,59,72-T7], as we recall in the Supplemental Material [78].
For the particular case of a harmonic trapping potential, these
results ind = 1 were recently extended to the case of a general
noise term that undergoes periodic or Poissonian resetting
[79]. Py (X) and closely related quantities have been recently
found exactly for several variants of the RTP model in d = 2

or higher [80,81] and studied also for the ABP [33,58,60,82—
85] for the particular case of a harmonic trapping potential
U(x) o« x2.

The goal of this Letter is to calculate the SSD and mean
first passage times (MFPTs) for a broad class of potentials
U(x) and active noises o(t), in the small-t limit [86], i.c.,
when the typical timescale of the active noise is much shorter
than the timescale associated with the external force F. We
find that typical fluctuations obey a Boltzmann distribution
Py(X) ~ e U@k where Ty is an effective temperature
that we calculate. However, the tails of the SSD behave very
differently. Using tools from large-deviations theory, we de-
velop a general framework for calculating these tails and find
that (at T — 0) they satisfy an LDP Py(X) ~ e*®)/7 In
d = 1, we calculate the large-deviation function (LDF) s(X)
exactly by relating it to the rate function ®(z), see Eq. (9)
below. Thus, we uncover a remarkable connection between
the statistics of active particles in the free and trapped cases.
Our results extend immediately to d > 1, assuming rotational
symmetry. Finally, we apply our general formalism to several
particular models of active particles, obtaining the results
presented in Table I.

Theoretical framework. For simplicity, we begin from the
case d = 1. In the small-t limit, we exploit the timescale
separation between the timescale 7 of the noise and the the
relaxation time of the particle in the potential in the absence
of noise. In this limit, we coarse grain the noise by averaging
it over time windows of intermediate size [much longer than
7, but much shorter than the timescales of U (x)]. By apply-
ing the LDP (3) to each of these windows, the probability
of a coarse-grained noise history & (¢) is given by [87-93]
P[5 (1)] ~ el9OV | where s[5 ()] = [ ®(6(t))dt is inter-
preted as the action functional of an underlying Hamiltonian
system, as we show below.

Replacing the noise term in (4) by its coarse-grained coun-
terpart, we obtain the coarse-grained Langevin equation

x=Fx)+ao(). &)

We now apply the optimal fluctuation method (OFM) to
Eq. (5). This involves using a saddle-point approximation on
the path integral that corresponds to the stochastic dynamics
(5), resulting in a minimization problem for the “optimal”
(i.e., most probable) history of the system conditioned on
observing the event of interest. Since we are interested in
the SSD of the particle’s position, we let the system evolve
from time t = —oo to time ¢t = 0, at which the position is
measured, X = x(t = 0). To calculate the probability of a
(coarse grained) history x(¢), one simply eliminates & from
(5), leading to P[x(t)] ~ e~*POVT with

0
s[x()] = / O — F(x))dt. (©6)

—00

At T — 0, the dominant contribution to Py (X) comes from
the (coarse grained) history x(¢) that minimizes the action (6)
under the constraints x(t - —oc0) = 0 and x(r = 0) = X.
Since the Lagrangian L = ®(x — F(x)) in (6) does not
explicitly depend on ¢, the Hamiltonian H is conserved. To
calculate it, we first find the “conjugate momentum” to x,
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p=0L/3x = &' (x — F(x)). Then
H=jip—L=Fx)p+[i—F]dG—FQ))
—Px—F(x)=A(p)+Fx)p=EFE, (7

where A(k) is the long-time scaled cumulant generating func-
tion (SCGF) of the position of a free particle, which is related
to ®(z) via Legendre-Fenchel transform [65,94],

®(z) = suplkz — A(k)], ®)
keR

and E is a constant. From the boundary condition at t —
—oo [together with F(0) = 0], we find that £ = 0, i.e., we
obtain F(x) = —A(p)/p, or p = w(F (x)), where k = u(u) is
the solution to the equation u = —A(k)/k. Py(X) is found by
evaluating the action (6) on the optimal history x(¢), which,
using our expression for p(x) together with E = 0, simplifies
to

X X
S(X) = /0 pOodx = /0 W(F (0)dx ©)

so (in the leading order) Py(X) ~ e~/ Equation (9) is a
central result of this Letter. As an immediate consequence,
the MFPT to reach position X is given (in the small 7 limit)
by (tx) ~ 1/Py(X) ~ ¢*®)/*_ These expressions for Py(X)
and (ty) are analogs of the Boltzmann distribution and the
Arrhenius law, respectively, for active systems in the limit
T — 0.

Applications and extension to d > 1. We now calculate
u(u) for several particular models of active particles. The
model whose analysis turns out to be simplest is the AOUP
[4], which we define via o(r) = X(¢/7) with ¥ = —% +
&(t), where £(¢) is white Gaussian noise with (£(¢)) =0
and (£(t)&(t")) = 8(t —t'). For the AOUP, ®(z) = z2/2 [65],
coinciding with that of a passive (Brownian) particle. The
Legendre-Fenchel transform of ® is A(k) = k?/2, so the in-
verse function of —A(k)/k is p(u) = —2u. Using this in (9),
we find Py(X) ~ e~ :IWXO-UO] which is simply a Bolztmann
distribution with effective temperature kgTeer = 7 /2.

A useful benchmark for our formalism is the RTP [44],
for which o (¢) is a telegraphic (dichotomous) noise of unit
amplitude, o (t) = &1, switching sign at a constant rate 7!
The free rate function is [67,95] ®(z) = 1 — +/1 — z2 and its
Legendre-Fenchel transform is A(k) = ~/k? + 1 — 1, leading
to w(u) = 2u/(u* — 1). Indeed, using this in (9), we repro-
duce the leading-order term of the exact (known) result for
the SSD [42,59,72-77], see [78].

Now we find u(u) for several models for which the exact
SSD is not known. Consider an asymmetric RTP ind = 1 with
different left and right speeds, so that o (¢) takes the values 1
and —«, with transition rates 1/t and «/t (from o0 =1 to
o = —a and vice versa, respectively). It is easy to show that
(o(t)) = 0[78]. The corresponding SCGF is [78,95]

—a(k + D4/ (a+Dla(k + 1)+ (k — 1)2]+k — 1
2 b
(10)

Ak) =

leading to w(u) = 1/(1 + u) — a/( — u).
One can also consider an RTP with general distributions
of waiting times between tumbling events, other than the

exponential distribution that corresponds to a constant tum-
bling rate. Thus, our analysis extends beyond Markov
processes. For instance, a Pearson random walk (PRW)
[96-98] in d =1 tumbles with probability 1/2 at each of
the times t = t, 21, 37, .... For the PRW, A(k) = In(cosh k)
[78], so w(u) is the inverse of the function — In(cosh k)/k. We
obtain the asymptotic behaviors

3
—2u—%+..., u— 0,

(11
—sgn(u) 1hj|2u| +...,

uu) =

lu| — 1

of this u(u) in [78].

Our approach extends naturally to dimensions d > 1.
The action (6) is simply replaced by s[x(¢)] = fi)oo d(x —
F (x))dt. It is particularly simple to consider the rotationally
symmetric case, in which U (r) = U(r) is a central potential,
and the statistics of the noise ¢ are rotationally invariant, lead-
ing to a rotationally invariant rate function ®(z) = ®(z). Then
Py (X)) is rotationally symmetric, too. In this case, the optimal
path x(¢) (i.e., the minimizer of s[x(¢)]) is along a straight
line connecting the origin to X, so the optimization problem is
effectively one dimensional. As a result, Py (X ) ~ Ps(tlD (X)),
where PS(LID)(X ) is the SSD of a corresponding model ind = 1
with potential U (|x|) and rate function ®(|z]).

One useful application is the RTP in d = 2 whose speed is
unity and which randomly reorients, at a constant rate 7 toa
new orientation that is uniformly chosen from the unit circle.
For this model, Py (x, t) was found exactly [66], and it was
shown that the LDP (3) holds with ®(z) = 1 — +/1 — z2. This
rate function coincides with that of an RTP ind = 1. As a
result, so do the corresponding u’s, i.e., u(u) = 2u/(u2 —1).
For a harmonic confining potential, this prediction agrees with
the recent exact result of [80], see [78].

Another important application is to the ABP [6], which
involves an orientation vector that evolves via rotational dif-
fusion. In d = 2, the free ABP of unit speed is defined by the
Langevin equations

0 =2D,n(), (12)

where D, is the rotational diffusion coefficient and n(¢) is a
white Gaussian noise with (n(¢)) = 0 and (n(t)n(t")) = §(t —

#"). For the ABP, the LDP Pyee(x, y, 1) ~ e "Pr®W/ X H7%/0) (yag
shown (here D, plays the role of =) and ®(z) and A(k) were
calculated exactly [58,99,100]. The latter is given by A(k) =
—ap(—2k)/4, where ap(q) is the smallest eigenvalue of the
Mathieu equation

¥ (v) + (a — 2g cos 2v)y (v) = 0, 13)

which admits a solution ¥ (v) of periodicity 7.

For an ABP trapped in a central potential, our theory pre-
dicts that at large D,, Py(X) ~ ¢ P®) where s(X) is given
by Eq. (9). By numerically inverting A(k) while using the
algorithm from [99] to compute ay(q), we have plotted w(u)
in Fig. 1. The asymptotic behaviors of ay(q) are known in
each of the limits ¢ — 0 and ¢ — oo [101], and from them
we obtain in [78] the corresponding asymptotic behaviors:

X =-cosf(t), y=sin6(t),

73
u—%+...,

pu(u) = { .
—sgn(u) sgn(u)
Sl T8y T

lu| < 1,

(14)
1—|ul < 1.
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FIG. 1. The function w(u) that describes the SSD and MFPT
of an active particle in an external potential in the limit where the
correlation time 7 of the active noise is short, see Eq. (9). The thick
solid, dashed, dotted, thin solid, and dot dashed lines correspond to
the AOUP, the symmetric RTP, the asymmetric RTP with o = 1/2,
the PRW, and the ABP, respectively.

In [78] we show that the first line in Eq. (14) is in agreement
with results of [60] for an ABP in a harmonic trap.

We can immediately extend our approach to dynamics
given by Eq. (4) where 0 = o0y + ---+ 0, is the sum of n
statistically independent noise terms, e.g., the sum of an active
and a passive (thermal) noise. In this case, it is straightfor-
ward to show that the SCGF A(k) is given by the sum of
the SCGFs of the individual noises, i.e., A(k) = A (k) + - - - +
An(k). All that remains then is to find w(u) [which involves
inverting —A(k)/k]. In the particular case where U (x) is a
harmonic potential, the SSD is given by the convolution of the
SSDs of the individual noises, due to the linearity of Eq. (4)
[80,81,92,102].

Until now, we have tacitly assumed that the noise dynam-
ics are not affected by x(z). We now relax this assumption.
Consider first a stochastic process o (f) whose evolution de-
pends on some time-dependent parameter a(t) which can
represent, e.g., the tumbling rate for an RTP, rotational dif-
fusion coefficient for an ABP, etc. Let ®,(z) be the rate
function that describes the position distribution for a free
particle with the noise o (¢) for constant a(t) = a, and de-
note ®,’s Legendre-Fenchel transform by A,(k). We now
relate these functions to the SSD of a trapped active particle,
evolving according to Eq. (4) where o evolves in time with
a(t) = x(t). By slightly modifying the derivation presented
above, we find that Egs. (6) and (9) give way to s[x(¢)] =
[0 DG = F))dt and s = [¥ pdx = [\ i (F(x))dx,
respectively, where u,(u) is the inverse function of —A,(k)/k.
In particular, this extension allows one to treat multiplica-
tive noise, including, for instance, the case in which the
force F'(x) is intermittent, stochastically switching on and off

[103-105]. For particular types of noises, this s[x(¢)] is of
similar form as was found in other settings, such as urn models
or non-Markovian random walks [90,106,107], or population
dynamics [78,108,109].

Discussion. We have calculated the SSD and MFPT for a
generic trapped active particle in the limit T — 0, uncovering
a remarkable connection between the LDF s(X) and the free
rate function ®(z). Our results are very general as they are
valid for arbitrary active particles in an arbitrary potential in
d = 1 under very mild assumptions, and in d > 1 under the
additional assumption of rotational symmetry.

Generically, ®(z) ~ Az? is parabolic around its minimum
z = 0, leading to a linear behavior pu(u) >~ —4Au around u =
0, see Fig. 1. Plugging this into (9) provides a smooth match-
ing with the Boltzmann distribution that describes typical
fluctuations of X, with effective temperature kgTeir = 7/(4A).
Although we assumed here that the external potential is trap-
ping, with a single minimum, our results for the MFPT yield
transition rates between metastable states, e.g., for double-
well [110] or periodic [111,112] potentials.

The theoretical framework used here can be immediately
extended to more general settings, e.g., beyond the over-
damped limit as was recently demonstrated in Ref. [92] for
the particular case of a harmonic trapping potential. One can
also go beyond the steady state, and study dynamics of the
position distribution, by minimizing the action functional over
coarse-grained histories defined on a finite time interval.

The OFM also yields the optimal history of the system
conditioned on X. Moreover, by comparing Eq. (5) and our
definition p = @'(x — F(x)), we find that A'(p(¢)) is the opti-
mal realization of the noise & (¢) conditioned on X (where we
used that A/ (k) is the inverse of the function ®’(z) [94]).

One can study other models of active noises o (¢). One
example is a shot noise which appears, for instance, in jump
processes in which x(t) takes only integer values. In this case,
as we show in [78], our theoretical framework reproduces
the WKB theory that has been widely used in population
dynamics [108,109].

From our single-particle results it should be straightfor-
ward to deduce properties of a gas of noninteracting particles.
For instance, the single-particle position distribution is pro-
portional to the density of such a gas, but other properties
may also be inferred such as first-passage [113,114] and
extreme-value statistics [115]. It would be interesting to try
to extend our results to other types of active processes, to
multiple interacting active particles [32,116—122], and to dis-
ordered systems [123]. Finally, our result (9), together with
the relation between p and @, enables one to experimentally
determine one of the three functions s, @, and F' by measuring
the other two.
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