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Fast bit flipping based on stability transition of coupled spins
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A bipartite spin system is proposed for which a fast transfer from one defined state into another exists.
For sufficient coupling between the spins, this implements a bit-flipping mechanism, which is much faster
than that induced by tunneling. The states correspond in the semiclassical limit to equilibrium points with a
stability transition from elliptic-elliptic stability to complex instability for increased coupling. The fast transfer
is due to the spiraling characteristics of the complex unstable dynamics. Based on the classical system we
find an approximate scaling relation for the transfer time, which even applies in the deep quantum regime. By
investigating a simple model system, we show that the classical stability transition is reflected in a fundamental
change in the structure of the eigenfunctions.
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Introduction. The concept of quantum computing [1]
enables new possibilities of future computational devices. De-
spite a lot of recent progress, quantum computing will not
supersede classical computing, instead they are expected to
complement each other [2,3]. Thus, it is important to investi-
gate current quantum computation realizations for the ability
of implementing classical operations. A fundamental require-
ment of information processing is a fast and energy efficient
switching between two (quantum) states |0〉 and |1〉. From a
many-body perspective, this could be realized, for example,
by using spintronics [4–6]. Another approach is to employ
few-body systems, which should be realizable with current
experimental devices, e.g., using ultracold atoms [7–9]. Such
many-body systems differ from spin 1

2 systems by having a
semiclassical limit and, thus, can be investigated by more
intuitive classical methods. For example, a transfer between
two specific states can be realized using dynamical tunnel-
ing [10–13] between symmetry related regions. However, the
tunneling time for such a quantum process approximately
depends inversely on the energy difference of the two states,
hence demanding for a compromise between energy efficiency
and switching speed. Thus, it is an interesting open ques-
tion to devise systems for which both goals can be reached
simultaneously.

In this paper, we present a mechanism for bit flipping
in a system of two coupled spins, which is both fast and
energy efficient. We implement the states representing the
bits by antiparallel aligned coherent states [14,15] of the spin
system, i.e., |0〉 ≡ |�〉, |1〉 ≡ |�〉. In the classical limit of
large spins, the quantum system becomes a dynamical sys-
tem, and the states can be classically described by initial
conditions, which are localized around the equilibrium points
of the system. Depending on the parameters the stability of
these equilibrium points changes from elliptic-elliptic (EE)
stability to complex instability (CU) [16,17]. The character-
istic feature of a complex unstable equilibrium is a spiraling
dynamics in the neighborhood leading to a fast repulsion
away from the equilibrium point [18–21]. As the dynamics is

confined to the surface of Bloch spheres for each subsystem,
the spiraling motion transfers the state from one side to the
antipodal side. This classical transfer is also reflected in the
quantum time evolution of the state |�〉, which transforms
into the bit-flipped state |�〉. The transfer to |�〉 can be
quantified using the fidelity [22], see Fig. 1. We establish,
based on classical arguments, a universal behavior in sys-
tem size using a rescaled time. Using a simplified system,
which embodies the essential aspects of the stability transi-
tion, we demonstrate that this is connected with a fundamental
change in the structure of the eigenfunctions from localized to
nonlocal.
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FIG. 1. Quantum transfer from |0〉 ≡ |�〉 to |1〉 ≡ |�〉 as
measured by the fidelity (2) for different parameters ( j, k, ε) as
(25, 1.0, 1.2) for the black dashed line, (40, 1.0, 1.2) for the magenta
dash-dotted line, and (25, 1.2, 1.4) for the cyan dotted line. The
transfer for different parameters follows the same curve by using
the rescaled time τ , see Eq. (9), which is the actual time divided by
the time of the analytical approximation, explained in more detail
in the main text below. The green dashed curve with Fqm ≈ 0 is
for ( j, k, ε) = (15, 1.0, 0.8) where only dynamical tunneling occurs.
The fast bit flipping for the first sets of parameters semiclassi-
cally corresponds to complex unstable dynamics (defined below),
whereas, no transfer occurs for elliptic-elliptic stability.
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FIG. 2. (a) Relevant energy levels as function of the coupling ε:
Red lines highlight those levels, whose eigenfunctions have max-
imal overlap with |�〉, and blue lines highlight those with |�〉.
(b) Dynamical tunneling time tdyn (blue +) for ε < εcrit = 1 and the
transfer time ttrans (yellow to orange ×) for ε > εcrit, see Eq. (4) on the
semilogarithmic scale. The fidelity at time ttrans is encoded by color.
The green vertical dotted line indicates the critical coupling strength
εcrit = 1.0, and the red vertical dashed lines indicate the parameter
regime εcrit ∓ 1/N for N = 11 ( j = 5).

Quantum system. We consider a bipartite system of two
coupled spins,

H = J (1)
x + k1

2 j1

(
J (1)

z

)2 + J (2)
x + k2

2 j2

(
J (2)

z

)2

+ ε√
j1 j2

J (1)
z J (2)

z , (1)

where J (i) = (J (i)
x , J (i)

y , J (i)
z ) is the spin operator of the subsys-

tems i = 1, 2. For simplicity, we restrict ourselves to spins
of equal size, j1 = j2 = j, giving rise to subsystem Hilbert
spaces of dimension N = 2 j + 1. For numerical illustrations,
k1 = k2 = k = 1.0 is used (unless explicitly mentioned). The
parameter ε imposes a coupling of the two subsystems, each
being a variant of the Lipkin-Meshkov-Glick model [23].
Note that system (1) is an autonomous version of the coupled
kicked tops [24,25]. It can also be written in terms of Bose-
Hubbard operators [26,27] and experimentally be realized in
its time-periodically driven version [9].

The bit-states |0〉 and |1〉 are realized by two spin-coherent
product states [14,15,26]. The first state |0〉 ≡ |�〉 aligns both
angular momenta antiparallel in the x direction, i.e., the first
spin in the positive and the second in the negative x direction,
see Fig. 3. The second state |1〉 ≡ |�〉 is the spin-flipped
counterpart. The time evolution is given by the unitary time
evolution operator U (t ) = e−iHt , and we quantify the quan-

FIG. 3. Classical motion of the initial state |�〉 indicated by red
arrows in the two Bloch spheres. A spiraling motion towards the
antipodal point leads to the spin-flipped state |�〉.

tum transfer from |0〉 to |1〉 by the fidelity between the time
evolved state |�(t )〉 = U (t )|�〉 and the fixed bit-flipped state
|�〉,

Fqm(t ) = |〈�|�(t )〉|2. (2)

Therefore, Fqm(t = 0) = 0 and a full transfer to the bit-flipped
state would correspond to Fqm(ttrans) = 1. It turns out that
there is a parameter range of the coupling ε for which there
is essentially no transfer. However, increasing the coupling
beyond some critical parameter εcrit, see Eq. (4) below, a fast
and significant transfer takes place, illustrated in Fig. 1. We
point out that this is not a full transfer of the state, but it
is sufficient to be reliably detectable. In the following, we
explain the mechanism underlying this transfer.

The quantum dynamics of the bipartite quantum system (1)
is determined by the eigenvalue equation H |�n〉 = En|�n〉.
Therefore, a representation of the energy levels En as function
of the coupling ε for a small system j = 5, see Fig. 2, provides
an intuitive understanding of the mechanism: For the time
evolution, U (t ) = ∑

n e−iEnt |�n〉〈�n|, only those eigenstates
are relevant, which are related to the states |�〉 and |�〉. Due
to the antiparallel structure of the spins in |�〉 and |�〉, the
sum of the energies of the identical subsystems is approxi-
mately zero so that we can concentrate on the middle of the
spectrum only. The eigenstates, which are most relevant for
the transfer from |�〉 to |�〉 can be identified by computing
the overlap of |�〉 and |�〉 with all eigenstates, respectively,
e.g., |〈�|�n〉|2. In Fig. 2(a), we present the energy levels,
whose eigenfunctions have the maximal overlap with |�〉
in blue and with |�〉 in red. First, we focus on the param-
eter regime ε < k for which the overlap of |�〉 and |�〉
occurs mainly with two eigenstates only. In this parameter
regime, the two states are in a semiclassical description (see
below) located within symmetry-related regular regions in
phase space so that dynamical tunneling [10–13] between
them is possible. This situation can be described by an ef-
fective two-level system with eigenfunctions of the form of
|�±〉 := 1√

2
(|�〉 ± |�〉). The tunneling time is determined
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by tdyn = 2π/|E+ − E−|. However, as the considered pair of
energy levels is nearly degenerate, the tunneling time becomes
very large, see Fig. 2(b), hence, a transfer from |�〉 to |�〉 by
dynamical tunneling would require extremely long times. This
is seen in Fig. 1 where the fidelity remains essentially zero in
the considered time interval.

By increasing the coupling to ε ∼ k, the system starts to
behave differently. The state distributes over multiple eigen-
functions with larger energy gaps and the approximation by
a two-level system becomes invalid. Hence, the dynamical
tunneling time does not provide a suitable estimate in the
transition regime. For the parameter regime ε � k, the transfer
time ttrans = max(Fqm ), i.e., the time to reach the first max-
imum, is numerically computed using the fidelity Eq. (2).
This transition occurs much faster than for dynamical tun-
neling, see Fig. 2(b). Note that the dynamical tunneling time
is the time to reach the first global maximum and is, there-
fore, different from the transfer time, which is the time to
reach the first maximum. In Fig. 2, the fidelity achieved at
the transfer time is indicated by color. This shows that for
having both short transfer time and large fidelity one needs
ε > 1. Moreover, as the initial and final states still only have
a small energy difference, the transfer can be performed with
less energy than, for example, in a single spin system where
the energy difference between opposite spin configurations is
much larger.

While dynamical tunneling for ε < k is a purely quantum
effect, in contrast, the transfer for ε > k is of classical origin
and can be approached by semiclassical methods.

Semiclassical description. By considering the semiclassi-
cal limit of the quantum spin to a classical angular momentum
leads to a dynamical system. Using the mean-field approach,
see, e.g., Ref. [26], of replacing operators by c numbers and
taking the limit j → ∞ we obtain from Eq. (1) the system of
differential equations,

ẋ1 = −k1y1z1 − εy1z2,

ẏ1 = −z1 + k1x1z1 + εx1z2,

ż1 = y1,

ẋ2 = −k2y2z2 − εy2z1,

ẏ2 = −z2 + k2x2z2 + εx2z1,

ż2 = y2. (3)

The pairs of coordinates (xi, yi, zi ) for i = 1, 2, each lie
on the surface of a unit Bloch sphere. Thus, the sys-
tem (3) can be mapped by a canonical transformation
(φi, zi ) = [

√
1 − z2

i arctan(yi/xi ), zi] into a system, which is
effectively four dimensional with coordinates (φ1, z1, φ2, z2).
In this classical description, the coherent states |�〉 and
|�〉 turn into equilibrium points of (3), i.e., |�〉 corre-
sponds to (x1, y1, z1; x2, y2, z2) = (1, 0, 0; −1, 0, 0) and |�〉
to (−1, 0, 0; 1, 0, 0), respectively. Thus, the quantum transfer
from |�〉 to |�〉 can be investigated in terms of the classical
dynamics of orbits in the neighborhood of these equilibrium
points. The stability of such orbits is determined by the lin-
earized dynamics, which is characterized by the four stability
eigenvalues λ� of the stability matrix [16]. Depending on
the system parameters a transition from elliptic-elliptic (EE)
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FIG. 4. Numerically computed average time of an ensemble of
orbits, which are a spherical distance δ on the Bloch sphere away
from the equilibrium point corresponding to |�〉 to reach the equator
of the sphere. The solid lines show ε = 1.05, 1.1, 1.2 (red, blue, and
green from top to bottom).

stability to complex unstable (CU) dynamics occurs for the
critical parameter,

εcrit = k1 + k2

2
. (4)

The elliptic stability for ε < εcrit is characterized by purely
imaginary eigenvalues. As the local dynamics effectively cor-
responds to eλ�t , the dynamics is rotational and stays in a
bounded neighborhood of the equilibrium, hence, classically
no spin flip is possible. In the CU parameter regime ε >

εcrit, the four eigenvalues λ� form a so-called Krein-quartet
(±λ,±λ∗) with some complex λ = c1 + ic2. This leads to a
logarithmic spiraling motion [18–21], see Fig. 3 where the
expanding motion is determined by the real part c1 and the
rotation by c2. As a consequence, orbits in the neighborhood
of the equilibrium are no longer confined. In particular, an
orbit reaching the equator of the Bloch sphere spirals inwards
to the antipodal side, thus, provides a classical transfer, similar
to the quantum transfer. To obtain an analytical estimate of the
classical transfer time, we model the quantum dynamics by
classical orbits starting a distance δ =

√
δ2

1 + δ2
2 away from an

equilibrium point and determine the time t̃cl when they reach
the equator at x1 = x2 = 0. By using the symmetry of the
transfer the total time is 2t̃cl. On gets a logarithmic dependence
of the classical transfer time,

t̃cl(δ) = 1

c1c2
ln

(
π

2δ

)
, (5)

where

c1, c2 =
√√

ε2 + k1 − k2 − k1k2 + 1

2
∓ (2 + k1 − k2)

4
. (6)

Figure 4 demonstrates that this estimate gives good agree-
ment with the numerical results obtained from the classical
ensemble for various widths δ and different coupling ε.
For the final step towards a semiclassical description, we
consider the quantum coherent states as a Gaussian distri-
bution for each subsystem, which is centered around the
equilibrium point with variance σ 2 = 2

N . Hence, we obtain
after averaging the initial conditions by such a radial normal
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distribution,

tcl = 1

σ 4

∫ ∞

0
dr1

∫ ∞

0
dr2 2r1r2t̃cl(x)e−(r2

1 +r2
2 )/(2σ 2 ) (7)

= 1

c1c2

[
ln

(
π2

8σ 2

)
+ γ − 1

]
, (8)

where γ = 0.5772 · · · is the Euler-Mascheroni constant.
Using the classical transfer time (8) allows for establishing

an approximate scaling relation of the quantum transfer with
respect to the system size N = 2 j + 1 by using the rescaled
time,

τ = t

tcl
. (9)

Thus, for a fixed coupling ε, the transfer scales similarly for
different angular momenta j in the rescaled time as illustrated
in Fig. 1 where also a parameter set is depicted with different
values of k and ε. This rescaling works well only for not to
large differences of ε − k. Remarkably, the transfer scales log-
arithmic in N and is, thus, of the same order as the Ehrenfest
time, which quantifies the time how long quantum dynamics is
expected to follow classical motion. Consequently, the univer-
sal transfer even works in the deep quantum regime of small
sized spins j ≈ 5.

Note that the change in the quantum transfer time is not
abrupt at ε = εcrit but extends over the parameter interval
εcrit ± 1/N , indicated by the vertical dashed red lines in Fig. 2.

Model system with complex instability. The mechanism of
the transfer described for the system of two coupled angu-
lar momenta relies on the possibility for complex instability,
but also on the phase space organization. Thus, in order to
better understand the nature of the EE to CU transition it-
self, we focus on the Cherry Hamiltonian, which is locally
similar to the coupled spin system. For this, we consider the
semiclassical limit of the Hamiltonian (1) by using canonical
coordinates. By a Taylor expansion of the Hamiltonian in one
of the equilibrium points, we obtain a system which locally
reproduces the elliptic-elliptic to complex unstable transition.
Such a transition in its simplest form occurs for the Cherry
Hamiltonian, which we use for further analysis. The classical
Cherry Hamiltonian [28] describing two coupled harmonic
oscillators,

Hcherry = 1

2

(
p2

1 + q2
1

) − w

2

(
p2

2 + q2
2

) + μp1 p2, (10)

where w > 0. The two coupled harmonic oscillators have op-
posite signs in their subsystems energy. As a consequence, the
equilibrium at (p1, p2, q1, q2) = (0, 0, 0, 0) exhibits a EE-CU
transition for μcrit = 1−w2

2
√

w
. The negative energy scale of one

subsystem has important consequences on the energy level
organization for which we consider the case of small detun-
ing of the oscillators � := |w − 1| � 1: For an uncoupled
system of finite subsystem size M, we find energy levels the
energy levels are En1n2 = n1 − wn2 + 1/2 − w/2 with n� =
0, . . . , M − 1, see Fig. 5. Thus the levels are given by clusters
α = n1 − n2, which are itself similar to a single harmonic
oscillator with frequency �. Provided that each cluster is
well separated to the neighboring ones, only the level interac-
tions within a cluster are important. Hence, we consider such
a single harmonic cluster described by an effective Hamilto-
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FIG. 5. Energy levels of the quantized Hamiltonian (10) for M =
10 (crosses), compared to the effective Hamiltonian (11) (lines) for a
single cluster α = 0 and � = 0.02. The red dashed vertical line in-
dicates the EE-CU transition, yellow dashed lines are the boundaries
imposed by the Geršgorin circle theorem (only upper bounds). The
inset illustrates how the energy clusters arise for the uncoupled case.

nian,

Hcluster = −�

M∑
m=1

m|m〉〈m|

+
M∑

m=2

μm

2
(|m〉〈m − 1| + |m − 1〉〈m|).

(11)

This reproduces the essential behavior of the Cherry Hamil-
tonian at the EE-CU transition, see Fig. 5. In the basis {|m〉},
the Hamiltonian is represented by a trdiagonal matrix. The
Geršgorin circle theorem [29], simplified to this special case,
Eq. (11), states that all eigenvalues have to lie within the union
of intervals with lengths given by the sum of the off-diagonal
matrix rows, centered around the value of the diagonal entry.
This provides boundaries to the range of the eigenvalues.
We observe that the upper constraint from the lowest and
the highest energy cross at μ = �, see the yellow lines in
Fig. 5, which is close to the transition point of the classical
system, leading to a larger range of the eigenvalues in the
CU regime. The crossing in which the highest and lowest
eigenvalues are connected, already indicates a transition and,
thus, establishes some kind of long-ranged correlation. This
becomes more explicit by considering the “ground state” of
the system, which is the eigenstate with largest eigenvalue.
We find that this state is exponentially localized in the EE
regime and becomes delocalized at the transition point (not
shown). In the EE regime, the state can be described as an ex-
ponentially localized vector |�〉 = ∑

c j |� j〉 with c j ∼ e− j/l

and localization length l . Using this ansatz in Eq. (11) leads to
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a self-consistent expression for l , which diverges at the critical
point,

l = 1

ln
(

�
μ

+
√(

�
μ

)2 − 1
) . (12)

This diverging localization length results in a delocalized
eigenfunction. This delocalization in the simplified system
can be seen as the corresponding effect for the spin system (1)
where the initial state becomes distributed over multiple
eigenstates. The classical interpretation of this effect can be
understood by the spiraling motion of orbits, which are no
longer confined and explore a large region of phase space.

Summary and outlook. For two opposing equilibrium
points of the proposed bipartite system (1) changing the
coupling induces a transition from elliptic-elliptic stability
to complex unstable dynamics in the semiclassical limit.
The counter-rotating, bipartite nature of the initial state

configuration and the geometry of phase space allows for a
fast and energy-efficient transfer from the state |�〉 into the
bit-flipped state |�〉 compared to dynamical tunneling. These
results can also be extended to the case of a time-periodic
kicked system, namely, the coupled kicked tops for which we
obtain qualitatively similar results. Of future interest is the
situation of parameters, which are directly on the transition
boundary, where a power-law dependence of the transition
time is expected. We propose an experimental investigation of
the system either as a kicked or as an autonomous realization.
Particularly interesting would be to extend the system to mul-
tiple bits, which would allow for investigating the emergence
of complex instability in many-body systems, such as in Bose-
Hubbard systems, which have a semiclassical limit.
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