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Chaotic attractors commonly contain periodic solutions with unstable manifolds of different dimensions. This
allows for a zoo of dynamical phenomena not possible for hyperbolic attractors. The purpose of this Letter
is to emphasize the existence of these phenomena in the border-collision normal form. This is a continuous,
piecewise-linear family of maps that is physically relevant as it captures the dynamics created in border-collision
bifurcations in diverse applications. Since the maps are piecewise linear, they are relatively amenable to an exact
analysis. We explicitly identify parameter values for heterodimensional cycles and argue that the existence of
heterodimensional cycles between two given saddles can be dense in parameter space. We numerically identify
key bifurcations associated with unstable dimension variability by studying a one-parameter subfamily that
transitions continuously from where periodic solutions are all saddles to where they are all repellers. This is
facilitated by fast and accurate computations of periodic solutions; indeed the piecewise-linear form should
provide a useful testbed for further study.
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I. DIFFERING DIMENSIONS OF INSTABILITY

Chaotic attractors of one-dimensional noninvertible maps
and two-dimensional invertible maps have one unstable di-
rection locally. For higher-dimensional maps, the dimensions
of the unstable manifolds of periodic orbits within a chaotic
attractor can differ, and this can occur also for ordinary differ-
ential equations (ODEs). This phenomenon is known as unsta-
ble dimension variability (UDV). It generates nonhyperbolic
dynamics [1] and is expected to be common for chaotic attrac-
tors in mathematical models with sufficiently many variables
[2–4]. UDV implies the existence of orbits that spend arbitrar-
ily long times close to an unstable manifold of one dimension,
and arbitrarily long times close to an unstable manifold of
another dimension [5]. It follows that finite-time Lyapunov
exponents fluctuate about zero as the system evolves [6,7].
It further follows that numerical solutions may differ wildly
from actual orbits. This lack of “shadowing” is problematic
for the applicability of mathematical models [8,9].

One mechanism that implies UDV is the existence of a
heterodimensional cycle—a heteroclinic connection between
saddle objects with unstable manifolds of different dimen-
sions. If an attractor contains a heterodimensional cycle, then
it has UDV [10]. A given heterodimensional cycle is at least
codimension-one, and recent advances in numerical methods
have led to the identification of heterodimensional cycles in
an ODE model of intracellular calcium dynamics [11,12].

Constructions of robust nonhyperbolic chaotic invariant
sets in diffeomorphisms often use the idea of a blender [1,13].
These are transitive hyperbolic sets whose stable manifold
acts geometrically (in terms of its intersections with other
manifolds) as an object with dimension greater than the sta-
ble index of the hyperbolic set, and for which this property

persists for all sufficiently close diffeomorphisms [10,14].
Blenders can be used to construct heterodimensional cycles
by providing robust intersections between stable and unstable
manifolds [15,16], and have recently been identified numeri-
cally [17,18].

This Letter treats maps that are neither invertible nor C1

so the formal definition of a blender, including its persistence
property, does not directly apply. Previous works have con-
sidered specific piecewise-linear maps [19]; in this Letter,
we demonstrate the prevalence of differing dimensions of
instability in a normal form. For invertible maps, the above
notions require three dimensions [20–22]; for noninvertible
maps (Secs. III and IV), two dimensions are sufficient [23].

II. THE BORDER-COLLISION NORMAL FORM

Border-collision bifurcations (BCBs) occur when a fixed
point of a piecewise-smooth map collides with a boundary
(switching manifold) where the functional form of the map
changes. They have been identified as the onset of chaos and
other dynamics in applications including power electronics
[24], mechanical systems with stick-slip friction [25,26], and
economics [27]. Near a BCB, the dynamics are well approx-
imated by a piecewise-linear map [28]. The border-collision
normal form (BCNF) then results from a change of coordi-
nates [29,30]. In two dimensions, this form is

x �→
{

ALx + b, x1 � 0

ARx + b, x1 � 0,
(1)

where

AL =
[

τL 1

−δL 0

]
, AR =

[
τR 1

−δR 0

]
, b =

[
1

0

]
, (2)
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FIG. 1. A phase portrait of an invertible instance of the two-
dimensional BCNF (1) and (2); specifically, (τL, δL, τR, δR ) =
(1.7, 0.3, −1.7, 0.3). In black, we show 8000 consecutive iterates
of a typical forward orbit with transients removed (this represents
the attractor of the map). The green circles are fixed points; the blue
lines show the stable manifold (grown outwards numerically by some
amount) of the rightmost fixed point.

and x = (x1, x2) ∈ R2. Here, τL, δL, τR, δR ∈ R are parame-
ters; the BCB parameter, usually denoted μ, has been scaled
to 1.

The dynamics and bifurcation structure of (1) and (2) are
incredibly rich [31–33]. They exhibit robust chaos [34] in the
sense that chaotic attractors exist throughout open regions
of (four-dimensional) parameter space, even with δLδR > 0
where the map is invertible. Figure 1 shows a phase portrait
of such an attractor. The attractor contains a saddle fixed
point whose stable manifold is dense in an open region of
phase space. This denseness property holds throughout an
open region of parameter space, proved in [35] via a series
of geometric arguments by bounding the rate at which the
line segments expand. A similar result was obtained earlier
by Misiurewicz [36] for the Lozi family (the special case
τL = −τR and δL = δR).

We believe the chaotic attractor and denseness of the stable
manifold is robust to C1 perturbations to the pieces of (1).
This is because piecewise-smooth maps lack smooth turn-
ing points where derivatives vanish, and indeed we proved
a result of this type in [37]. Also, stable periodic solutions
are typically absent near structurally unstable homoclinic
connections [38].

III. TRANSITION THROUGH UNSTABLE
DIMENSION VARIABILITY

The parameter space of the two-dimensional BCNF has
regions where the map has a chaotic attractor in which (the
dense set of) periodic solutions are all saddles, and other
regions where the map has a chaotic attractor in which peri-
odic solutions are all repellers. In this section, we interpolate
between two such regions and provide numerical evidence for
robust UDV.

Let x ∈ R2 be a period-n point of (1) and (2) and suppose
its forward orbit does not intersect the switching manifold
(as is generically the case). Each point in the orbit has a
neighborhood in which the map is differentiable (in fact,
affine). Thus it has two stability multipliers, and if neither of
these has modulus 1, the orbit is hyperbolic. In this case, let

k ∈ {0, 1, 2} denote the number of stability multipliers with
modulus greater than 1 (k is the unstable index). Then, x is
asymptotically stable if k = 0, a saddle if k = 1, and a repeller
if k = 2.

We now explore a one-parameter family of examples. In
(2), we use

τL = (1 − a)τL,0 + aτL,1,

δL = (1 − a)δL,0 + aδL,1,

τR = (1 − a)τR,0 + aτR,1,

δR = (1 − a)δR,0 + aδR,1,

(3)

with 0 � a � 1, and

τL,0 = 0.8, τL,1 = 0.8,

δL,0 = −0.8, δL,1 = −1.2,

τR,0 = −2.8, τR,1 = −1,

δR,0 = 0.8, δR,1 = 2.4. (4)

This one-parameter family has been chosen for three rea-
sons. First, with a = 0, all periodic solutions are saddles; see
Fig. 2(a). This is because with |δL|, |δR| < 1, both pieces of
(1) are area contracting so repellers are not possible, while
stable periodic solutions are not possible because an invariant
expanding cone can be constructed in tangent space [39].
Second, with a = 1, all periodic solutions, except the leftmost
fixed point, appear to be repellers; see Fig. 2(c). This has been
proved for nearby parameter combinations where there exists
a simple Markov partition [40,41]. Third, the map appears to
have a unique attractor for all 0 � a � 1. The two Lyapunov
exponents of the attractor are shown in Fig. 3. These were
computed numerically using the standard QR-factorization
method [42,43].

For any 0 � a � 1, let N (k, n; a) denote the number of
period-n points that have k stability multipliers with modu-
lus greater than 1. The sum of these numbers up to n = 25
is plotted in Fig. 4(a). This figure was computed by brute
force. We used Duval’s algorithm [44,45] to generate all se-
quences of L’s and R’s of length n � 25. Interpreting these
as applications of (1) on the left or on the right, respectively,
the (generically) unique point that has period n in the order
specified by each sequence was identified for each value of
a [28]. We then checked, by iterating the map, whether the
order of the images of the point matched the order of the
specified sequence (an admissibility condition). For those ad-
missible sequences, the stability multipliers were evaluated
to determine whether the periodic solution is a saddle or
a repeller.

For an intermediate range of values of a, the attractor
contains both saddles and repellers, and thus exhibits UDV.
The point of crossover, where saddles and repellers exist in
the same proportion, is close to a = 0.5 and matches well
to where the lower Lyapunov exponent becomes positive.
Figure 2(b) shows a phase portrait with a = 0.5; Fig. 4(b)
shows that here the number of saddles and repellers appears to
increase exponentially with n. This suggests that saddles and
repellers are both dense in the attractor.

Saddles and repellers can arise in different ways. As the
value of a is decreased from 1, saddles are created in a BCB
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(a) (b) (c)

FIG. 2. Phase portraits of noninvertible instances of the two-dimensional BCNF (1) and (2). The parameter values are given by (3) with (4)
and three different values of a. The black dots show iterates of a typical forward orbit with transients removed. Periodic points (up to period
10) are shown with triangles, except fixed points are shown with circles. Saddles are green; repellers are red. The stable (blue) and unstable
(red) manifolds of the leftmost fixed point are also shown (grown outwards by a small amount).

of two saddle period-five solutions at a ≈ 0.9592. Here, in-
finitely many saddle periodic points are created because the
BCB also creates robust heteroclinic connections between the
period-five solutions. This appears to be where saddles are
first created and explains the large discontinuity in the number
of saddle points in Fig. 4(a). In contrast, as the value of a is
increased from 0, repellers are created and destroyed in many
bifurcations. For example, a saddle period-nine solution (with
only one point in x1 < 0) becomes repelling at a ≈ 0.3278
when one of its stability multipliers decreases through −1,
then is destroyed in a BCB at a ≈ 0.3321.

Since the maps are noninvertible, repelling sets may have
preimages, i.e., they may have zero-dimensional stable mani-
folds leading to phenomena such as snap-back repellers [46].
Such a stable manifold may intersect an unstable manifold
of a saddle, resulting in a heterodimensional cycle, assuming
their other invariant manifolds intersect, as can be expected.
We conjecture that the BCB at a ≈ 0.9592 is the boundary
for the existence of heterodimensional cycles in our example.
This is because the unstable manifold of the saddle chaotic
set associated with the period-five heteroclinic connection and
the stable manifolds of the innumerable repellers should be
sufficiently voluminous to intersect for a dense set of values
of a. The analogous transition at lower values of a is less
clear. It may be that “enough” repellers are needed before
heterodimensional cycles can occur for dense set of values of
a, or possibly over an interval.

FIG. 3. Numerically computed Lyapunov exponents of the at-
tractor of (1) and (2), with (3) and (4).

IV. AN EXPLICIT HETERODIMENSIONAL CYCLE

We now provide a simple example of a heterodimensional
cycle. Figure 5 shows a phase portrait of (1) with

τL ≈ 0.8716, δL = −1, τR = −1.5, δR = 2, (5)

where the exact value of τL will be clarified in a moment. With
these values, the rightmost fixed point (red circle), call it xR,
is repelling. There also exists a saddle period-three solution
(green triangles). The value of τL has been chosen so that
the unstable manifold of the period-three solution intersects
xR. By using computer algebra to analytically find where a
certain fourth preimage of xR lies on the initial linear part of
the unstable manifold, we found that τL is a root of

108τ 6
L + 495τ 5

L + 258τ 4
L + 1184τ 3

L − 5800τ 2
L − 4907τL+ 7454.

(6)

The (two-dimensional) unstable manifold of xR appears to
intersect the stable manifold of the period-three solution (as
one would expect), and thus these orbits have a heteroclinic
connection. This is a heterodimensional cycle because xR and
the period-three solution have unstable manifolds of differ-
ent dimensions. This cycle is codimension-one because their

(a) (b)

FIG. 4. Plots involving N (k, n; a): the number of period-n points
(saddles for k = 1; repellers for k = 2) of (1) and (2), with (3) and
(4). Panel (b) includes lines of best fit.
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FIG. 5. A phase portrait of a noninvertible instance of the two-
dimensional BCNF (1) and (2), with (5). The black dots show iterates
of a typical forward orbit with transients removed. The blue line is
the initial part of the stable manifold of the leftmost fixed point (green
circle). The red lines show part of the unstable manifold of a period-
three solution (green triangles). The value of τL has been chosen so
that this manifold intersects the rightmost fixed point (red circle).

dimensions differ by one; indeed, the cycle was obtained by
carefully adjusting the value of one parameter (namely, τL).

Figure 5 is the simplest example of a heterodimensional
cycle that we have found for (1) and (2), where the cycle is
contained in an attractor. This suggests that as in Fig. 2(b), the
attractor exhibits UDV.

V. UNSTABLE DIMENSION VARIABILITY
IN INVERTIBLE MAPS

For an invertible map to have a heterodimensional cycle,
the map needs to be at least three dimensional. This can also

be demonstrated with the BCNF. In three dimensions, the
BCNF is (1) with

AL =
⎡
⎣ τL 1 0

−σL 0 1
δL 0 0

⎤
⎦, AR =

⎡
⎣ τR 1 0

−σR 0 1
δR 0 0

⎤
⎦, b =

⎡
⎣1

0
0

⎤
⎦,

(7)

and x = (x1, x2, x3) ∈ R3, and has been studied previously, for
instance, in [47,48].

Figure 6 shows a phase portrait using

τL = 0.7228540306, σL = −1, δL = −0.2,

τR = −1.5, σR = 2, δR = −0.2. (8)

These values were obtained by adding a dimension to the
example of Fig. 5, varying δL and δR from 0 to create fully
three-dimensional dynamics, and, lastly, adjusting the value of
τL (to 10 decimal places) so that the one-dimensional unstable
manifold of the period-three solution approximately intersects
the one-dimensional stable manifold of xR. The pink square
in Fig. 6 shows this approximate point of intersection. Since
the invariant manifolds appear to be embedded in an attractor,
the other invariant manifolds presumably intersect, forming a
heterodimensional cycle. Hence this attractor too has UDV.

Numerically, we have grown the unstable manifold of the
period-three solution outwards much further than that shown
in Fig. 6. Figure 7 shows the intersections of this manifold
with the switching manifold x1 = 0 and reveals a quasi-one-
dimensional structure. We have observed that this structure
appears to persist as parameters are varied and for different
cross sections. This suggests that the unstable manifold in-
tersects a given one-dimensional stable manifold for a dense
set of parameter values. That is, heterodimensional cycles
between two given saddles can be expected to occur on dense
subsets of parameter space.

FIG. 6. A phase portrait of an invertible instance of the three-dimensional BCNF, (1) with (7) and (8). The black dots show iterates of a
typical forward orbit with transients removed. The one-dimensional stable manifold of a fixed point (red circle) approximately intersects the
one-dimensional unstable manifold of a period-three solution (green triangles). One point of intersection is indicated with a pink square.
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FIG. 7. Intersections of the one-dimensional unstable manifold
of the period-three solution of Fig. 6 with x1 = 0. This was computed
by growing the manifold much further than that shown in Fig. 6.

VI. DISCUSSION

The existence of UDV due to blenders has been estab-
lished numerically in three-dimensional generalizations of the
Hénon map [2]. We have considered a related piecewise-
linear family and by interpolating between parameters with
only saddles and parameters with only repellers, we have
provided strong numerical evidence for the existence of
UDV in the two-dimensional noninvertible BCNF and the

three-dimensional invertible BCNF. Since the BCNF de-
scribes BCBs in general piecewise-smooth systems, the
existence of UDV in these examples shows that UDV has
broader significance within the study of piecewise-smooth
dynamical systems and their applications.

We have also identified a possible mechanism for the onset
of UDV through the creation of saddle chaotic sets (as the
parameter a in Fig. 4 decreases) and snap-back repellers (as
a increases). It is possible that bifurcation theory approaches
[49,50] are sufficient to prove persistent UDV without per-
sistent heterodimensional cycles in these examples. On the
other hand, the bifurcations may provide stable and unsta-
ble manifolds of the appropriate dimensions and complexity
to create dense sets of parameter values with heterodimen-
sional cycles. This is weaker than the robustness provided
by a blender, but much simpler and possibly sufficient for
persistent UDV.
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[1] C. Bonatti and L. J. Díaz, Persistent nonhyperbolic transitive
diffeomorphisms, Ann. Math. 143, 357 (1996).

[2] Y. Saiki, M. A. F. Sanjuán, and J. A. Yorke, Low-dimensional
paradigms for high-dimensional hetero-chaos, Chaos 28,
103110 (2018).

[3] R. L. Viana and C. Grebogi, Unstable dimension variability
and synchronization of chaotic systems, Phys. Rev. E 62, 462
(2000).

[4] S. Das and J. A. Yorke, Multichaos from quasiperiodicity,
SIAM J. Appl. Dyn. Syst. 16, 2196(2017).

[5] E. J. Kostelich, I. Kan, C. Grebogi, E. Ott, and J. A. Yorke,
Unstable dimension variability: A source of nonhyperbolicity
in chaotic systems, Physica D 109, 81 (1997).

[6] S. Dawson, C. Grebogi, T. Sauer, and J. A. Yorke, Obstructions
to Shadowing When a Lyapunov Exponent Fluctuates about
zero, Phys. Rev. Lett. 73, 1927 (1994).

[7] R. L. Viana, J. R. R. Barbosa, and C. Grebogi, Un-
stable dimension variability and codimension-one bifurca-
tions of two-dimensional maps, Phys. Lett. A 321, 244
(2004).

[8] Y.-C. Lai and C. Grebogi, Modeling of Coupled Chaotic Oscil-
lators, Phys. Rev. Lett. 82, 4803 (1999).

[9] Y. Do and Y.-C. Lai, Statistics of shadowing time in nonhyper-
bolic chaotic systems with unstable dimension variability, Phys.
Rev. E 69, 016213 (2004).

[10] C. Bonatti, L. J. Díaz, and M. Viana, Dynamics Beyond Uniform
Hyperbolicity (Springer, New York, 2005).

[11] W. Zhang, B. Krauskopf, and V. Kirk, How to find a
codimension-one heteroclinic cycle between two periodic or-
bits, Discrete Contin. Dyn. Syst. 32, 2825 (2012).

[12] A. Hammerlindl, B. Krauskopf, G. Mason, and H. M. Osinga,
Determining the global manifold structure of a continuous-time
heterodimensional cycle, J. Comput. Dyn. 9, 393 (2022).

[13] Ch. Bonatti, S. Crovisier, L. J. Díaz, and A. Wilkinson, What
is . . . a blender? Notices AMS 63, 1175 (2016).

[14] A. Avila, S. Crovisier, and A. Wilkinson, c1 density of stable
ergodicity, Adv. Math. 379, 107496 (2021).

[15] C. Bonatti and L. J. Díaz, Robust heterodimensional cycles and
C1-generic dynamics, J. Inst. Math. Jussieu 7, 469 (2008).

[16] C. Bonatti, L. J. Díaz, and S. Kiriki, Stabilization of heterodi-
mensional cycles, Nonlinearity 25, 931 (2012).

[17] S. Hittmeyer, B. Krauskopf, H. M. Osinga, and K. Shinohara,
Existence of blenders in a Hénon-like family: Geometric in-
sights from invariant manifold computations, Nonlinearity 31,
R239 (2018).

[18] S. Hittmeyer, B. Krauskopf, H. M. Osinga, and K. Shinohara,
How to identify a hyperbolic set as a blender, Discrete Cont.
Dyn. Syst. 40, 6815 (2020).

[19] Y. Saiki, H. Takahasi, and J. A. Yorke, Piecewise-linear maps
with heterogeneous chaos, Nonlinearity 34, 5744 (2021).

[20] A. S. Gonchenko, S. V. Gonchenko, A. O. Kazakov, and A. D.
Kozlov, Elements of contemporary theory of dynamical chaos:
A tutorial. Part I. Pseudohyperbolic attractors, Intl. J. Bifurcat.
Chaos 28, 1830036 (2018).

[21] S. Gonchenko, A. Kazakov, and D. Turaev, Wild pseudo-
hyperbolic attractor in a four-dimensional Lorenz system,
Nonlinearity 34, 2018 (2021).

[22] S. V. Gonchenko, I. I. Ovsyannikov, C. Simó, and D. Turaev,
Three-dimensional Hénon-like maps and wild Lorenz-like at-
tractors, Intl. J. Bifurcat. Chaos 15, 3493 (2005).

[23] P. Glendinning, Heterodimensional cycles and noninvert-
ible blenders in piecewise smooth two dimensional maps,
arXiv:2304.05689.

[24] Z. T. Zhusubaliyev, O. O. Yanochkina, E. Mosekilde, and S.
Banerjee, Two-mode dynamics in pulse-modulated control sys-
tems, Annu. Rev. Control 34, 62 (2010).

L022202-5

https://doi.org/10.2307/2118647
https://doi.org/10.1063/1.5045693
https://doi.org/10.1103/PhysRevE.62.462
https://doi.org/10.1137/17M1113199
https://doi.org/10.1016/S0167-2789(97)00161-9
https://doi.org/10.1103/PhysRevLett.73.1927
https://doi.org/10.1016/j.physleta.2003.12.049
https://doi.org/10.1103/PhysRevLett.82.4803
https://doi.org/10.1103/PhysRevE.69.016213
https://doi.org/10.3934/dcds.2012.32.2825
https://doi.org/10.3934/jcd.2022008
https://www.ams.org/journals/notices/201610/201610FULLISSUE.pdf?cat=fullissue&trkfullissue201610
https://doi.org/10.1016/j.aim.2020.107496
https://doi.org/10.1017/S1474748008000030
https://doi.org/10.1088/0951-7715/25/4/931
https://doi.org/10.1088/1361-6544/aacd66
https://doi.org/10.3934/dcds.2020295
https://doi.org/10.1088/1361-6544/ac0d45
https://doi.org/10.1142/S0218127418300367
https://doi.org/10.1088/1361-6544/abc794
https://doi.org/10.1142/S0218127405014180
http://arxiv.org/abs/arXiv:2304.05689
https://doi.org/10.1016/j.arcontrol.2010.01.001


P. A. GLENDINNING AND D. J. W. SIMPSON PHYSICAL REVIEW E 108, L022202 (2023)

[25] M. Di Bernardo, P. Kowalczyk, and A. Nordmark, Sliding bi-
furcations: A novel mechanism for the sudden onset of chaos in
dry friction oscillators, Intl. J. Bifurcat. Chaos 13, 2935 (2003).

[26] R. Szalai and H. M. Osinga, Arnol’d tongues arising from a
grazing-sliding bifurcation, SIAM J. Appl. Dyn. Syst. 8, 1434
(2009).

[27] Business Cycle Dynamics: Models and Tools, edited by T. Puu
and I. Sushko (Springer-Verlag, New York, 2006).

[28] D. J. W. Simpson, Border-collision bifurcations in Rn, SIAM
Rev. 58, 177 (2016).

[29] H. E. Nusse and J. A. Yorke, Border-collision bifurcations
including “period two to period three” for piecewise smooth
systems, Physica D 57, 39 (1992).

[30] M. di Bernardo, Normal forms of border collisions in high-
dimensional nonsmooth maps, in Proceedings of the 2003
International Symposium on Circuits and Systems, 2003, ISCAS
’03, Bangkok, Thailand (IEEE, Piscataway, NJ, 2003).

[31] S. Banerjee and C. Grebogi, Border collision bifurcations in
two-dimensional piecewise smooth maps, Phys. Rev. E 59, 4052
(1999).

[32] D. J. W. Simpson and J. D. Meiss, Neimark-Sacker bifurcations
in planar, piecewise-smooth, continuous maps, SIAM J. Appl.
Dyn. Syst. 7, 795 (2008).

[33] P. A. Glendinning and D. J. W. Simpson, Chaos in the border-
collision normal form: A computer-assisted proof using induced
maps and invariant expanding cones, Appl. Math. Comput. 434,
127357 (2022).

[34] S. Banerjee, J. A. Yorke, and C. Grebogi, Robust Chaos, Phys.
Rev. Lett. 80, 3049 (1998).

[35] I. Ghosh and D. J. W. Simpson, Robust Devaney chaos in
the two-dimensional border-collision normal form, Chaos 32,
043120 (2022).

[36] M. Misiurewicz, Strange attractors for the Lozi mappings, in
Nonlinear Dynamics, Annals of the New York Academy of
Sciences, edited by R. G. Helleman (Wiley, New York, 1980),
pp. 348–358.

[37] D. J. W. Simpson and P. A. Glendinning, Inclusion of higher-
order terms in the border-collision normal form: Persistence of
chaos and applications to power converters, arXiv:2111.12222.

[38] D. J. W. Simpson, Unfolding homoclinic connections formed
by corner intersections in piecewise-smooth maps, Chaos 26,
073105 (2016).

[39] P. A. Glendinning and D. J. W. Simpson, A constructive ap-
proach to robust chaos using invariant manifolds and expanding
cones, Discrete Contin. Dyn. Syst. 41, 3367 (2021).

[40] P. Glendinning and C. H. Wong, Two dimensional attractors
in the border collision normal form, Nonlinearity 24, 995
(2011).

[41] P. Glendinning, Bifurcation from stable fixed point to 2D attrac-
tor in the border collision normal form, IMA J. Appl. Math. 81,
699 (2016).

[42] J.-P. Eckmann and D. Ruelle, Ergodic theory of chaos and
strange attractors, Rev. Mod. Phys. 57, 617 (1985).

[43] H. F. von Bremen, F. E. Udwadia, and W. Proskurowski, An
efficient QR based method for the computation of Lyapunov
exponents, Physica D 101, 1 (1997).

[44] J.-P. Duval, Génération d’une section des classes de conjugai-
son et arbre des mots de Lyndon de longueur bornée, Theor.
Comput. Sci. 60, 255 (1988) (in French).

[45] J. Berstel and M. Pocchiola, Average cost of Duval’s algorithm
for generating Lyndon words, Theor. Comput. Sci. 132, 415
(1994).

[46] P. Glendinning, Bifurcations of snap-back repellers with appli-
cation to border-collision bifurcations, Intl. J. Bifurcat. Chaos
20, 479 (2010).

[47] S. De, P. S. Dutta, S. Banerjee, and A. R. Roy, Lo-
cal and global bifurcations in three-dimensional, continuous,
piecewise-smooth maps, Intl. J. Bifurcat. Chaos 21, 1617
(2011).

[48] D. J. W. Simpson, Grazing-sliding bifurcations creating in-
finitely many attractors, Intl. J. Bifurcat. Chaos 27, 1730042
(2017).

[49] K. T. Alligood, E. Sander, and J. A. Yorke, Crossing Bifurca-
tions and Unstable Dimension Variability, Phys. Rev. Lett. 96,
244103 (2006).

[50] E. Barreto and P. So, Mechanisms for the Development of Un-
stable Dimension Variability and the Breakdown of Shadowing
in Coupled Chaotic Systems, Phys. Rev. Lett. 85, 2490 (2000).

L022202-6

https://doi.org/10.1142/S021812740300834X
https://doi.org/10.1137/09076235X
https://doi.org/10.1137/15M1006982
https://doi.org/10.1016/0167-2789(92)90087-4
https://doi.org/10.1103/PhysRevE.59.4052
https://doi.org/10.1137/070704241
https://doi.org/10.1016/j.amc.2022.127357
https://doi.org/10.1103/PhysRevLett.80.3049
https://doi.org/10.1063/5.0079807
http://arxiv.org/abs/arXiv:2111.12222
https://doi.org/10.1063/1.4954876
https://doi.org/10.3934/dcds.2020409
https://doi.org/10.1088/0951-7715/24/4/001
https://doi.org/10.1093/imamat/hxw001
https://doi.org/10.1103/RevModPhys.57.617
https://doi.org/10.1016/S0167-2789(96)00216-3
https://doi.org/10.1016/0304-3975(88)90113-2
https://doi.org/10.1016/0304-3975(94)00013-1
https://doi.org/10.1142/S0218127410025557
https://doi.org/10.1142/S0218127411029318
https://doi.org/10.1142/S0218127417300427
https://doi.org/10.1103/PhysRevLett.96.244103
https://doi.org/10.1103/PhysRevLett.85.2490

