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The NOT operation is a reversible transformation acting on a 1-bit logical state and should be achievable in
a physically reversible manner at no energetic cost. We experimentally demonstrate a bit-flip protocol based on
the momentum of an underdamped oscillator confined in a double-well potential. The protocol is designed to be
reversible in the ideal dissipationless case, and the thermodynamic work required is inversely proportional to the
quality factor of the system. Our implementation demonstrates an energy dissipation significantly lower than the
minimal cost of information processing in logically irreversible operations. It is, moreover, performed at high
speed: A fully equilibrated final state is reached in only half a period of the oscillator. The results are supported
by an analytical model that takes into account the presence of irreversibility. This Research Letter concludes
with a discussion of optimization strategies.
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Starting with 1 bit of information b ∈ (0, 1), only four
deterministic information-processing operations are possible
Table I). Their outcomes are as follows: initial value b (HOLD),
0 (RESET to 0), 1 (RESET to 1), and opposite value b̄ (NOT).
The first one is straightforward (do nothing), the second and
the third are 1-bit erasures, and the last one corresponds to a
bit flip. It has been shown theoretically [1] and experimentally
[2–10] that erasing a 1-bit memory at temperature T0 requires
at least work WLB = kBT0 ln 2, with kB being Boltzmann’s
constant. This intrinsic and universal minimal energetic cost is
known as Landauer’s bound (LB) and comes from the logical
irreversibility of a RESET operation, or in other words from the
entropic loss caused by the reduction of the states available
to the system (from two initial states to a single reset state).
Indeed, the work required to proceed and the heat released
during the operation equalize with the entropic loss according
to the second law of thermodynamics. In contrast, HOLD (or
COPY [4]) and NOT are fully reversible logical operations:
They do not come with any information loss. This logical re-
versibility implies that there is no fundamental minimal bound
to the work required to operate. Reference [4] demonstrated
a COPY operation with very low cost, below 0.01kBT . We
explore in this Research Letter the NOT operation, that is to
say, the feasibility of performing a bit flip in a physically
reversible fashion, without spending energy.

A bit-flip operation in stochastic but Markovian one-
dimensional (1D) memories, whose dynamics only depends
on the current state, is impossible [11]. Indeed, as sketched
in Fig. 1, a protocol using only one degree of freedom
(DOF) has to pass through the same state in the phase space,
whatever the initial state (0 or 1): The information is lost,
and so the output is random. A second degree of freedom
is therefore required to proceed: It can be a second spatial
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dimension y, but if we stick to a 1D memory, observing
non-Markovian dynamics requires the use of the velocity
v = ẋ. Operating in the underdamped regime (quality factor
Q � 1), where the inertia allows control of the speed [bit
flip conducted in the (x, v) plane], is therefore a mandatory
requirement.

In this Research Letter, we experimentally implement a
bit-flip protocol based on the momentum of an underdamped
system, proposed in Ref. [11] and designed to be reversible at
very low damping. We are able to perform a fast and cheap
NOT operation: The protocol is performed in the smallest of
the typical timescales of the system, and the work required
scales as 1/Q, the prefactor depending only on the memory
reliability requirements. Using as 1-bit memory an oscilla-
tor of period T0 = 0.68 ms and quality factor Q = 100, we
perform a bit flip complying with high-standard reliability
requirements in only half a period (0.34 ms) for an average en-
ergetic cost 〈W〉 = 0.46kBT0, significantly below the minimal
cost of information processing in logically irreversible opera-
tions, kBT0 ln 2. This Research Letter is organized as follows:
First, after defining the reliability criteria, we detail the bit-flip
protocol designed to be reversible in the ideal dissipationless
case. Second, we implement the protocol experimentally and
measure the thermodynamic cost. The experimental results
are then supported by a theoretical model that takes into
account the presence of irreversibility: The model perfectly
matches the experimental results. Finally, we conclude and
discuss optimization strategies.

The memory is modeled by a single DOF x evolving in
a double-well potential U (x, x1(t )) = 1

2 k[|x| − x1(t )]2, where
±x1(t ) set the center ofthe two quadratic wells controlled by
the operator. At rest (before or after the logical operation),
we set x1 = X1, and the potential is U1(x) = 1

2 k(|x| − X1)2.
The memory states 0 and 1 correspond to the left- and right-
hand-side wells, respectively, thus to the sign S(x) of x. The
stiffness of the oscillator k in both wells leads to the position
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TABLE I. The four deterministic 1-bit operations.

Initial Final state

state HOLD RESET to 0 RESET to 1 NOT

0 0 0 1 1
1 1 0 1 0

and speed standard deviation at equilibrium: σx = √
kBT0/k

and σv = ω0σx, with ω0 = 2π/T0 being the angular resonance
frequency in a single well. The reliability of the memory
depends on the barrier height B = 1

2 kX 2
1 between the two

states: The higher B is, the less probable is a thermal fluctu-
ation high enough to spontaneously flip from one well to the
other. We choose X1 ∼ 5σx, leading to B ∼ 12.5kBT0: Mem-
ory losses occur only once every e12.5 ∼ 3 × 105 relaxation
times τrelax = QT0/π of the system (∼1.6 h for our experi-
ment), far beyond any relevant timescale we probe.

To achieve a high success rate, the bit-flip protocol has to
be designed to avoid the overlap of the two possible pieces
of information in the phase space as illustrated in Fig. 1.
Indeed, a full overlap results in the impossibility mentioned
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FIG. 1. Schematic overview of the bit-flip success requirements.
The system two-dimensional PDFs are sketched by 2D Gaussians
in the phase space (x, v) with light blue dashed circles (initial state
0) and black solid circles (initial state 1). Using a single DOF (if
Q � 1, only the position can be driven) makes the bit-flip operation
impossible: When the system passes through the phase space origin,
the Markovian dynamics makes the initial information indistinguish-
able. The underdamped regime opens a second DOF to process the
information: The speed v = ẋ. Moderate damping (Q ∼ 1) limits
the velocity range that is accessible and results in a partial overlap of
the memory PDFs in the two different states: The operation can fail.
To prevent the overlap and ensure a 100% success rate, we impose the
requirement that the two states be separated by a minimal distance:
We choose (〈x〉/σx )2 + (〈v〉/σv )2 > 25 as a safety criterion, with
σ 2

x and σ 2
v being the position and velocity variance at equilibrium.

Bit-flip protocols allowing such velocities require a high enough
quality factor of the memory (Q � 1).

for the single-degree-of-freedom case, while a partial overlap
(when the speed is bounded by a moderate damping, Q ∼ 1)
decreases the success rate, since the information is likely to
slip to the wrong state due to thermal noise. In accordance
with the reliability criterion for the static memory, we impose
as safety criterion that the centers of the two states’ probability
distribution functions (PDFs) must be separated at all times
by 10 times their characteristic spreading in the phase space
(2D Gaussian in Fig. 1), that is to say, 10σx and 10σv along
the (x, v) axes. This implies that a minimum speed is also
imposed to safely convey the information: When 〈x〉 = 0, the
criterion translates into

〈|v|〉x=0 > 5σv. (1)

We therefore need to work in the underdamped regime to
allow such high values of the system momentum without
having a prohibitive damping cost.

As there is no entropic cost associated with the bit flip
(logical reversibility), the energetic cost of the operation can
only come from dissipation during the procedure. There are
two strategies to reduce dissipation costs: proceeding at low
speed in a quasistatic fashion or working at very low damp-
ing. In 1D, the first strategy has to be eliminated to meet
the reliability criterion of Eq. (1). Hence the only strategy
left to maintain physical reversibility without hampering the
success rate consists in lowering the viscous damping from the
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FIG. 2. Schematic overview of the bit-flip protocol. (a) Re-
versible operation (no dissipation). The systems starts in state 0
in the encoding potential U1. The operation starts with a sudden
change of the potential into a single well U0 centered in 0. The
system without velocity on average therefore initiates an oscillation
of period T0 from the average position −X1. After half a period
T0/2, the trajectory reaches on average the opposite position +X1

without velocity. At this exact moment, the potential U1 is restored,
so that the system ends up at equilibrium in state 1. (b) Origin of the
irreversibility. When the system oscillation is damped by the viscous
force, the system cannot reach +X1 and culminates at X1 − �X .
Therefore the operator has to pay for the potential energy difference
〈�U flip〉. Besides, the system does not finish in perfect equilibrium in
state 1 and has to relax to the well center, only reaching equilibrium
in the typical relaxation time τrelax = QT0/π .
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FIG. 3. Experimental response to the bit-flip protocol. The bit
flip successfully drives the system from its initial state 0 to state 1
in half a period. The protocol consists in suddenly changing the well
center position x1 from X1 to 0 at ti = 0, and changing it back to X1 at
t f = T /2 = 0.34 ms (thick gray line). The oscillator trajectory (thin
blue line) starts in equilibrium at 〈x〉i = −X1, naturally evolves in the
transient single well, and ends up at 〈x〉 f = +X1. The center of the
well in which the cantilever is trapped is plotted with a dashed red
line. The main panel illustrates the initial and final equilibria, while
the inset presents a zoom focused on the protocol itself.

environment: Q � 1. Within this context, we implement
here an innovative bit-flip protocol relying on the sys-
tem momentum in a nonviscous environment to reach
physical reversibility while complying with the reliability
criterion.

Following Refs. [11,12], the operation consists in sud-
denly moving both wells’ centers to x1(ti ) = 0 at the initial
time ti = 0, as sketched in Fig. 2: The potential becomes a
single harmonic well U0(x) = 1

2 kx2. After half the oscillator
period, at time t f = T0/2, the wells’ centers are brought back
to ±x1(t f ) = ±X1 to rebuild U1(x). We report in Fig. 3 the
protocol x1(t ) in gray, with an example of a single trajectory
in blue, and the corresponding trapping-well center [S(x)x1(t ),
shown with a dashed red line]. It demonstrates the success of
the NOT operation (here 0 → 1).

This bit-flip protocol, illustrated in Fig. 2, has been de-
signed to be physically reversible when the dissipation can
be neglected (Q → ∞). For clarity purposes, let us consider
that the system is initially in state 0 (the symmetric case is
equivalent): 〈x〉i = −X1 and 〈v〉i = 0. At ti, the center of the
well is suddenly changed from x1 = −X1 to x1 = 0, and the
cantilever starts an oscillation into the single-well potential.
After half a period it reaches on average the opposite maximal
position without speed: 〈x〉 f = +X1, 〈v〉 f = 0. The second
change of the potential at this exact moment therefore does
not affect the average position of the system or its velocity:
The memory is immediately in equilibrium. Let us point out
that between the two changes, the velocity reaches 〈|v|〉 = 5σv

when 〈x〉 = 0 as required by the safety criterion recalled in
Fig. 1. The operation results in changing the position of the
oscillator from 〈x〉i = −X1 to 〈x〉 f = +X1 using only the free

evolution of the system inside the potential U0: It is a re-
versible bit flip.

In U1 the second well is statistically inaccessible; hence the
potential remains in practice quadratic with a constant stiff-
ness during the operation. The Fokker-Planck equation ruling
the stochastic dynamic is thus linear: The system response
is at all times the sum of the deterministic contribution
xD = 〈x〉 and of the thermal stochastic one xth, i.e., x =
xD + xth. The latter is not impacted by the bit-flip protocol
and remains at equilibrium: 〈x2

th〉 = σ 2
x = kBT0/k. Therefore

the dynamics is ruled by the deterministic trajectory of the
oscillator.

In the ideal case without any dissipation, the energy given
to the system at the first potential change is fully recovered
when U1 is restored: The operation is reversible, and no work
is required for the process. Formally, as the changes are in-
stantaneous, the work corresponds to the potential loss �U flip

during the flip:

W = U0(ti ) − U1(ti ) + U1(t f ) − U0(t f ), (2a)

〈W〉 = −〈�U flip〉. (2b)

Since 〈U (t )〉 = 1
2 k[(xD(t ) − x1(t ))2 + 〈x2

th〉], without dissipa-
tion we have

〈U1(ti)〉 = 〈U1(t f )〉Q=∞ = 1
2 kBT0, (3)

〈U0(ti )〉 = 〈U0(t f )〉Q=∞ = 1
2

(
kX 2

1 + kBT0
)
, (4)

so that 〈W〉Q=∞ = −〈�U flip〉Q=∞ = 0.
In our experiment, the 1-bit information is encoded into

the position x of an underdamped micromechanical oscil-
lator of effective mass m, in the form of a micrometric
cantilever [10,13–15]. The natural angular resonance fre-
quency of the oscillator is ω0 = 2π × 1.39 kHz, and its low
stiffness k = mω2

0 results in σx � 1 nm at room temperature
T0 = 295 K. The quality factor is tuned to Q = 100 ± 5 using
a low-vacuum environment (pressure 1 mbar). The deflec-
tion x is precisely measured by interferometry [16], and the

FIG. 4. Experimental setup. The deflection x of a conductive
cantilever is measured with high precision by a differential inter-
ferometer. A voltage V0 ± V1 (with V0 � V1) is applied between the
cantilever and a facing electrode by a fast feedback loop; it centers
the oscillator around ±X1 according to the sign of x [13,15]. The
protocol is performed by turning off the feedback (setting V1 = 0)
during half an oscillation period.
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FIG. 5. Average potential and kinetic energies. 〈U 〉 (light blue)
and 〈K〉 (black) are averaged on N = 2000 trajectories. The bit-flip
protocol takes place between ti = 0 ms and t f = T0/2 = 0.34 ms.
Before and after the protocol (note the nonlinear scale for these
time intervals, displaying a long time trace, with a vertical zoom in
the inset), the oscillator is at equilibrium and equipartition applies:
〈U 〉 = 〈K〉 = 1

2 kBT0 (red dashed line). During the protocol, the po-
tential energy gains the barrier height B = 14kBT0 at ti = 0 ms when
the potential is changed from U1 to U0. The oscillator then evolves in
a harmonic well for half a period, and the energies display the deter-
ministic evolution UD = 1

2 kx2
D and KD = 1

2 mv2
D: The potential energy

reaches its minimum when the kinetic is maximum and increases
again till the second potential peak (light green dotted line) as the
system reaches the opposite position. At t f , the average speed is 0;
thus the kinetic energy recovers its average equilibrium value 1

2 kBT0

(red dashed line). The potential energy does not perfectly recover its
initial value, as the small damping removes an energy 〈�U flip

meas〉 =
(−0.450 ± 0.002)kBT0 between the two extreme potential values.

double-well potential is created by applying an electrostatic
force driven by a fast feedback loop based on the comparison
of x with 0: x > 0 (x < 0) results in a constant force centering
the well in +x1 (−x1). The setup is sketched in Fig. 4 and
described in greater detail in Refs. [13,15].

The initial distance is calibrated using the position sig-
nal during the equilibrium steps: X1 = 5.3 σx, so that B =
(14.00 ± 0.05)kBT0. We record N = 2000 trajectories, alter-
nating between 0 → 1 and 1 → 0 operations. The protocol
success rate is 100%: None of the 2000 trajectories ended
in the wrong final state. We use the experimental data to
compute the average potential and kinetic energies 〈U 〉 and
〈K〉 = 1

2 m〈v2〉 displayed in Fig. 5. Both quantities present
a one-cycle oscillation of amplitude B during the proto-
col from ti = 0 to t f = T0/2 and immediately go back to
their equilibrium value 1

2 kBT0 prescribed by the equipartition
at t f .

We compute the work and heat in the stochastic thermo-
dynamic framework [10,17] and extract their distributions on
the N trajectories. In the Supplemental Material [18], we plot
these distributions and study the contributions of the intrinsic

thermal noise and the extrinsic measurement noise. We mea-
sure

〈W〉 = (0.46 ± 0.04)kBT0, (5a)

〈Q〉 = (0.43 ± 0.04)kBT0. (5b)

In the data analysis, we use measured quantities for all vari-
ables, including x1(t ): We take into account the finite speed
ẋ1 when switching back and forth between X1 and 0. Let us
point out that our work measurement is independent of the
potential energy computation of Eq. (2). Note that the aver-
age stochastic heat is computed on a time window spanning
several relaxation times after the end of the protocol, to allow
the memory to return to equilibrium. Shorter integration times
(limited to t f , for example) would bias the result, as heat
exchanges are slow for underdamped systems [14]. As the
system initial and final states are at equilibrium at temperature
T in the same potential U1, the initial and final potential
and kinetic energies are equal: 〈�U 〉 = 〈�K〉 = 0. The first
law of thermodynamics thus implies that the average heat
dissipated at the end of the procedure is equal to the aver-
age work required: 〈Q〉 = 〈W〉, as measured experimentally.
These non-null values can be explained by the small residual
damping at the origin of the irreversibility, as detailed in the
following paragraph. Nevertheless, our experimental imple-
mentation of the bit flip already requires less energy than the
landmark cost for irreversible operations on a 1-bit memory,
Landauer’s bound WLB ∼ 0.69kBT0. Furthermore, this logi-
cally reversible operation is performed in a very short time
(0.34 ms here). Carrying out an irreversible operation such as
an erasure on a similar duration would lead to the LB being
exceeded by several kBT0 [10,14]. Finally, the equilibrium
is restored just after the procedure, so that bit flips can be
repeated successively without altering the memory reliability.

We tackle in this paragraph the origin of the irreversibil-
ity detected through the work and heat mean values: It is
the residual damping in the vacuum in which evolves the
cantilever. Indeed, because of the dissipation during the half
oscillation, the potential energy given back by the system is
lower than the one initially given by the operator, so that in
total, work is required to proceed. To phrase it differently, the
damped oscillator launched in −X1 stops at zero speed after
half a period a little bit before the exact opposite position +X1

as sketched in Fig. 2(b). To provide a quantitative description,
let us express the deterministic term of trajectory xD during
a 0 → 1 operation. The oscillation initiated in xD(0) = −X1

and vD(0) = 0 obeys

xD(t ) = X1e
−tω0

2Q

(
ω0

2Q�
sin �t − cos �t

)
, (6)

where � = ω0

√
1 − 1/(4Q2) is approximately ω0 at high

quality factor. After half a period, at t f = T /2 = π/� the
cantilever reaches on average the extreme position:

〈x(t f )〉 = xD(T /2) = X1e−π/
√

4Q2−1. (7)

Without damping, Q → ∞, so that we recover 〈x〉 f = X1 and
consequently a reversible behavior. Meanwhile, in a viscous
environment, the cantilever undershoots the targeted posi-

tion by �X = X1(1 − e−π/
√

4Q2−1) � π
2Q X1. For Q = 100,

we have �X/X1 = 1.56%. As a consequence, there is a
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potential energy loss 〈�U flip〉 that we compute using Eq. (2)
as

〈�U flip〉 = − 1
2 k

[
X 2

1 + (〈x(t f )〉 − X1)2 − 〈x(t f )〉2] (8)

= −kX 2
1 (1 − e−π/

√
4Q2−1) � −π

Q
B (9)

= (−0.44 ± 0.02)kBT0, (10)

where the approximation in Eq. (9) is true for Q � 1. The
value in Eq. (10) corresponds to the theoretical prediction
knowing the parameters Q and B from calibration, and
matches the measured stochastic work and heat reported in
Eq. (5). We also compare it with the experimental value mea-
sured of the experimental potential energy evolution displayed
in Fig. 5:

〈
�U flip

meas

〉 = (−0.450 ± 0.002)kBT0. (11)

The errors are inferred from the error on σx calibrated before
each of the N operations. The theory and the experiment are
in very good agreement. Besides, the first peak value in Fig. 5
is also consistent with the model, being worth the thermal
energy plus the barrier energy (deterministic contribution):
B + 1

2 kBT0 = 14.5kBT0.
It can be noted that when Q is not very large, the under-

shoot �X can be significant: It diverges for Q = 1
2 , when the

motion is not underdamped anymore. Moreover, the protocol
takes longer, as the effective period T increases when Q
decreases. At low Q values, meeting the safety criteria at t f

implies choosing X1 � 5σxeπ/
√

4Q2−1 to compensate for the
decrease in amplitude. From Eq. (9), we compute the mini-
mum value for the mean work:

Wmin
xv = 25kBT0e2π/

√
4Q2−1(1 − e−π/

√
4Q2−1). (12)

In agreement with Eq. (12), the best way to cut the bit-flip
cost is to enhance the quality factor as displayed in Fig. 6. In
particular, to ensure less than 5% of the LB, the quality factor
has to exceed Q = 1000.

As mentioned in the introduction, using a second spatial
DOF [19] is an alternative to the speed DOF. Maintaining
the bit-flip success rate ensured by the safety criterion (2X1 =
10σx between the two states at all times) would in this case
cost at least the work required to proceed along a circle in
the (x, y) 2D plane, thus covering a distance πX1 in time
τ . Bypassing transients using optimized protocols [20] and
moving at constant speed, the work implied is

Wmin
xy = k

(π5σx )2

Qτω0
= 25kBT0

T0

τ

π

2Q
. (13)

As illustrated in Fig. 6, for operations as fast as τ = T /2, the
protocol based on momentum is better than its spatial (x, y)
counterpart, as long as Q > 3.6. However, the bit flip in the
(x, y) plane allows one to reduce the operation speed and get
close to a quasistatic motion of the system in the viscous bath.
As shown in Fig. 6, if one accepts extending the duration to
τ = 10T , then the (x, y) bit-flip protocol is better. In partic-
ular, such a slow process would reach the quasireversibility

FIG. 6. Work of a bit-flip protocol depending on the quality
factor Q and the operation duration τ . Our protocol (solid black line)
allows very fast erasures: τ = T /2. It corresponds to a bit flip in
the (x, v) plane, whose cost to ensure the safety criterion is given
by Eq. (12). Increasing the quality factor reduces the bit-flip cost:
The quasireversibility (〈W〉 < 5%WLB shown with the black, lower
short-dashed line) is reached for Q > 1000. Proceeding at the same
speed using the 2D spatial alternative [bit flip in the (x, y) plane,
long-dashed black line] requires twice as much energy at large Q,
as expressed in Eq. (13). In contrast, at small Q or lower speed (for
example, for τ = 10T , long-dashed light blue line) the (x, y) bit flip
is cheaper than the momentum-based protocol.

(〈W〉 < 5% LB) under our experimental conditions, i.e.,
Q = 100.

To summarize, we have experimentally illustrated the con-
nection between physical reversibility and logical reversibility
in information processing. The bit-flip protocol, designed to
be secure and cost-free [11,12], has been tested experimen-
tally: It successfully performs the NOT operation in T0/2 =
0.34 ms for a very small amount of work, for example,
significantly below the landmark of the LB of irreversible
operations. The deviation from the desired zero-work oper-
ation is fully explained by the coupling of the memory to
the surrounding bath: Even very low damping introduces ir-
reversibility. The theoretical description has proven reliable
to quantify the remaining irreversibility, evaluated with high
accuracy in our experiment with four independent measure-
ments, all in agreement [Eqs. (5), (10), and (11)]. Even faster
and cheaper NOT operations could be achieved with oscillators
having a higher resonance frequency and a larger quality fac-
tor. After the reset operation [10,14,15], this Research Letter
demonstrates the last logical operation on single-bit under-
damped memories and further highlights their small energy
footprint and their interest.

The data that support the findings of this study are openly
available [21].
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