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Phase separation on surfaces in the presence of matter exchange
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We present a field theory to describe the composition of a surface spontaneously exchanging matter with
its bulk environment. By only assuming matter conservation in the system, we show with extensive numerical
simulations that, depending on the matter exchange rates, a complex patterned composition distribution emerges
on the surface. For one-dimensional systems we show analytically and numerically that coarsening is arrested and
as a consequence domains have a characteristic length scale. Our results show that the causes of heterogeneous
lipid composition in cellular membranes may be justified in simple physical terms.
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Living cells are full of fluid lipid membranes [1]. The
primary function of these membranes is to compartmentalize
the cell interior and to separate the cell from its environment.
At the same time, diverse patterns that play essential roles
in vital processes form on their surfaces. For example, pro-
tein clusters acting as units for sensing extra- or intracellular
signals [2–5]. These protein clusters can be transient or not
and are often associated with domains rich in specific kinds
of lipids, commonly designated as lipid rafts [6]. Another
spectacular example of membrane-associated patterns are pro-
tein waves [7]. Such waves can be standing [8] or traveling
[9], which can lead to turbulent dynamics [10]. Some of the
surface-associated patterns can be reproduced in reconstitu-
tion experiments in vitro [11,12].

The physical principles underlying the formation of these
patterns are still not fully understood and simple reaction-
diffusion systems as pioneered by Turing [13] can miss
essential aspects. For example, convective transport along the
membrane surface can play an important role [14]. This holds
notably for patterns associated with the so-called cytoskele-
ton, a cellular polymer network in which chemical energy is
transformed into mechanical stress [1]. Gradients in this stress
lead to flows along the membrane surface [15–17].

Alternatively, in-plane rearrangements in or on a mem-
brane surface can result from phase separation. This is of
particular importance for the formation of lipid domains.
Lipid phase separation usually results in complete demixing,
although the coupling between line tension at the interface
between different phases and membrane bending can lead
to stable domain patterns [18]. Alternatively, membrane-
associated patterns can be formed when the system is kept out
of thermodynamic equilibrium [19], for example, through the
exchange of matter between the surface and the surrounding
medium [20,21] as shown schematically on Fig. 1. Such an
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exchange is also essential for the formation of some protein
patterns [22].

Pattern formation in the presence of matter exchange
between a surface and the surroundings is often studied
theoretically using descriptions in which the distribution of
particles in the bulk around the surface is assumed ad hoc
to be homogenous; see for example Refs. [11,20,23]. As a
consequence, effective descriptions that only consider the sur-
face are used to analyze the ensuing dynamics. Even though
many patterns observed experimentally could be qualitatively
reproduced in this way, several observations show that these
results have to be considered with care. First, formally the
assumption of a homogeneous bulk is not justified. Second,
although the patterns may look qualitatively similar to patterns
obtained in the full description that also accounts for the bulk,
important features may be missed [22,24].

In this work, we consider the case of phase-separating dy-
namics on a surface in the presence of spontaneous exchange
of particles between the surface and the bulk; see Fig. 1. By in-
tegrating out the bulk dynamics we obtain an effective model
with memory for the time evolution on the surface. We show
that the resulting dynamics leads to stationary phase-separated
patterns with an intrinsic length scale. We determine this
length scale both numerically and via variational arguments.
We also compare our results to a previous phenomenological
model with a simple instantaneous effective kernel [20]. Our
work sheds light on the effects of coupling bulk and surface
dynamics for pattern formation.

We consider a surface, which coincides with the plane
z = 0, such that we neglect surface fluctuations, exchanging
matter (from both sides for simplicity) with a bulk. The system
is schematized in Fig. 1. We denote by �r = (x, y) a position on
the surface and by m̃(�r) and n(�r, z) the densities of particles
adhering to the surface and in the bulk respectively. Alterna-
tively, we can interpret m̃ and n as the surface and volume
fractions of one component of a two-component system (see
Fig. 1), where the two components could be, for example,

2470-0045/2023/108(1)/L012801(6) L012801-1 ©2023 American Physical Society

https://orcid.org/0000-0001-6315-2843
https://orcid.org/0000-0001-8665-2349
https://orcid.org/0000-0001-7409-5071
http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevE.108.L012801&domain=pdf&date_stamp=2023-07-25
https://doi.org/10.1103/PhysRevE.108.L012801


CABALLERO, KRUSE, AND GIAMARCHI PHYSICAL REVIEW E 108, L012801 (2023)

FIG. 1. Illustration of the dynamics considered. Two types of
particles (blue and yellow) on a membrane phase, in equilibrium with
their respective bulk reservoirs, phase separate into blue and yellow
domains. Each species attaches to and detaches from the membrane
with the respective rates kA and kD.

protein species that can adhere to a membrane or lipid species
that constitute the membrane.

Conservation of matter implies that the bulk density n(�r, z)
obeys

∂t n + �∇ · �j = δ(z)[kDm̃(�r, t ) − kAn(�r, z = 0, t )], (1)

where �j(�r, z, t ) = −D �∇n(�r, z, t ) is the bulk particle current,
which we assume to be purely diffusive with diffusion con-
stant D. Particles close to the membrane attach to the surface
at rate kA, whereas particles on the surface detach at rate
kD. We neglect possible cooperative effects during particle
attachment and detachment.

The dynamics of the surface is characterized by either
the difference in density of two species m = m̃1 − m̃2 (as
shown in Fig. 1) or by the fluctuations of a single species
around some average value m = m̃ − m̃0; see the Supplemen-
tal Material (SM) [25]. We consider a Ginzburg-Landau (GL)
free energy, symmetric in m, F = ∫

d2�r{−α
2 m2 + δ

4 m4 +
γ

2 (∇m)2} with constants α, β, and γ , to take into account the
particles’ interactions on the surface. This model is interesting
due to the nonlinearity introduced by the GL term. It applies
to the single and the two-species case. The applicability is
obvious for the single-component case. In the two-species
case it applies when the density fluctuations are much smaller
than the average density (see the SM). For α > 0, it has
two minima at m1,2 = ±√

α
δ

showing the tendency for phase
separation. The dynamics of m(�r, t ) is ruled by a generalized
form of the Cahn-Hilliard equation [26,27]:

∂t m + �∇ ·
[

− μ �∇ δF
δm

]
= kAn(�r, z = 0, t ) − kDm(�r, t ), (2)

where −μ �∇ δF
δm is the surface matter current, μ a mobility,

and n denotes in this equation either the difference of the two
species n1 − n2 or the density in the bulk shifted by − kD

kA
m0.

By integrating out the bulk we reduce the two-
equations system (1) and (2) to a single equation for m(�r, t )
(see SM [25]):

∂m

∂t
= −μ∇2(αm − δm3 + γ∇2m)

+
∫ t

0
dt ′

∫
d�r′K (�r − �r′, t − t ′)m(�r′, t ′). (3)

The exchanges of matter with the bulk now manifest in this
equation as the kernel K

K (r, t ) =
√

π

2

kDκ

Dt
e− r2

4Dt

(
1√
πκt

− eκt Erfc(
√

κt )

)
(4)− kDδ(�r − �r′)δ(t − t ′),

where κ = π
k2

A
2D .

The kernel is nonlocal in time, representing a memory
in the dynamics coming from the diffusion in the bulk. The
result (3) is thus a microscopically rooted description of the
dynamics of the surface. It must be compared to more phe-
nomenological approaches [20] where the bulk was modelized
by a simple ad hoc relaxation term, local in space and time,

Kτ = −τ−1δ(�r − �r′)δ(t − t ′), (5)

where the parameter τ is a typical matter exchange time.
Then, the dynamics is similar to that of phase separating
and reacting chemical mixtures [28,29]. We examine below
the physical properties of (3) and show that depending on
parameters these dynamics, which lead to patterns exhibiting
characteristic length scales, they can differ markedly from the
phenomenological case.

Because of the kernel memory, solving (3) is much more
complicated than for the instantaneous kernel (5). To do so we
take advantage of massive parallelization in graphicalprocess-
ing units (GPUs). We consider a system of dimensions Lx ×
Ly with Lx = Ly = 128 unless stated otherwise and with peri-
odic boundary conditions in both directions. We integrate the
dynamical equation by using a semi-implicit Fourier-spectral
method [30], adapted from [31,32]. Without loss of generality,
we chose μ = α = δ = γ = 1 and space discretization equal
to 1. We use D to fix the timescale by choosing D = 0.1
and vary kA and kD. We approximate the integral in (3) by
a Riemann sum that requires the configurations of the system
m(�q, t ) in the previous M simulation steps (see SM [25] for
more details). For an integration time-step 
t = 10−1 the dif-
ference in m(�r, t ) for simulations with M = 100 and M = 10
is of the order of 10−2. For our purpose, this is a reasonable
numerical error so we fix 
t = 10−1 and M = 10. Typical
results obtained from a random initial condition are shown in
Fig. 2 together with results for the phenomenological kernel
(5) for several values of τ .

In the absence of matter exchange with the bath, K = 0,
and Eq. (3) reduces to the Cahn-Hilliard equation for which
coarsening leads to macroscopic phase separation with even-
tually two domains of the pure phases m1 and m2. Starting
from a random initial condition with ��r∈systemm(�r, t ) = 0, we
observe macroscopic separation after ∼105 simulation steps;
see the inset of Fig. 2.

In contrast, in the presence of the full kernel (4) coars-
ening is interrupted and a natural length scale of the pattern
emerges. This can be seen in Fig. 2, where configurations
which have evolved from the same random initial condition,
but for a much longer time (106 steps), exhibit a characteristic
pattern. Membrane-bound particles in steady state exhibit a
current which vanishes in the absence of matter exchange
with the bulk (see SM [25]). To ensure that we were not
tricked by slowing down of the dynamics towards complete
phase separation, we also considered initial conditions with
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FIG. 2. Snapshots of the distribution m in a domain of 128 × 128
after 106 simulations steps starting from a random initial condi-
tion with ��r∈systemm(�r, t ) = 0. The pure states m1 and m2 are given
by the minima of the Ginzburg–Landau energy. Top rows 1 to 3:
configurations for the full kernel (4). Row 4: configurations for
the instantaneous kernel (5). We use D = 0.1. The values of the
attachment rate kA, the detachment rate kD, and the exchange time
τ are given in the figure. In the absence of particle exchange with an
environment, K = 0, the system completely phase separates (inset).
In contrast, in the presence of a kernel K coarsening is limited and a
natural scale for the patterns appears.

fully separated phases. In the presence of the full kernel (4),
stripe or bubble configurations evolved into multiple domains,
indicating that patterns with a characteristic length scale are
indeed stable fixed points of the dynamics; see SM. In addition
to the labyrinthine patterns shown in Fig. 2, which resemble
patterns observed in the Escherichia coli Min system [33],
after a shift in the potential we also found circular patterns
(see SM) corresponding to protein or lipid domains frequently
found in cells. For simplicity, we continue in the following
with the nonshifted potential, but our analysis is readily appli-
cable also in the shifted case.

The steady state patterns exhibit a characteristic length
scale determining the width of the meandering stripes. This
length scale decreases with increasing detachment rate kD and
shows a nonmonotonic dependence on the attachment rate kA.
In the case of the instantaneous kernel (5) we observe a similar
dependence of the characteristic length scale on τ−1. We can
estimate the scales of these domains by introducing units to
our numerical simulations. For the protein MinD in E. coli, the
residence time on the membrane was measured in vitro to be of
the order of 10 s (kMinD

D � 10−1 s−1) and its diffusion constant
DMinD of the order of 10−1 μm2/s [34]. For example, for
kD = 10−2 we obtain a timescale t0 = kD

kMinD
D

� 10−1 s. Since
in our simulations we use D = 0.1, this sets the length units
to ξ0 =

√
DMinD

D t0 � 1
3 μm. The attachment rate depends on

the cytosolic protein concentration and is more difficult to

get. In particular, there might be cooperative effects, such that
the attachment rate can depend on the amount of proteins on
the membrane. For MinD in vitro a rate 10−3 μm/s, with a
buffer density of 1000 μm−3, has been previously used in
simulations. This gives kA � 1

3 10−3. For these values we get
domains sizes of approximately 20ξ0 � 10 μm, which are of
the order of observed domains [33].

In order to rationalize the dependence of the patterns on the
matter exchange rates and to quantify the differences between
the full and the instantaneous kernels, we first examine the
full kernel as a function of momentum and the parameter s
resulting from a Laplace transform of the temporal coordinate.
In these variables, our kernel (4) reads

K (q, s) = − kD

1 +
√

κ
Dq2+s

. (6)

We see that for small values of the parameter κ , that is small
values of the attachment rate kA or large diffusion constants D,
this expression becomes essentially independent of s and thus
an instantaneous kernel of the form (5) with the identification
τ = 1/kD. Our microscopic calculation thus validates the use
of the instantaneous kernel (5) in such a limit and gives a
microscopic value for the effective lifetime τ . In the opposite
limit, in contrast, we see that the nonlocal dependence on
time has a strong effect on the kernel and we can thus expect
different physical behaviors, at least quantitatively.

Let us consider the instantaneous kernel (5) in one spatial
dimension. Its dynamics is given by

∂t m(q, t ) = −q2μ
δFm

δm∗(q, t )
, (7)

where the star indicates the complex conjugate, and q = 2π
L k

for a system size L, and k = 1, . . . , L. In this expression, we
have introduced the pseudo-free energy Fm = F + Fτ , where
F is the GL free energy and Fτ satisfies

δFτ

δm∗(q, t )
= 1

τq2μ
m(q, t ). (8)

From Eq. (7) it is easy to show that Fm monotonically de-
creases under the time evolution and thus that the fixed point
of the dynamic evolution must correspond to the minimum
of Fm if it is reachable from the initial configuration. For
the parameters of the GL free energy used in this work, we
can approximate these states as regions of uniform concen-
tration, where m takes one of the minimal values m1 or m2,
separated by narrow transition regions or “kinks.” In the case
of the Cahn-Hilliard equation, where Fτ = 0, these kinks

take the form of a hyperbolic tangent,
√

α
δ

tanh(
√

α
2γ

x), and

F ≈ F0 + ε0n. Here, n is the (even) number of kinks, ε0

the energy associated with a kink in GL, and F0 the energy
associated with the uniform regions. The term F0 depends
only weakly on n. The configuration with minimal energy is
thus the one with the minimal number of kinks, i.e., n = 2,
and corresponds to macroscopic phase separation.

The presence of Fτ changes this minimum. We can
estimate the corresponding number of domains through a
variational approach. First, we construct one-dimensional pro-
files by combining n evenly spaced kinks and probe the
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FIG. 3. Pseudo-free-energy Fm for profiles with n evenly spaced
kinks. Dashed line: instantaneous kernel; full lines: full kernel; dotted
line: full kernel for s = 1/t0 = 1. Kernel parameters τ−1, kD, and kA

are as indicated in the legend. The minimum nmin of each energy
function is indicated with a symbol. Inset: profile with n = 12 kinks.

value of the pseudo-free-energy as a function of n as shown
in Fig. 3. For our parameters, kink (and antikink) j with
j = 0, . . . , n/2 is given by θ tanh ( x−x j (θ )√

2
), where θ =

1 for x ∈ [2 jL/n, (2 j + 1)L/n], θ = −1 for x ∈ [(2 j +
1)L/n, 2( j + 1)L/n], and x j (θ ) = (4 j + 3/2 − θ/2)L/(2n).
See Fig. 3 inset for an example of the resulting profile. Then,
we compute the pseudo-free-energy Fm for this profile and
minimize with respect to n.

Extending this analysis to the case of the full kernel (4) is
more involved. A naive attempt could be made from Eq. (6)
by assuming that at large times we can approximate this ex-
pression by taking s → 0 and then identifying the resulting
q-dependent prefactor with 1/τ in Eq. (8). The pseudo-free-
energy has in this case a qualitatively similar shape as for the
instantaneous kernel; see Fig. 3.

We test the configurations obtained with the minimization
strategy by constructing profiles with nmin number of kinks
that serve as initial condition for the full evolution of the
dynamic Eq. (3) for both kernels. As shown in Fig. 4(a),
the effect of both kernels on the profiles is to slightly distort
the shape of the valleys and peaks. As depicted in Fig. 4(b) we
see that for the instantaneous kernel the variational solution
is essentially stable under time evolution, showing that the
variational principle is indeed predicting correctly the fixed
point of the dynamics. A simple estimate can be given by
noting that Fτ scales as L2τ−1n−2. In the presence of matter
exchange in the instantaneous system, we find that the min-
imum of Fm is reached for n = const( L2

τε0
)
1/3

. This scaling
relation is in agreement with our numerical results, as shown
in Fig. 4(c). However, for the full kernel, the final state dif-
fers strongly from the initial configuration derived from the
argument above when kA is large. In particular, the number
of kinks is largely different between the variational estimate
and the full evolution; see Fig. 4(b). This shows that the naive
substitution of the s = 0 kernel in the pseudo-free-energy is
not sufficient and that a more precise method must be found.

FIG. 4. (a) Part of the profiles used as initial condition (dashed
lines) to simulate systems evolving with (5) (τ−1 = 10−4) and our
kernel (4) for kA = 10−4 and kD = τ−1. In continuous lines we show
the profiles after dynamic evolution. For kA = 1 the number of kinks
significantly differs from the number used as initial condition, as
shown in (b). For reference in this case we show in dotted lines a con-
structed profile with the observed nmin and amplitude 0.8. (c) Scaling
relation between the optimal number of kinks nmin and the kernel
parameters kD for fixed values of kA or τ−1 depending on the kernel
used. Stars and crosses represent respectively for the microscopic and
phenomenological kernel an initial condition obtained by minimizing
the effective free energy, as shown in Fig. 3. Squares indicate the
number of kinks observed in simulations of systems that evolved for
up to 106 steps from this initial condition and thus correspond up
to numerical limitations to the fixed point of the dynamics (the two
circles corresponding to kA = 1 and kD = 10−4, 10−3 indicate that
the configuration observed for these set of parameters is not regular
in contrast with all the other observed configurations). The scaling
of nmin appears to be always a power law but with strong quantitative
differences between the microscopic and phenomenological kernels
as expected when kA is large. Fits of the data with a power law with
exponent ζdis are shown in dashed and continuous lines for their
respective kernels.

Putting phenomenologically a finite s, as shown in Fig. 3, to
mimic a finite time cutoff in the memory of the full kernel
does push the minimum of the pseudo-free-energy to a larger
number of kinks but does not allow for a reliable prediction
of the fixed point of the time evolution. Another possibility
is that there is more than just one characteristic scale for the
domains which could explain why deformed bubble domains
were observed in liquid-liquid phase separation of intracellu-
lar condensates [35]. Finding the equivalent of a predictive
variational approach, if at all possible, for the full kernel is
a very interesting but challenging question for future studies.
Extension of these methods to the case of the two-dimensional
patterns computed numerically in Fig. 2 is also interesting
since it would provide direct access to the pattern formation,
bypassing the need for the full dynamical analysis.
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Beyond the analytical approximations, our simulations
show clearly that an optimal length scale exists, revealed by
the optimal number of kinks nmin. This number scaling alge-
braically with the parameters of the kernel. As expected the
full and instantaneous kernels essentially coincide at small kA,
whereas largely different behaviors with different exponents
are observed when kA is large; at least for the time available
in our simulations. This conveys the importance of having
a properly defined full kernel to identify quantitatively the
pattern formed.

In this work, we have presented a field theory to describe
matter distribution in a membrane exchanging matter with its
environment. Our theory predicts arrested phase separation
with domains characterized by typical sizes determined by
the absorption and expulsion matter exchange rates. Based
on semimicroscopical equations for the composition of a
surface and its environment, we integrate the environment
contribution in a single equation for the surface composition
dynamics. The matter exchange effect induces spatiotem-
poral memory effects with nontrivial consequences for the
typical domain sizes for large absorption rates. In contrast,
when the absorption rate is low (kA � 1) our theory behaves
very similarly to an instantaneous kernel that was previously
phenomenologically proposed. In this case, we show with
semianalytical arguments that matter exchange induces phase
separation in the membrane with domains characterized by a
typical length. We compute its scaling as a function of the
parameters of the problem for the one-dimensional case. Our
theory provides a physical justification for the functional form
of the instantaneous kernel.

Our theory shows that when the diffusion constant is large
or the adsorption rate is low particles detached from the
membrane are relatively quickly reabsorbed and homogenized
in the bath. The field n describing matter distribution in the
environment thus does not play any role and can be neglected
in Eq. (2). In this case, the instantaneous kernel can capture
the physics of matter exchange on the surface. However, for
low diffusion constants or large adsorption rates, the opposite
happens and the membrane “remembers” the previous states
of the particles. In this case, the instantaneous kernel fails to
capture the physics of the problem and the full kernel should
be considered. In this case, predicting the domain scaling
behavior is more involved and requires further investigation
(see the current behavior in the SM [25]).

In future work it will be interesting to study the interplay
between phase separation as discussed above and interac-
tions between different lipids and/or proteins induced by
membrane undulations. Indeed, such undulations have been
argued to induce interactions between transmembrane pro-
teins [36,37] and different lipids in the same [38] or in
opposite leaflets of the bilayer membrane [39] and, for large
distances, exceed van der Waals or electrostatic forces. As
these forces can be attractive or repulsive, we expect a large
number of phases to be generated in this case.

This work was supported in part by the Swiss National
Science Foundation under Division II (Grant No. 200020-
188687). All numerical simulations were performed at the
University of Geneva on the Mafalda cluster of GPUs.
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