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Coupled instabilities drive quasiperiodic order-disorder transitions in Faraday waves
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We present an experimental study of quasiperiodic transitions between a highly ordered square-lattice pattern
and a disordered, defect-riddled state, in a circular Faraday system. We show that the transition is driven initially
by a long-wave amplitude modulation instability, which excites the oscillatory transition phase instability,
leading to the formation of dislocations in the Faraday lattice. The appearance of dislocations dampens amplitude
modulations, which prevents further defects from being created and allows the system to relax back to its
ordered state. The process then repeats itself in a quasiperiodic manner. Our experiments reveal an unexpected
mechanism for temporal quasiperiodicity that results from a coupling between two distinct instabilities on the
route to chaos.
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When a thin layer of fluid is subjected to uniform vertical
vibration with sufficiently large amplitude, the initially flat
fluid surface destabilizes to an ordered pattern of subharmonic
standing waves, known as Faraday waves [1]. The Faraday
system has been the subject of numerous theoretical [2–4]
and experimental [5–7] studies, and it serves as a canoni-
cal example of a nonlinear pattern-forming system [8,9]. Its
importance, however, goes beyond the study of pattern forma-
tion, as it manifests in a wide range of physical systems across
multiple length scales. Faraday waves have been observed
in systems as disparate as Bose-Einstein condensates [10],
soft elastic solids [11], and even bodies of vibrated living
earthworms [12]. In pilot-wave hydrodynamics, locally ex-
cited Faraday waves store information about the trajectories
of walking droplets [13–15], while in hydrodynamic superra-
diance they serve as the underlying mechanism for sinusoidal
oscillations of the droplet emission rate [16].

Since the Faraday system is readily accessible in the labo-
ratory, it allows for a detailed study of the complex transition
from order to disorder in pattern-forming systems. Specifi-
cally, when the driving amplitude is increased well beyond
the Faraday threshold, defects appear in the ordered Faraday
lattice, leading to the emergence of spatial disorder through
a process that came to be known as “defect-mediated turbu-
lence” [17]. Defect formation typically occurs via secondary
instabilities, such as transverse amplitude modulation insta-
bility [18–22], and the oscillatory transition phase instability
[23]. In the former, the square Faraday pattern is modulated by
long-wavelength oscillations normal to the air-fluid interface,
leading to an eventual loss of long-range order with increasing
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driving amplitude. In the latter, spatially uncorrelated elastic
waves are excited within the plane of the Faraday lattice,
leading to the emergence of defects. In both cases, as the de-
fects are formed, the square Faraday pattern exhibits a state of
spatial intermittency where the ordered and disordered phases
can coexist. With further increase in driving amplitude the
pattern loses any long-range order and “melts” into a fully
spatiotemporally disordered state [24,25].

A less known, but intriguing phenomenon is that of tem-
poral intermittency in the order-disorder transition in the
Faraday system. This phenomenon was first reported by
Ezersky [26], who observed the resonant excitation of long-
wavelength gravity waves whenever the group velocity of
capillary waves was close to the gravity wave speed C = √

gh,
where h is the liquid depth, and g is the acceleration due to
gravity. These gravity waves induced a transition to chaos
via rapid generation of higher harmonics. The system then
alternated quasiperiodically between an ordered state with
low-frequency vibrations and a fully disordered state.

Here we describe a distinct form of quasiperiodic dynamics
in the Faraday system. We first show that in the case of a
circular bath, for specific values of the bath radius, the ampli-
tude modulation instability occurs in the form of vibrational
modes of a circular elastic membrane. The strength of the
modulation increases continuously in time. Strikingly, these
growing amplitude modulations resonantly amplify in-plane
transverse polarized lattice vibrations associated with the os-
cillatory transition phase instability. The in-plane oscillations
grow over time, eventually leading to a partial disordering of
the lattice via generation of dislocations. The presence of de-
fects dampens amplitude modulations, allowing the system to
relax back to its ordered state by clearing out the dislocations.
The process then repeats itself.

Our experimental system consisted of a circular bath,
190 mm in diameter, that contained a 5-mm-deep circular
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FIG. 1. Quasiperiodic transitions between order and disorder in Faraday waves. Snapshots of our system for a fixed driving frequency
fd = 88 Hz. (a) An ordered Faraday wave lattice at peak vibration acceleration γ = 5.4g, (b) an intermittent partially disordered state at
γ = 5.95g, and (c) a fully disordered state at γ = 6.5g. (d) A time sequence of snapshots during a typical quasiperiod from the same data set
as in (b), showing the onset of disorder followed by the clearing of defects and reordering of the lattice.

opening, with a diameter of 156 mm. The bath was filled with
silicone oil so that the resulting oil depth was 5.6 ± 0.2 mm
above the inner opening, and ≈0.6 mm in the surrounding
shallow layer. The shallow layer acted as a wave damper and
eliminated any effects due to sloshing of oil against the bound-
aries of the system. The silicone oil had surface tension σ =
0.0209 N/m, viscosity ν = 20 cSt, and density ρ = 0.965 ×
103 kg/m3. The bath was vibrated vertically by an electromag-
netic shaker [27] with forcing F (t ) = γ cos(2π fdt ), with fd

and γ being the frequency and peak vibrational acceleration,
respectively. A detailed description of the experimental setup
is given in the Supplemental Material (SM) [28].

Figure 1 describes the typical evolution of the Faraday
system with increasing driving amplitude γ . For γ slightly
above the pattern-forming threshold, the Faraday pattern takes
the form of a square lattice characterized by highly coher-
ent long-range order [Fig. 1(a)]. With further increase in
the driving amplitude, line dislocations appear in the lattice
leading to a regime of coexistence between ordered and disor-
dered regions, reminiscent of the intermittency route to chaos
[Fig. 1(b)]. The dislocation density increases with an increase
in the driving amplitude, until finally the lattice “melts” into a
fully disordered state [Fig. 1(c)].

The behavior of the system studied here is in stark contrast
with the typical intermittency route to chaos. Specifically,
there appears to be a small parameter range γ1 < γ < γ2,
with γ1 above the pattern-forming threshold and γ2 below the
dislocation-forming threshold, where amplitude modulations

in the form of low-frequency gravity waves are excited.
These secondary waves resonate with the driving frequency
and grow in amplitude over time, leading to the formation
of dislocations in the Faraday lattice. The presence of
dislocations causes the system to lose its coherence and the
long-wavelength gravity waves are damped. In the absence of
gravity waves, the formed dislocations exit the system through
its boundaries, restoring the original form of a highly ordered
square lattice. At this point, full coherence is restored, which
resets the system for the next order-disorder-order cycle
[Fig. 1(d)]. Over long periods of time, our system switches
quasiperiodically between highly coherent ordered states, and
those that are partially disordered (see Supplemental Material
Video S1).

Notably, the low-frequency waves observed here seem
to represent vibrational modes of a circular membrane,
which is consistent with previous observations that the
ordered Faraday lattice can exhibit elasticlike behavior [29].
Figures 2(a) and 2(b) show a comparison between two clear,
but distinct long-wavelength modes observed at fd = 88 Hz
and fd = 79 Hz, respectively. A comparison to theoretically
predicted circular membrane modes is made in Figs. 2(c) and
2(d), showing the (2,2) and the (1,2) modes, respectively.
We observe a quantitative agreement between the shape and
wavelength of the predicted and measured modes, further
supporting this conclusion (see SM text for details) [28].
Modes that are excited at other frequencies in the proximity
of fd = 88 Hz and fd = 79 Hz, exhibit some combination
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FIG. 2. Spatial structure of long-wavelength modes. (a), (b) Vi-
sualization of the spatial structure of long-wavelength modes for
fd = 88 Hz (a), and fd = 79 Hz (b). The images in (a) and (b) rep-
resent the pixel-wise standard deviation of image intensity over
one oscillation time period (≈1 s) leading up to disordering of the
lattice. The image intensity has been uniformly multiplied by 3 to fa-
cilitate clearer visualization. (c), (d) Visualization of the geometry of
theoretically predicted normal modes of a circular elastic membrane,
with mode numbers (2,2) (c), and (1,2) (d). The membrane diameter
in (c), and (d) is chosen to be the same as for experiments shown in
(a) and (b).

of the two main modes observed here (see Supplemental
Material Video S2 for a visualization of the development
of these low-frequency modes in our experiments). The
correspondence between the driving frequency and the
duration of the ordered vs disordered states, is discussed in
Fig. S2 and associated Supplemental Material text [28].

To quantitatively characterize the oscillations leading up
to disorder, we tracked the positions of intensity maxima over
a period of 10 s prior to disordering of the lattice, using Blair
and Dufresne’s MATLAB implementation of the Crocker-Grier
algorithm [30]. The low-frequency vibrations associated with
fd = 88 Hz are clearly visible in the displacement of the X
and Y components of the center of mass, 〈�xc.m.〉 (black)
and 〈�yc.m.〉 (gray) [Fig. 3(a)]. To characterize the associated
lattice vibrations, following [23], we quantified the Fourier
spectrum of relative displacements between nearest-neighbor
intensity maxima. Specifically, we computed

�u( f ) =
√

〈�xm,n( f )〉2
m,n + 〈�ym,n( f )〉2

m,n, (1)

where �xm,n( f ) and �ym,n( f ) are magnitudes of the Fourier
transforms of X and Y components of relative displacements
between nearest neighbors m and n, respectively, and 〈·〉m,n

denotes averaging over all pairs of nearest neighbors. �u( f )
exhibits a sharp maximum at f ≈ 0.8 Hz [Fig. 3(b)], consis-
tent with the low-frequency vibration shown in Fig. 3(a). A

FIG. 3. Enhancement of transverse fluctuations due to resonant
amplification of membrane modes. (a) Time series of the X (black)
and Y (gray) coordinates of the center of mass prior to disordering
of the lattice, for fd = 88 Hz. (b) �u( f ) versus frequency f for the
same data as shown in (a), showing a prominent peak at the oscil-
lation frequency of the long-wavelength mode. (c) Curl ∇ × u)( f )
(filled orange squares) and divergence (∇ · u)( f ) (open blue circles)
of displacements of intensity maxima as a function of frequency f .
The frequency corresponding to the peak, fm, corresponds to the
frequency of long-wavelength oscillations shown in (b). (d) The peak
values of curl [(∇ × u)( fm ), filled orange squares] and divergence
[(∇ · u)( fm ), open blue circles] of displacements of intensity maxima
as a function of driving frequency fd . Error bars are standard errors
of the mean across three distinct quasiperiods.

similar maximum is observed near f ∼ 1 Hz for all driving
frequencies studied (Fig. S3) [28]. Crucially, the sharp max-
imum in �u( f ) is quite distinct from the appearance of a
broad shoulder observed by Fineberg and co-workers [23] in
the oscillatory transition phase. To further compare and con-
trast our results with prior work, we computed the magnitude
of the Fourier transform of the curl and divergence of dis-
placements u(r, t ), (∇ × u)( f ) and (∇ · u)( f ), respectively,
averaged over space. In the oscillatory transition phase [23],
no enhancement is observed for (∇ · u)( f ), whereas a broad
spectrum of frequencies are excited for (∇ × u)( f ). This cor-
responds to damped oscillatory waves with purely transverse
polarization. In stark contrast, we observe that both (∇ · u)( f )
and (∇ × u)( f ) develop a sharp peak at a characteristic fre-
quency [Fig. 3(c)]. Furthermore, we consistently observe that
the peak in curl has a larger amplitude than the peak in diver-
gence for all driving frequencies studied [Fig. 3(d)].

In practice, the signal in (∇ · u)( f ) derives from low-
frequency modulations in the height of the fluid-air interface,
which lead to apparent in-plane contractions and dilations
in the positions of intensity maxima. However, the fact that
these modulations lead to an enhancement in (∇ × u)( f )
suggests that low-frequency gravity wave modulations lead
to resonant amplification of certain modes associated with
the transverse oscillatory instability observed in [23]. Impor-
tantly, (∇ · u)( f ) as well as ∇ × u)( f ) exhibit a pronounced
maximum at f = 88 Hz, and a weaker one at f = 79 Hz.
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FIG. 4. Increase and decrease of coherence of long-wavelength
modes within a quasiperiod. (a) The equal-time transverse-spatial
velocity correlation C⊥ averaged over time intervals of duration 5 s
(100 frames) for the fd = 88 Hz data shown in Fig. 1(d). The color
changes with time from 0–5 s (black) to 65–70 s (light orange). The
strongly negative correlations are consistent with the predominantly
transverse polarization of long-wavelength oscillations. The more
negative the minimum value Cm

⊥ , the stronger are the correlations.
(b) Cm

⊥ as a function of time during the quasiperiod. Colors corre-
spond to the data in (a).

Consistent with these findings, we observed similar peaks in
the timescale associated with the duration of the ordered state,
as well as the characteristic timescale between two successive
bursts of disorder (Fig. S2) [28].

In order to quantitatively characterize the sequence of in-
creasing and decreasing coherence, we generated the velocity
field for intensity maxima using the MATLAB package PIVLAB

[31–33]. We then split our video into segments of duration 5 s
(100 frames), and computed the equal-time transverse-spatial
velocity correlation C⊥ = 〈v⊥(0)v⊥(r)〉 for each segment.
Here, v⊥ denotes the component of velocity perpendicular to
the line joining two points on the particle image velocimetry
(PIV) grid, and 〈·〉 denotes averaging over the time interval of
5 s. Our choice of transverse velocity correlations was moti-
vated by the fact that lattice vibrations have a predominantly
transverse character [Figs. 3(c) and 3(d)]. Figure 4(a) shows
the transverse velocity correlation for all 5-s time intervals
within the 70-s duration shown in Fig. 1(d). At early (black)
as well as late (light orange) times, when the lattice is ordered,
we observe strong correlations that span almost the entire
system. At intermediate times (brown), however, the strength
of the correlations is reduced significantly due to disorder. To
quantify the evolution of spatial coherence, we plotted the
minimum value Cm

⊥ of the transverse spatial velocity corre-
lations as a function of time [Fig. 4(b)]. Cm

⊥ initially becomes
increasingly strongly negative, indicating increasingly strong
correlations, as the membrane mode vibrations amplify trans-
verse oscillations. Once the lattice disorders, Cm

⊥ quickly rises
towards 0, as the oscillations lose coherence. At late times,
the system becomes ordered again, and resonant amplification
of the membrane mode once again results in Cm

⊥ reaching a
strongly negative value.

Temporal quasiperiodicity is ubiquitous throughout
various physical systems, and is often attributed to oscillations
with time-dependent forcing, or to systems that oscillate with

a finite number of incommensurable frequencies. Notable ex-
amples include El Ninó-Southern Oscillation in Climatology
[34], quasiperiodic oscillation in x-ray astronomy [35], and
quasiperiodic oscillations in dynamical systems [36]. Our
findings reveal a mechanism for such quasiperiodic behavior
based on an unexpected coupling between two instabilities
associated with distinct routes to chaos, namely, transverse
amplitude modulation and the oscillatory transition phase.

Our results differ from previous observations of temporal
intermittency in the Faraday system in two significant ways.
First, unlike the ripples observed by Ezersky [26], the initial
amplitude modulation instability in our system takes the form
of circular membrane modes. Secondly, instead of a cascade
of higher harmonics leading to a fully disordered state, we ob-
serve the growth of in-plane lattice distortions that culminate
in a partially disordered state. An interesting feature of our
system is that the driving frequency (79 Hz � fd � 92 Hz)
is orders of magnitude higher than the observed frequency of
quasiperiods (∼0.02 Hz). The characteristic timescales that
give rise to quasiperiodicity in our system are therefore en-
tirely emergent in nature, and derive solely from the positive
and negative feedback between secondary instabilities. It is
worth investigating whether, and to what extent, the mecha-
nism for quasiperiodicity observed here applies to a broader
class of driven-dissipative systems.

Finally, we note that our results bear intriguing connections
to the observation of quasiperiodic strain bursts [37,38] asso-
ciated with dislocation avalanches [39,40] in crystal plasticity.
In crystal plasticity, the nonequilibrium drive is typically pro-
vided by an external mechanical deformation such as shear.
Quasiperiodicity results from the interplay between disloca-
tion motion and interactions as well as quenched disorder
[37]. By contrast, in our system, lattice distortions are in-
duced by secondary instabilities associated with the air-fluid
interface. Further, spatial fluctuations in depth due to mi-
croscale surface roughness, as well as geometric frustration
of the lattice near circular boundaries can serve as sources of
quenched disorder in our system. Additionally, the generation
of localized excitations such as oscillons, can also suppress
wave propagation [41]. Thus, a detailed theoretical analysis
of our results, possibly along the lines of studies on crystal
plasticity, would be an exciting topic for future research.

All data are available in the main text, Supplemental Ma-
terial, or from the authors upon request. All code is available
from the authors upon request.
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